九年级数学上册试题

合集下载

九年级数学上册练习题及答案

九年级数学上册练习题及答案

九年级数学上册练习题及答案九年级数学试题一选择题:1、下列命题中的真命题是、A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形第2题图2、如右图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 A.2cmB.3cm C.23cm D.25cm3、如图,BD是⊙O的直径,∠CBD=30?,则∠A的度数.A、30?B、45?C、60?D、75?、已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是 A.ac<0B、b-4ac<0C、 b>0D、 a>0,b<0,c>05、抛物线y= x 向左平移8个单位,再向下平移个单位后,所得抛物线的表达式是A、 y=2-B、 y=2+C、 y=2-D、 y=2+96.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是2第3题图第4题图7、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为 x,则下面所列方程中正确的是A、2892=25B、2562=289C、289=25D、256=2898、如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切、若点A的坐标为,则圆心M的坐标为A、B、C、D、9.若点A的坐标为O为坐标原点,将OA绕点O按顺时针方向旋转90得到OA′,则点A′的坐标是A、B、C、D、10、下列各点中,在函数y=-6x 图像上的是12A、B、C、D、11.抛物线y=x?2x?3与坐标轴交点为 A.二个交点B.一个交点 C.无交点D.三个交点12.关于x的一元二次方程x2+x+m+1=0有两个相等的实数根,则m的值是A、0B、C、422D、 0或二、填空题:13 、使x的取值范围是、 A DB E D14、将二次函数y=x2-4x+5化为y=2+k的形式,则15 、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落 CC 在D′,C′的位置.若∠EFB=65,则∠AED′等于16、菱形OABC在平面直角坐标系中的位置如图所示, ?AOC?45,OC?B的坐标为.17、如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于、三、解答题:18、解方程:2 x+6x-11=019、如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A,B,C、、画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;、画出△ABC绕原点O顺时针方向旋转90后得到的△A2B2C2,并写出点C2的坐标;,第16B A C第17题图将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3,在坐标系中画出△ A3B3C3,并写出点A3的坐标。

九年级上册数学第一章单元测试题

九年级上册数学第一章单元测试题

【导语】考试的⽅法有笔试、⼝试、⾯试和操作考试等,可根据不同的测试⽬标和测试内容选择合适的⽅式。

下⾯是⽆忧考为您整理的《九年级上册数学第⼀章单元测试题》,仅供⼤家参考。

【篇⼀】 ⼀、选择题(每⼩题5分,共25分) 1.反⽐例函数的图象⼤致是() 2.如果函数y=kx-2(k0)的图象不经过第⼀象限,那么函数的图象⼀定在A.第⼀、⼆象限B.第三、四象限C.第⼀、三象限D.第⼆、四象限 3.如图,某个反⽐例函数的图像经过点P,则它的解析式为() A.B. C.D. 4.某村的粮⾷总产量为a(a为常数)吨,设该村的⼈均粮⾷产量为y 吨,⼈⼝数为x,则y与x之间的函数关系式的⼤致图像应为() 5.如果反⽐例函数的图像经过点(2,3),那么次函数的图像经过点()A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2) ⼆、填空题 6.已知点(1,-2)在反⽐例函数的图象上,则k=. 7.⼀个图象不经过第⼆、四象限的反⽐例函数的解析式为. 8.已知反⽐例函数,补充⼀个条件:后,使得在该函数的图象所在象限内,y随x值的增⼤⽽减⼩. 9.近视眼镜的度数y与镜⽚焦距x(⽶)成反⽐例.已知400度近视眼镜镜⽚的焦距为0.25⽶,则眼镜度数y与镜⽚焦距x之间的函数关系式是. 10.如图,函数y=-kx(k0)与y=-的图像交于A、B两点.过点 A作AC垂直于y轴,垂⾜为C,则△BOC的⾯积为. 三、解答题(共50分) 11.(8分)⼀定质量的氧⽓,其密度(kg/m,)是它的体积v(m,)的反⽐例函数.当V=10m3时甲=1.43kg/m. (1)求与v的函数关系式;(2)求当V=2m3时,氧⽓的密度. 12.(8分)已知圆柱的侧⾯积是6m2,若圆柱的底⾯半径为x(cm),⾼为ycm). (1)写出y关于x的函数解析式; (2)完成下列表格: (3)在所给的平⾯直⾓坐标系中画出y关于x的函数图像. 13.(l0分)在某⼀电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反⽐例.当电阻R=5欧姆时,电流I=2安培. (l)求I与R之间的函数关系式; (2)当电流I=0.5安培时,求电阻R的值; (3)如果电路中⽤电器的可变电阻逐渐增⼤,那么电路中的电流将如何变化? (4)如果电路中⽤电器限制电流不得超过10安培,那么⽤电器的可变电阻应控制在什么范围内? 14.(12分)某蓄⽔池的排⽔管每⼩时排⽔飞12m3,8h可将满池⽔全部排空. (1)蓄⽔池的容积是多少? (2)如果增加排⽔管,使每⼩时的排⽔量达到x(m3),那么将满池⽔排空所需的时间y(h)将如何变化? (3)写出y与x之间的关系式; (4)如果准备在6h内将满池⽔排空,那么每⼩时的排⽔量⾄少为多少? (5)已知排⽔管每⼩时的排⽔量为24m3,那么最少多长时间可将满池⽔全部排空? 15.(12分)反⽐例函数和⼀次函数y=mx+n的图象的⼀个交点A(-3,4),且⼀次函数的图像与x轴的交点到原点的距离为5. (1)分别确定反⽐例函数与⼀次函数的解析式; (2)设⼀次函数与反⽐例函数图像的另⼀个交点为B,试判断AOB(点O为平⾯直⾓坐标系原点)是锐⾓、直⾓还是钝⾓?并简单说明理由. 【篇⼆】 ⼀、选择题(每⼩题3分,共30分) 1、两个直⾓三⾓形全等的条件是()A、⼀锐⾓对应相等B、两锐⾓对应相等C、⼀条边对应相等D、两条边对应相等 2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS 3、等腰三⾓形底边长为7,⼀腰上的中线把其周长分成两部分的差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对 4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论: (1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。

九年级上册数学期末试卷

九年级上册数学期末试卷

人教版九年级数学上册期末试卷(含答案解析)一、选择题(每小题3分,共42分)1.(3分)计算a7•()2的结果是()A.a B.a5 C.a6 D.a82.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C.D.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4D.∠C=90°,AB=65.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个 B.2个 C.3个D.4个6.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣127.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16D.∠A=40°、∠B=50°8.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形9.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6 C.3 D.410.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A.65° B.25° C.35° D.45°11.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±512.(3分)如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65° B.115° C.105° D.75°13.(3分)若分式方程无解,则m的值为()A.﹣2 B.0 C.1 D.214.(3分)若m=2100,n=375,则m,n的大小关系为()A.m>n B.m<n C.m=n D.无法确定二、填空题(本大题满16分,每小题4分)15.(4分)计算:= .16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.三、解答题(本大题满分62分)19.(10分)计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab)(2)[(x+y)2﹣(x﹣y)2]÷(2xy)20.(10分)把下列多项式分解因式:(1)4x2y2﹣4(2)2pm2﹣12pm+18p.21.(10分)如图,已知△ABC的三个顶点的坐标分别为:A(﹣2,3)、B (﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,画出翻折后的△A1B1C1,点A的对应点A1的坐标是.(2)△ABC关于x轴对称的图形△A2B2C2,直接写出点A2的坐标.(3)若△DBC与△ABC全等(点D与点A重合除外),请直接写出满足条件点D的坐标.22.(10分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.(10分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克?24.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.参考答案与试题解析一、选择题(每小题3分,共42分)1.【考点】分式的乘除法.【分析】首先利用分式的乘方计算()2,再计算乘法即可.【解答】解:原式=a7•=a5,故选:B.2.【考点】分式有意义的条件.【分析】分式有意义的条件是分母不等于零.【解答】解:∵分式有意义,∴x﹣1≠0.解得:x≠1.故选:A.3.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.4.【考点】全等三角形的判定.【分析】判断是否符合所学的全等三角形的判定定理及三角形的三边关系即可.【解答】解:A、不符合三角形三边之间的关系,不能构成三角形,错误;B、∠A不是已知两边的夹角,无法确定其他角的度数与边的长度,不能画出唯一的三角形,错误;C、符合全等三角形判定中的ASA,正确;D、只有一个角和一个边,无法作出一个三角形,错误;故选C.5.【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)是分式,故选:C.6.【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.【解答】解:已知等式整理得:x2﹣x﹣12=x2+px+q,则p=﹣1,q=﹣12,故选B7.【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:A、AB=AC=3,BC=6,不能组成三角形,错误;B、∠A=40°、∠B=70°,可得∠C=70°,所以是等腰三角形,正确;C、AB=3、BC=8,周长为16,AC=16﹣8﹣3=5,不是等腰三角形,错误;D、∠A=40°、∠B=50°,可得∠C=90°,不是等腰三角形,错误;故选B8.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选C.9.【考点】全等三角形的判定.【分析】先找出图中所有的三角形,根据直觉判断全等,再根据判定方法寻找条件验证.【解答】解:在四边形ABCD中,BC∥AD⇒∠ABD=∠CDB.又AB=CD,BD=DB,∴△ABD≌△CDB;∠ABD=∠CDB,AB=CD,又BE=DF⇒△ABE≌△CDF;BE=DF⇒BF=DE.∵BC=DA,CF=AE,∴△BCF≌△DAE.故选C.10.【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠3的度数,再由平角的定义即可得出结论.【解答】解:∵直线a∥b,∠2=65°,∴∠3=∠2=65°,∵AB⊥BC,∴∠ABC=90°,∴∠1=180°﹣∠3﹣∠ABC=180°﹣65°﹣90°=25°.故选B.11.【考点】完全平方式.【分析】直接利用完全平方公式求出m的值.【解答】解:∵y2+10y+m是完全平方式,∴y2+10y+m=(y+5)2=y2+10y+25,故m=25.故选:A.12.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形外角的性质,可得∠AEB=∠A+∠C=65°,再根据三角形的内角和定理,求得∠BFE的度数即可.【解答】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=50°,∴△BEF中,∠BFE=180°﹣(65°+50°)=65°,故选:A.13.【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+2=0,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:x=m,由分式方程无解,得到x+2=0,即x=﹣2,把x=﹣2代入得:m=﹣2,故选A14.【考点】幂的乘方与积的乘方.【分析】结合幂的乘方与积的乘方的概念,将m变形为(24)25,n变形为(33)25,然后进行比较求解即可.【解答】解:m=2100=(24)25,n=375=(33)25,∵24<33,∴(24)25<(33)25,即m<n,故选B.二、填空题(本大题满16分,每小题4分)15.【考点】分式的加减法.【分析】应用同分母分式的加减运算法则求解即可求得答案,注意要化简.【解答】解:==﹣1.故答案为:﹣1.16.【考点】整式的除法;单项式乘多项式.【专题】计算题;几何图形问题.【分析】先根据矩形的面积公式求出另一边的长,再根据矩形的周长=2×(长+宽)列式,通过计算即可得出结果.【解答】解:(6ab2+4a2b)÷2ab=3b+2a,2×(2ab+3b+2a)=4ab+4a+6b.故答案为:4ab+4a+6b.17.【考点】等腰三角形的性质.【分析】已知给出了两角的和,可根据三角形内角和定理求出另一个底角,再相减即可求出顶角.【解答】解:依题意得:等腰三角形的顶角和一个底角的和是100°即它的另一个底角为180°﹣100°=80°∵等腰三角形的底角相等故它的一个顶角等于100°﹣80°=20°.故答案为:20°.18.【考点】轴对称图形.【分析】直接得出各图形的对称轴条数,进而得出答案.【解答】解:正方形有4条对称轴;长方形有2条对称轴;圆有无数条对称轴;线段有2条对称轴.故对称轴最多的是圆.故答案为:圆.三、解答题(本大题满分62分)19.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘除即可.(2)先算括号里面的,最后算除法即可.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6.(2)原式=[x2+2xy+y2﹣x2+2xy﹣y2]÷2xy=4xy÷2xy=2.20.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式提取2p,再利用完全平方公式分解即可.【解答】解:(1)原式=4(x2y2﹣1)=4(xy+1)(xy﹣1);(2)原式=2p(m2﹣6m+9)=2p(m﹣3)2.21.【考点】翻折变换(折叠问题);作图-轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出对应点位置;(2)直接利用关于x轴对称点的性质得出对应点位置;(3)直接利用全等三角形的判定方法得出对应点位置.【解答】解:(1)翻折后点A的对应点的坐标是:(2,3);故答案为:(2,3);(2)如图所示:△A1B1C1,即为所求,A1(﹣2,﹣3);(3)如图所示:D(﹣2,﹣3)或(﹣5,3)或(﹣5,﹣3).22.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【解答】证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.23.【考点】分式方程的应用.【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程=,再解方程即可.【解答】解:设第一块试验田每亩收获蔬菜x千克,由题意得:=,解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.24.【考点】全等三角形的判定与性质;全等三角形的应用.【分析】(1)根据全等三角形对应边相等解答;(2)延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;(3)连接EF,延长AE、BF相交于点C,然后求出∠EAF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.【解答】解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.【点评】本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。

九年级上册数学试题

九年级上册数学试题

一.选择题(共10小题,每小题3分)1.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM=MN ;②MP=;③BN+DQ=NQ ;④(AB +BN)/BM 为定值.其中一定成立的是( )A .①②③ B .①②④ C .②③④ D .①②③④2.已知关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <-2B .k <2C .k >2D .k <2且k≠13.已知M (a,b )是平面直角坐标系xOy 中的点,其中a 是从l,2,3,4三个数中任取的一个数,b 是从l,2,3,4,5五个数中任取的一个数.定义“点M (a ,b )在直线x+y=n 上”为事件Q n (2≤n ≤9,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为( )A .5 B .4或5 C .5或6 D .6或74.如图在△ABC 中,D 是BC 中点,DE ⊥BC 交AC 与E,已知AD=AB ,连接BE 交AD 于F,下列结论:①BE=CE ;②∠CAD=∠ABE ;③AF=DF ;④S △ABF =3S △DEF ;⑤△DEF ∽△DAE ,其中正确有( )个A .5 D .25.当你站在博物馆的展览厅中时,你知道站在何处观赏最理想吗如图,设墙壁上的展品最高点P 距地面米,最低点Q 距地面2米,观赏者的眼睛E 距地面米,当视角∠PEQ 最大时,站在此处观赏最理想,则此时E 到墙壁的距离为( )米 A .1 B . C . D .1题图4题图5题图7题图 6.函数y=x 4和y=x 1在第一象限内的图象如图,点P 是y=x 4的图象上一动点,PC ⊥x 轴于点C ,交y=x 1图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④3CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④7.在同一平面直角坐标系中,函数y=mx+m 与y=xm (m ≠0)的图象可能是( ) A . B . C . D .8.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A .55B .552C .5D .32 9.如图,▱ABCD 中,E 为AD 的中点.已知△DEF 的面积为1,则▱ABCD 的面积为( )A .9B .12C .15D .188题图 9题图10.关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A .1 B .-1 C .1或-1 D .2二.填空题(共8小题,每小题3分)11.如图坡面CD 的坡比为1:3,坡顶的平地BC 上有一棵小树AB ,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=3米,则小树AB 的高是____________12.如图,直线y=-x+b 与双曲线y=-x1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=_______________ 13.如图是某几何体的三视图及相关数据,请写出一个a ,b ,c ,关系的等式__________11题图12题图13题图 14.如图,点A 在反比例函数y =x 4(x >0)的图象上,点B 在反比例函数y =−x 9(x <0)的图象上,且∠AOB=90°,则tan ∠OAB 的值为________.15.如图在△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足△APC 与△ACB 相似的条件是___________(只填序号).16.已知a 、b 可以取-2,-1,1,2中任意一个值(a ≠b),则直线y=ax+b 的图象不经过第四象限的概率是_____17.对于实数a,b,定义运算“﹡”:a ﹡b=⎪⎩⎪⎨⎧<-≥-)(,)(,22b a b ab b a ab a .例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x+6=0的两个根,则x 1﹡x 2=____18.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,∠CAB 的平分线交BD 于点E ,交BC 于点F .若OE=1,则CF=_________14题图15题图18题图三.解答题(共9小题)19.解方程(1)x(x-3)=-x+3 (2) +1=020.已知关于x 的方程x 2+2(k-3)x+k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若|x 1+x 2-9|=x 1x 2,求k 的值.21. 点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.(1)当α=60°时(如图1),①判断△ABC的形状,并说明理由;②求证:BD=3AE;(2)当α=90°时(如图2),求BD/AE的值.22.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为,当小强与树AB的距离小于多少时,就不能看到树CD的树顶Dk(x>0)的图象上,24.如图,点A(1,6)和点M(m,n)都在反比例函数y=x(1)k的值为_____;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.8的图象交于A,B两点,且点A的横坐标和25.如图,已知一次函数y=kx+b的图象与反比例函数y=−x点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.26.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.27.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少(精确到)(参考数据2=,3=,6=)答案1.【解答】解:如图:作AU⊥NQ于U,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴由等角对等边知,AM=MN,故①正确.由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN∴MP=AH==,故②正确,∵∠BAN+∠QAD=∠NAQ=45°,∴三角形ADQ绕点A顺时针旋转90度至ABR,使AD和AB 重合,在连接AN,证明三角形AQN≌ANR,得NR=NQ则BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW,∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:2,∴(AB+BN)/BM=2: 2=2,故④正确.故选D.2.【解答】解:根据题意得:△=b2-4ac=4-4(k-1)=8-4k>0,且k-1≠0,解得:k<2,且k≠1.故选:D.3.【解答】解:∵a是从l,2,3,4四个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.又∵点M(a,b)在直线x+y=n上,2≤n≤9,n为整数,∴n=5或6的概率是1/4,n=4的概率是3/16,∴当Q n的概率最大时是n=5或6的概率是1/4最大.故选C.4.【解答】解:∵D是BC的中点,且DE⊥BC,∴DE是BC的垂直平分线,CD=BD,∴CE=BE,故本答案正确;∴∠C=∠7,∵AD=AB,∴∠8=∠ABC=∠6+∠7,∵∠8=∠C+∠4,∴∠C+∠4=∠6+∠7,∴∠4=∠6,即∠CAD=∠ABE,故本答案正确;作AG⊥BD于点G,交BE于点H,∵AD=AB,DE⊥BC,∴∠2=∠3,DG=BG=,DE∥AG,∴△CDE∽△CGA,△BGH∽△BDE,EH=BH,∠EDA=∠3,∠5=∠1,∴CD:CG=DE:AG,HG=,设DG=x,DE=2y,则GB=x,CD=2x,CG=3x,∴2x:3x=2y:AG,解得:AG=3y,HG=y,∴AH=2y,∴DE=AH,且∠EDA=∠3,∠5=∠1∴△DEF≌△AHF∴AF=DF,故本答案正确;EF=HF=,且EH=BH,∴EF:BF=1:3,∴S△ABF=3S△AEF,∵S△DEF=S△AEF,∴S△ABF=3S△DEF,故本答案正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,∴∠5=∠3+∠4,∴∠5≠∠4,∴△DEF∽△DAE,不成立,故本答案错误.综上所述:正确的答案有4个.故选B.5.【解答】解:由题意可知:据PR=,QR=2m,HR=,HE=x,∴HQ=QR-HR=,PH=PR-HR=,∵HE是圆O的切线,∴HE2=HQ•HP,∴x2=×解得:x=.故选:B.6.【解答】解:∵A 、B 是反比函数y=x1上的点,∴S △OBD =S △OAC =1/2,故①正确;当P 的横纵坐标相等时PA=PB ,故②错误;∵P 是y=x4的图象上一动点,∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC -S △ODB --S △OAC =,故③正确;连接OP ,S △PO C /S △OAC =PC/AC=4,∴AC=1/4PC ,PA=3/4PC ,∴PA/AC =3,∴AC=1/3AP ;故④正确;综上所述,正确的结论有①③④.故选C .7.【解答】A 、由函数y=mx+m 的图象可知m >0,由函数y=xm 的图象可知m >0,故A 选项正确;B 、由函数y=mx+m 的图象可知m <0,由函数y=xm 的图象可知m >0,相矛盾,故B 选项错误;C 、由函数y=mx+m 的图象y 随x 的增大而减小,则m <0,而该直线与y 轴交于正半轴,则m >0,相矛盾,故C 选项错误;D 、由函数y=mx+m 的图象y 随x 的增大而增大,则m >0,而该直线与y 轴交于负半轴,则m <0,相矛盾,故D 选项错误;故选:A .8.【解答】解:由格点可得∠ABC 所在的直角三角形的两条直角边为2,4,∴斜边为=25.∴cos ∠ABC=552.故选B . 9.【解答】解:如图所示,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∴S △DEF :S △BCF =(DE/BC )2,又∵E 是AD 中点,∴DE==,∴DE :BC=DF :BF=1:2,∴S △DEF :S △BCF =1:4,∴S △BCF =4,又∵DF :BF=1:2,∴S △DCF =2,∴S ▱ABCD =2(S △DCF +S △BCF )=12.故选B .10.【解答】解:依题意△>0,即(3a+1)2-8a (a+1)>0,即a 2-2a+1>0,(a-1)2>0,a ≠1,∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,∴x 1-x 1x 2+x 2=1-a ,∴x 1+x 2-x 1x 2=1-a ,∴(3a+1)/a-(2a+2)/a=1-a ,解得:a=±1,又a ≠1,∴a=-1.故选:B .11、43【解答】解:由已知得Rt △AFD ,Rt △CED ,如图,且得:∠ADF=60°,FE=BC ,BF=CE ,在Rt △CED 中,设CE=x ,由坡面CD 的坡比为1:3,得:DE=3x ,则根据勾股定理得:x 2+(3x )2=(3)2,得x=±3/2,-3/2不合题意舍去,所以,CE=3/2米,则,ED=3/2米,那么,FD=FE+ED=BC+ED=3+3/2=9/2米,在Rt △AFD 中,由三角函数得:AF/FD=tan ∠ADF ,∴AF=FD •tan60°=9/2×3=93/2米,∴AB=AF-BF=AF-CE=93/2-3/2=43米,故答案为:43米.12、2【解答】解:∵直线y=-x+b 与双曲线y=-x1(x <0)交于点A ,设A 的坐标(x ,y ),∴x+y=b ,xy=-1,而直线y=-x+b 与x 轴交于B 点,∴OB=b ∴又OA 2=x 2+y 2,OB 2=b 2,∴OA 2-OB 2=x 2+y 2-b 2=(x+y )2-2xy-b 2=b 2+2-b 2=2.故答案为:2.13、a 2+b 2=c 2【解答】解:∵圆锥的母线长为c ,圆锥的高为b ,圆锥的底面半径为a ,且圆锥的母线、圆锥的底面半径及圆锥的高组成直角三角形,∴根据勾股定理得:a 2+b 2=c 2故答案为:a 2+b 2=c 214、【解答】解:过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC ,∴S △OB D /S △A OC =(OB/OA)2,∵点A 在反比例函数y =x 4(x >0)的图象上,点B 在反比例函数y =−x9(x <0)的图象上,∴S △OBD =,S △AOC =2,∴OB/OA=3/2,∴tan ∠OAB=OB/OA=3/2.故答案为:.15、【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③. 16、1/6.【解答】解:列表如下:-2 -1 1 2 -2(-1,-2) (1,-2) (2,-2) -1(-2,-1) (1,-1) (2,-1) 1(-2,1) (-1,1) (2,1) 2 (-2,2) (-1,2) (1,2)所有等可能的情况数有12种,其中直线y=ax+b 不经过第四象限情况数有2种,则P=2/12=1/6.故答案为:1/6.17、【解答】解:∵x1,x2是一元二次方程x2-5x+6=0的两个根,∴(x-3)(x-2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32-3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2-32=-3.故答案为:3或-3.18、【解答】解:作EG⊥AB于G,根据角平分线的性质可得,EG=OE=1,又BD平分∠ABC,则∠ABE=45°∴△EBG是等腰直角三角形,可得BE=2,则OB=1+2,可得BC=2+2又∠AFB=90°-∠FAB,∠FEB=∠OEA=90°-∠FAC,∴∠AFB=∠FEB∴BF=BE=2则CF=BC-BF=2+2-2=2.19、【解答】(1)x=3或x=1 (2)x=2+3或x=2-320、【解答】(1)根据题意,得△≥0,即[2(k-3)]2-4k2≥0,解得,k≤;(2)根据韦达定理,得x1+x2=-2(k-3),x1x2=k2,∴由|x1+x2-9|=x1x2,得|-2(k-3)-9|=k2,即|2k+3|=k2,以下分两种情况讨论:①当2k+3≥0,即k≥时,2k+3=k2,即k2-2k-3=0,解得,k1=-1,k2=3;又由(1)知,k≤,∴≤k≤,∴k2=3不合题意,舍去,即k1=-1;②当2k+3<0,即k<时,-2k-3=k2,即k2+2k+3=0,此方程无实数解.综合①②可知,k=-1.21、【解答】解:(1)①判断:△ABC 是等边三角形.理由:∵∠ABC=∠ACB=60°∴∠BAC=180°-∠ABC-∠ACB=60°=∠ABC=∠ACB∴△ABC是等边三角形②证明:同理△EBD也是等边三角形.连接DC,则AB=BC,BE=BD,∠ABE=60°-∠EBC=∠CBD∴△ABE≌△CBD,∴AE=CD,∠AEB=∠CDB=150°∴∠EDC=150°-∠BDE=90°∠CED=∠BEC-∠BED=90°-60°=30°在Rt△EDC中CD/ED=tan30°=3/3,∴AE/BD=3/3,即BD=3AE.(2)连接DC,∵∠ABC=∠EBD=90°,∠ACB=∠EDB=60°,∴△ABC∽△EBD∴AB/EB=BC/BD,即AB/BC=EB/BD又∵∠ABE=90°-∠EBC=∠CBD∴△ABE∽△CBD,∠AEB=∠CDB=150°,AE/CD=BE/BD设BD=x在Rt△EBD中DE=2x,BE=3x,在Rt△EDC中CD=DE•tan60°=23x∴AE=DC•BE/BD=23x•3x/X=6x=6BD,即BD/AE=1/6.22、【解答】(1)①证明:∵△ABC 为等边三角形,∴AB=AC ,∠C=∠CAB=60°, 又∵AE=CF ,在△ABE 和△CAF 中,AB =AC,∠BAE =∠ACF, AE =CF ,∴△ABE ≌△CAF (SAS ),∴AF=BE ,∠ABE=∠CAF .又∵∠APE=∠BPF=∠ABP+∠BAP ,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°-∠APE=120°.②∵∠C =∠APE=60°,∠PAE =∠CAF ,∴△APE ∽△ACF ,∴AP/AC =AE/AP ,即AP/6=2/AP ,所以AP •AF=12(2)若AF=BE ,有AE=BF 或AE=CF 两种情况.①当AE=CF 时,点P 的路径是一段弧,由题目不难看出当E 为AC 的中点的时候,点P 经过弧AB 的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=23,点P 的路径是l =120π•23/180=43/3π.②当AE=BF 时,点P 的路径就是过点C 向AB 作的垂线段的长度;因为等边三角形ABC 的边长为6,所以点P 的路径为:33.所以,点P 经过的路径长为43/3π或33.23、【解答】解:设FG=x 米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m ,CD=8m ,小强的眼睛与地面的距离为,∴BG=,DH=,∵BA ⊥PC ,CD ⊥PC ,∴AB ∥CD ,∴FG :FH=BG :DH ,即FG •DH=FH •BG ,∴x ×=(x+4)×,解得x=(米),因此小于米时就看不到树CD 的树顶D .24、【解答】解:(1)将A (1,6)代入反比例解析式得:k=6;故答案为:6;(2)将x=3代入反比例解析式y=x6得:y=2,即M (3,2), 设直线AM 解析式为y=ax+b ,把A 与M 代入得:a +b =6, 3a +b =2,解得:a=-2,b=8,∴直线AM 解析式为y=-2x+8;(3)直线BP 与直线AM 的位置关系为平行,理由为:当m >1时,过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,∵A (1,6),M (m ,n ),且mn=6,即n=m 6,∴B (0,6),P (m ,0), ∴k 直线AM =n n --16=)1(66---m m m =-m6,k 直线BP =-m 6,即k 直线AM =k 直线BP ,则BP ∥AM .25、【解答】(1)由题意A(-2,4),B(4,-2),∵一次函数过A、B两点,∴4=−2k+b,−2=4k+b,解得k=−1, b=2,∴一次函数的解析式为y=-x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×x A,S△BOC=×OC×x B,∴S△AOB=S△AOC+S△BOC= • |x A|+ • |x B|=×2×2+×2×4=6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<-2或0<x<4.26、【解答】(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=.解这个方程,得x1=,x2=(不符合题意),符合题目要求的是x1==20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:××5000=14400(元),方案二所需费用为:×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.27、【解答】解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×2/2=52/2,在Rt△ADC中,∠ADC=30°,∴AD=AC/ sin30°=52=5×=,AD-AB==(米).答:改善后滑滑板约会加长米.!。

数学九年级上册试卷人教版【含答案】

数学九年级上册试卷人教版【含答案】

数学九年级上册试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0, b < 0,则下列哪个选项是正确的?A. a b > 0B. a b < 0C. a + b > 0D. a + b < 02. 已知一组数据:2, 3, 5, 7, 11,其平均数是多少?A. 4B. 5C. 6D. 73. 二次方程 x^2 5x + 6 = 0 的解是:A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = -2 或 x = -3D. x = -1 或 x = -64. 下列哪个图形是中心对称的?A. 矩形B. 正方形C. 圆D. 三角形5. 如果sinθ = 1/2,那么θ 的度数是多少?A. 30°B. 45°C. 60°D. 90°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 对角线互相垂直的四边形是菱形。

()3. 一元二次方程的解一定是两个实数根。

()4. 相似三角形的对应边长成比例。

()5. 平行线的斜率相等。

()三、填空题(每题1分,共5分)1. 平方差公式是:a^2 b^2 = _______。

2. 一元二次方程 ax^2 + bx + c = 0 的判别式是 _______。

3. 如果一个三角形的两边长分别是 3 和 4,那么第三边的长度可能是 _______。

4. 二项式定理是: (a + b)^n = _______。

5. 圆的标准方程是: (x h)^2 + (y k)^2 = _______。

四、简答题(每题2分,共10分)1. 解释什么是二次函数的顶点。

2. 简述勾股定理。

3. 什么是相似三角形?4. 解释什么是函数的单调性。

5. 什么是坐标轴?五、应用题(每题2分,共10分)1. 一个长方形的周长是 24cm,长是宽的两倍,求长和宽。

九年级上册数学试卷附答案

九年级上册数学试卷附答案

九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。

A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。

答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。

答案:903. 下列各数中,是整数,但不是自然数的是______。

答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。

答案:15. 设集合A={x | x为偶数},则A的元素个数是______。

答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2+2x=0的根是()A .x=0或x=﹣2B .x=0或x=2C .x=0D .x=﹣23.抛物线y=2(x+3)2+5的顶点坐标是()A .(3,5)B .(﹣3,5)C .(3,﹣5)D .(﹣3,﹣5)4.关于x 的方程kx2+2x ﹣1=0有实数根,则k 的取值范围是()A .k≥﹣1B .k≥﹣1且k≠0C .k≤﹣1D .k≤1且k≠05.下列说法正确的是()A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次6.下列函数中,变量y 是x 的反比例函数的是()A .21y x =B .1y x -=-C .23y x =+D .11y x=-7.将抛物线2y x =向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A .()223y x =++B .()223y x =-+C .()223y x =+-D .()223y x =--8.如图,△ABC 内接于⊙O ,∠BAC =30°,BC =6,则⊙O 的直径等于()A .10B .C .D .129.方程()()135x x +-=的解是()A .121,3x x ==-B .124,2x x ==-C .121,3x x =-=D .124,2=-=x x 10.正六边形的半径为6cm ,则该正六边形的内切圆面积为()A .248cm πB .236cm πC .224cm πD .227cm π二、填空题11.反比例函数3y x=-中,在每个象限内y 随x 的增大而_______________.12.圆的内接四边形ABCD ,已知∠D=95°,∠B=__________.13.关于x 的一元二次方程220x x a ++=的一个根为1,则方程的另一根为______.14.写出点(-1,3)关于原点对称的点的坐标______________15.反比例函数6y x=当自变量2x =-时,函数值是________.16.若(m-2)22m x --mx+1=0是一元二次方程,则m 的值为______.17.已知点P 在半径为5的⊙O 外,如果设OP =x ,那么x 的取值范围是___________.18.写出经过点(-1,1)的反比例函数的解析式________.19.若二次函数y =x 2﹣2x+k 的部分图象如图所示,则关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,则方程x 2﹣2x+k =0另一个解x 2=_____.三、解答题20.(1)23(1)9x -=(2)2320x x -+=21.如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD .(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)22.如图所示,在⊙O 中直径AB 垂直于弦CD ,垂足为E ,若BE=2cm ,CD=6cm .求⊙O 的半径.23.y 是x 的反比例函数,且当2x =时,13y =-,请你确定该反比例函数的解析式,并求当6y =时,自变量x 的值.24.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式;25.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.26.如图,已知抛物线2y ax bx c =++(0a ≠)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,且OC OB =.求此抛物线的解析式.27.已知:如图,在△ABC 中,BC=AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE与⊙O的位置关系,并证明你的结论;⑶若⊙O的直径为18,cosB=13,求DE的长.28.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求出反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)根据图象,直接写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.参考答案1.C2.A3.B4.A 5.C 6.B 7.A 8.D 9.B 10.D 11.增大12.85°13.-314.(1,-3)15.3-【详解】当2x =-时,632y ==--,故答案为:3-.16.﹣2【分析】一元二次方程是指:只含有一个未知数,且未知数最高次数为2次的整式方程,据此即可得答案.【详解】根据定义可得:22220m m ⎧-=⎨-≠⎩,解得:m=-2.17.x >5【详解】解:根据点在圆外的判断方法,由点P 在半径为5的⊙O 外,可得OP >5,即x >5.故答案为:x >5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.18.1y x=-【详解】解:设反比例函数的解析式为()0ky k x=≠,把点(-1,1)代入反比例函数的解析式,可得k=-1,所以反比例函数的解析式为1y x =-,故答案为:1y x=-.19.-1【分析】利用抛物线与x 轴的交点问题,利用关于x 的一元二次方程x 2-2x+k=0的解一个为x 1=3得到二次函数y=x 2-2x+k 与x 轴的一个交点坐标为(3,0),然后利用抛物线的对称性得到二次函数y=x 2-2x+k 与x 轴的另一个交点坐标为(-1,0),从而得到方程x 2-2x+k=0另一个解.【详解】解:∵关于x 的一元二次方程x 2﹣2x+k =0的解一个为x 1=3,∴二次函数y =x 2﹣2x+k 与x 轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x =1,∴二次函数y =x 2﹣2x+k 与x 轴的另一个交点坐标为(﹣1,0),∴方程x 2﹣2x+k =0另一个解x 2=﹣1.故答案为﹣1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)121,1x x ==;(2)121,2x x ==【详解】试题分析:(1)利用直接开平方法解方程即可;(2)利用因式分解法解方程即可.试题解析:(1)()2319,x -=()213x -=,()1x -=,121,1x x ==;(2)2320,x x -+=()()120x x --=,121,2x x ==.21.答案见解析.【详解】试题分析:画圆的一条直径AC ,作这条直径的中垂线交⊙O 于点BD ,连结ABCD 就是圆内接正四边形ABCD .试题解析:如图所示,四边形ABCD 即为所求:考点:正多边形和圆;作图—复杂作图.22.134cm 【分析】连接OD ,设半径为r ,由垂径定理求得DE 的长,在RT △OED 中,根据勾股定理列出方程,解方程求得r 即可.【详解】解:连接OD ,设半径为r ,∵AB ⊥CD ,CD=6cm ,∴CE=DE=3cm ,∵BE=2cm ,∴OE=r-2,∴在Rt △OED 中,r²=3²+(r-2)²,解得:r=134,即⊙O 的半径为134cm .【点睛】本题考查垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.23.23y x =-,19x =-【详解】解:设反比例函数的解析式为k y x=,∵当2x =时,13y =-,2.3k ∴=-∴该反比例函数的解析式为2.3y x=-当6y =时,则有263x-=,解得:1.9x =-24.(1)2180y x =-+(2)222607200w x x =-+-【分析】(1)根据题意易得:平均每天销售量(y )与销售价x (元/箱)之间的函数关系式为()80250y x =--,化简即可;(2)根据销售利润w (元)=每箱的销售利润×每天的销售量,得到函数解析式即可.(1)(1)由题意得:()80250y x =--,化简得:2180y x =-+;(2)由题(1)可知:()40w x y =- ()()402180x x =--+化简得:222607200w x x =-+-.【点睛】本题考查了二次函数的简单应用.解题的关键是正确理解题意,确定变量,明确其中的数量关系,建立函数模型.25.不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.【详解】解:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P (姐姐参加)=416=14,P (弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断及利用列表法或树状图法求概率,理解题意,利用列表法或树状图法求解是解题关键.26.223y x x =--+【分析】根据题意易得点C 坐标,利用待定系数法求解析式将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++即可求解.【详解】解:∵点B (﹣3,0),∴3OB =,∵OC OB =,∴3OC =,即点C (0,3),将A (1,0)、B (﹣3,0),C (0,3)代入抛物线2y ax bx c =++,得:00933a b c a b c c =++⎧⎪=-+⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为:223y x x =--+.27.(1)见解析;(2)相切,证明见解析;(3)42【详解】(1)证明:连接CD ,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,又∵AC=BC,∴AD=BD,∴点D是AB的中点.(2)DE是⊙O的切线.证明:连接OD,∵OB=OC,AD=BD∴DO是△ABC的中位线,∴DO//AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(3)∵AC=BC,∴∠B=∠A,∴cosB=cosA=1 3,在Rt△BDC中,∵cosB=13BDBC=,BC=18,∴BD=6,∴AD=6,在Rt△ADE中∵cosA=13AEAD=,∴AE=2,∴=28.(1)2 yx =(2)P的坐标为(﹣2,0)或(8,0)(3)1<x<211【分析】(1)先把点A (1,a )代入y=-x+3中求出a 得到A (1,2)然后把A 点坐标代入y=k x中求出k 得到反比例函数的表达式;(2)先确定C (3,0),设P (x ,0),利用三角形面积公式得到12×|3-x|×2=5,解方程可得到P 的坐标;(3)先解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得B (2,1),然后在第一象限内写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =k x ,∴k =1×2=2;∴反比例函数的表达式为2y x=;(2)当y =0时,﹣x+3=0,解得x =3,∴C (3,0),设P (x ,0),∴PC =|3﹣x|,∴S △APC =12×|3﹣x|×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴当x >0时,一次函数的值大于反比例函数的值的x 的取值范围为:1<x <2.。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣4=0D .(x ﹣1)2﹣1=0 2.已知⊙O 的直径为5,若PO =5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断 3.二次函数y=x 2+2的顶点坐标是( )A .(1,﹣2)B .(1,2)C .(0,﹣2)D .(0,2) 4.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB BC =,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30° 5.若,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30 6.正十二边形的每一个内角的度数为( )A .120°B .135°C .150°D .108° 7.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .3 B .-3 C .-1 D .18.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm 9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB C D.π10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.B.C.D.二、填空题11.一元二次方程x ( x +3)=0的根是__________________.12.将二次函数的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为_________.13.如图,已知等边ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E 两点,则劣弧DE的长为_________ .14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=_________°.三、解答题16.用公式法解方程:x2﹣x﹣2=0.17.如图为桥洞的形状,其正视图是由CD和矩形ABCD构成.O点为CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求CD所在⊙O的半径DO.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,并写出A1,B1的坐标.19.某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B 表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b 表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.20.已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根.21.如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.22.用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S 最大?最大面积是多少?23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.参考答案1.D【详解】试题分析:根据一元二次方程的定义对各选项进行逐一分析即可.解:A、当a=0时,方程ax2+bx+c=0是一元一次方程,故本选项错误;B、方程3x2﹣2x=3(x2﹣2)是一元一次方程,故本选项错误;C、方程x3﹣2x﹣4=0是一元三次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选D.考点:一元二次方程的定义.2.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解: 2.52d r ==, ∵d =5>2.5,点P 在⊙O 外,故选C .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.3.D【分析】已知二次函数y=x 2+2为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】试题分析::∵y=x 2+2=(x-0)2+2,∴顶点坐标为(0,2).故选D .4.D【解析】试题分析:直接根据圆周角定理求解.连结OC ,如图,∵AB =BC ,∴∠BDC=12∠BOC=12∠AOB=12×60°=30°. 故选D .考点:圆周角定理.5.B【详解】试题分析:∵,即244x x +=,∴原式=223(44)6(1)x x x -+--=223121266x x x -+-+=231218x x --+=23(4)18x x -++=﹣12+18=6.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值.6.C【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角得出每个内角的度数.【详解】正十二边形的每个外角的度数是:36012︒=30°, 则每一个内角的度数是:180°−30°=150°. 故选项为:C .【点睛】本题考查了正多边形的性质,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.7.B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a 、b 的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a =﹣2,b =﹣1,∴a +b =﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.8.A【分析】连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,由垂径定理求出AM 的长,再根据勾股定理求出OM 的长,进而可得出ME 的长.【详解】解:连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,交圆O 于点E ,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,60cmOM∴=,∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.9.C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.10.C【详解】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误. 故选C .考点:动点问题的函数图象.11.12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.12.244y x x =++.【详解】试题分析:平移后二次函数解析式为:22(2)44y x x x =+=++,故答案为244y x x =++. 考点:二次函数图象与几何变换.13.【详解】试题分析:考点: 圆周角与圆心角的关系,弧长公式.14.(2,10)或(﹣2,0)【详解】∵点D (5,3)在边AB 上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x 轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x 轴的距离为10,到y 轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).15.215.【详解】解:连接CE∵五边形ABCDE 为内接五边形∴四边形ABCE 为内接四边形∴∠B+∠AEC=180°又∵∠CAD =35∴∠CED =35°(同弧所对的圆周角相等)∴∠B+∠E=∠B+∠AEC+∠CED=180°+35°=215°故答案为:215.【点睛】本题考查正多边形和圆.16.122,1x x ==-【解析】试题分析:先求出b 2﹣4ac 的值,再代入公式求出即可.试题解析:解:∵a =1,b =-1,c =-2, ∴△=b 2-4ac =(-1)2-4×1×(-2)=9 >0,∴x =132±,解得:12x =,21x =-. 17.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴ DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴ CD 所在⊙O 的半径DO 为5米.18.见解析,11(3,2),(0,0)A B【解析】试题分析:根据旋转的性质作出A 、B 、C 绕点C 旋转180°后对应的点,连接即可. 试题解析:解:如图:由图可得:A1 (3,2),B1 (0,0).19.见解析,3 5【解析】试题分析:首先根据题意列表,由表格求得所有等可能的结果,由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得.试题解析:解:列表可得:共有20种等可能的结果.∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:1220=35.点睛:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)见解析;(2)-2【解析】试题分析:(1)根据抛物线的对称轴方程进行证明即可;(2)根据抛物线与x 轴的交点问题可判断抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),然后利用抛物线的对称性可得到抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),从而得到方程ax 2+bx ﹣8=0另一个根.试题解析:解:(1)∵抛物线的对称轴是x =1,∴ 2b a=1,∴2a +b =0; (2)∵关于x 的方程ax 2+bx ﹣8=0有一个根为4,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),∵抛物线的对称轴是x =1,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),∴关于x 的方程ax 2+bx ﹣8=0,有一个根为﹣2.点睛:本题考查了抛物线与x 轴的交点.把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标转化为解关于x 的一元二次方程;通过二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a ≠0)可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).21.(1)证明见解析;(2)CD=BE.理由见解析【解析】试题分析:(1)由等边三角形的性质得到AB =AC ,AE =AD , ∠BAC =∠EAD =60°,从而得到BE =CD , 再由中点的定义得到EN =DN , 即有AN =AM , 从而可以得到结论; (2)可以利用SAS 判定△ABE ≌△ACD ,全等三角形的对应边相等,所以CD =BE .试题解析:解:(1)∵△ABC 和△ADE 是等边三角形,∴AB =AC ,AE =AD , ∠BAC =∠EAD =60°,∴AB -AE =AC -AD ,即BE =CD , ∴M ,N 分别是BE ,CD 的中点,∴EM =12BE ,DN =12CD , ∴EN =DN , ∴EM +AE =DN +AD ,即AN =AM , ∵∠BAC =60°, ∴△AMN 是等边三角形; (2)CD =BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =60°.∵∠BAE =∠BAC −∠EAC =60°−∠EAC ,∠DAC =∠DAE −∠EAC =60°−∠EAC ,∠BAE =∠DAC ,∴△ABE ≌△ACD ,∴CD =BE .22.(1)1米或3米;(2)32,3平方米. 【解析】试题分析:(1)先用含x 的代数式(12﹣3x )÷3=4﹣x 表示横档AD 的长,然后根据矩形的面积公式列方程,求出x 的值.(2)用含x 的代数式(12﹣4x )÷3=4﹣43x 表示横档AD 的长,然后根据矩形面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x 的值.解:(1)由题意,BC 的长为(4−x )米,依题意,得:x (4−x )=3,即x ²−4x +3=0,解得 x 1=1,x 2=3.答:当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米.(2)根据题意,由图2得,AD =(12−4x )÷3=4−43x ,∴S =AB•AD =x (4−43x )=−43x ²+4x 配方得S =243()332x --+,∴当x =32时,S 取最大值3. 答:当x =32时,矩形框架ABCD 的面积最大,最大面积是3平方米. 点睛:本题考查的是二次函数的应用.(1)根据面积公式列方程,求出x 的值.(2)根据面积公式得二次函数,利用二次函数的性质求最值.23.(1)直线DE 与⊙O 相切;(2)4.75.【分析】(1)连接OD ,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB +∠ODA =90°,进而得出OD ⊥DE ,根据切线的判定即可得出结论;(2)连接OE ,作OH ⊥AD 于H .则AH =DH ,由△AOH ∽△ABC ,可得AH OA AC AB=,推出AH =65,AD =125,设DE =BE =x ,CE =8-x ,根据OE 2=DE 2+OD 2=EC 2+OC 2,列出方程即可解决问题;【详解】(1)连接OD ,∵EF 垂直平分BD ,∴EB =ED ,∴∠B =∠EDB ,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴AH OA AC AB=,∴2 610 AH=,∴AH=65,AD=125,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.75,∴DE=4.75.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.24.(1)y2=﹣x2+2x+3.(2)214;(3)(1,2)或(1,5)【解析】试题分析:(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,-a2+2a+3).则OQ=x,AQ=-a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.试题解析:(1)∵y 1=﹣2x 2+4x+2=﹣﹣2(x ﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1:与C 2顶点相同, ∴12m--⨯ =1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C 2的解析式为u 2=﹣x 2+2x+3.(2)如图1所示:设点A 的坐标为(a ,﹣a 2+2a+3).∵AQ=﹣a 2+2a+3,OQ=a ,∴AQ+OQ=﹣a 2+2a+3+a=﹣a 2+3a+3=﹣(a ﹣32)2+214 .∴当a=32时,AQ+OQ 有最大值,最大值为214.(3)如图2所示;连接BC ,过点B′作B′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x=1,∴BC ⊥CM ,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D ⊥MC ,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC .在△BCM 和△MDB′中,MB D BMC BCM MDB BM MB ∠'∠⎧⎪∠∠'⎨⎪'⎩=== , ∴△BCM ≌△MDB′∴BC=MD ,CM=B′D .设点M 的坐标为(1,a ).则B′D=CM=4﹣a ,MD=CB=2.∴点B′的坐标为(a ﹣3,a ﹣2).∴﹣(a ﹣3)2+2(a ﹣3)+3=a ﹣2.整理得:a 2﹣7a ﹣10=0.解得a=2,或a=5.当a=2时,M 的坐标为(1,2),当a=5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C 2上.【点睛】解答本题主要应用了二次函数的顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a 的式子表示点B′的坐标是解题的关键.。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。

九年级上册数学测试题及答案

九年级上册数学测试题及答案

一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙OD. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6 B.0.75 C.0.8 D.343.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=10cm,则⊙O1和⊙O2的位置关系是A.外离B.外切 C.切 D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2 B.y=-(x+1)2-1C.y=-x2+x-5 D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .ACNMByxO10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 接于△ABC(如图所示),若△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B、∠C 的对边. 求证:△ABC 的面积S △ABC =21bcsinA .A MQBNPC17. 如图,△ABC 接于⊙O,弦AC 交直径BD 于点E ,AG⊥BD 于点G ,延长AG 交BC 于点F . 求证:AB 2=BF·B C .18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1). (1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标;四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上. (1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.ABC· D E F G OA BD C OM · ·· · · ·(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么围取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2. (1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?ABCD五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A. (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan∠CBP=0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处.(1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少?ABPCNM O· EC M NAD·25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、ACCB DABB二、 9. 2:1 10. k< -1 11. 21, 4112. 35 三、13. 原式= 2)22(-2+33-3×23 =21-2 +33-23 ……………………………………4分= -3+33……………………………………………………5分 14. 作AE ⊥BC 于E ,交MQ 于F.由题意,21BC ×AE=9cm 2, BC=6cm. ∴1分 设MQ= xcm ,∵MQ ∥BC ,∴△AMQ ∽△2分∴AEAF BC MQ =……………………3分 又∵EF=MN=MQ ,∴AF=3-x. ∴3x-36x =. ……………………………………4分 解得 x=2.答:正方形的边长是2cm. …………………………5分 15. 由题意,在Rt △ABC 中,AC=21AB=6(米), …………………1分又∵在Rt △ACD 中,∠D=25°,CDAC =tan ∠D, ……………………………3分∴CD=︒tan256≈47.06≈12.8(米).答:调整后的楼梯所占地面CD 长约为12.8米. ……………………5分 16. 证明:作CD ⊥AB 于D ,则S △ABC =21AB ×2分 ∵ 不论点D 落在射线AB 的什么位置, 在Rt △ACD 中,都有4分 又∵AC=b ,AB=c , ∴ S △ABC =21AB ×ACsinA=21bcsinA. (5)AB N E P CAD BC HE G OF分17. 证明:延长AF ,交⊙O 于H.∵直径BD ⊥AH ,∴AB⌒ = BH ⌒ . ……………………2分 ∴∠C=∠BAF. ………………………3分在△ABF 和△CBA 中,∵∠BAF =∠C ,∠ABF=∠CBA ,∴△ABF ∽△CBA. …………………………………………4分 ∴ABBF CB AB,即AB 2=BF ×BC. …………………………………………5分 证明2:连结AD , ∵BD 是直径,∴∠BAG+∠DAG=90°. ……………………1分 ∵AG⊥BD,∴∠DAG+∠D=90°. ∴∠BAF =∠BAG =∠D. ……………………2分 又∵∠C =∠D , ∴∠BAF=∠C. ………………………3分 …… 18. ⑴把点(-3,1)代入,得 9a+3+25=1, ∴a= -21. ⑵ 相交 ……………………………………………2分 由 -21x 2-x+25=0, ……………………………3分 得 x= - 1±6.∴ 交点坐标是(- 1±6,0). ……………………………4分 ⑶ 酌情给分 ……………………………………………5分19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.20. ⑴ 0.4 ……………………………………………2分 ⑵ 0.6 ……………………………………………4分 列表(或画树状图)正确 ……………………………………5分 21. ⑴把点A (a ,- 1)代入y 1= -2x 31,得 –1= -a 31,∴ a=3. ……………………………………………1分 设y 2=x k,把点A (3,- 1)代入,得 k=–3, AD BC E G O F∴ y 2=–x3. ……………………………………2分⑵画图; ……………………………………3分⑶由图象知:当x<0, 或x>3时,y 1<y 2. ……………………………………5分22. ⑴如图,矩形ABCD 中,AB= 2r 1=2dm ,即r 1=1dm. ………………………………1分BC=3dm ,⊙O 2应与⊙O 1及BC 、CD 都相切.连结O 1 O 2,过O 1作直线O 1E ∥AB ,过O 2作直线O 2E ∥BC ,则O 1E ⊥O 2E. 在Rt △O 1 O 2E 中,O 1 O 2=r 1+ r 2,O 1E= r 1– r 2,O 2E=BC –(r 1+ r 2).由 O 1 O 22= O 1E 2+ O 2E 2, 即(1+ r 2)2 = (1– r 2)2+(2– r 2)2. 解得,r 2= 4±23. 又∵r 2<2, ∴r 1=1dm , r 2=(4–23)dm. ………………3分⑵不能. …………………………………………4分∵r 2=(4–23)> 4–2×1.75=21(dm), 即r 2>21dm.,又∵CD=2dm , ∴CD<4 r 2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分证明:连结AN ,∵AB 是直径,∴∠ANB=90°.∵AB=AC ,∴∠BAN=21∠A=∠CBP. 又∵∠BAN+∠ABN=180°-∠ANB= 90°, ∴∠CBP+∠ABN=90°,即AB⊥BP.∵AB 是⊙O 的直径,∴直线BP 与⊙O 相切. …………………………………………3分⑵∵在Rt △ABN 中,AB=2,tan ∠BAN= tan ∠CBP=0.5,A DB CO 1E O 2可求得,BN=52,∴BC=54. …………………………………………4分作CD ⊥BP 于D ,则CD ∥AB ,ABCDAP CP =. 在Rt △BCD 中,易求得CD=54,BD=58. …………………………………5分 代入上式,得 2CP CP +=52.∴CP=34. …………………………………………6分 ∴DP=1516CD CP 22=-.∴BP=BD+DP=58+1516=38. …………………………………………7分24. ⑴依题意,点B 和E 关于MN 对称,则ME=MB=4-AM.再由AM 2+AE 2=ME 2=(4-AM)2,得AM=2-2x 81. ……………………1分 作MF ⊥DN 于F ,则MF=AB ,且∠BMF=90°. ∵MN ⊥BE ,∴∠ABE= 90°-∠BMN.又∵∠FMN =∠BMF -∠BMN=90°-∠BMN , ∴∠FMN=∠ABE. ∴Rt △FMN ≌Rt △ABE. ∴FN=AE=x ,DN=DF+FN=AM+x=2-2x 81+x. ………………………2分 ∴S=21(AM+DN)×AD=(2-2x 81+2x )×4= -2x 21……………………………3分其中,0≤x <………………………………4分⑵∵S= -2x 21+2x+8= -21(x-2)2+10,∴当x=2时,S 最大=10; …………………………………………5分 此时,AM=2-81×22=1.5 ………………………………………6分 答:当AM=1.5时,四边形AMND 的面积最大,为10.⑶不能,0<AM ≤2. …………………………………………7分25. ⑴∵△AOB ∽△BOC (相似比不为1),..∴OAOBOBOC=. 又∵OA=4, OB=3,∴OC=32×41=49. ∴点C(49, 0). …………………1分设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.cb49a1681,0c4b16a2分即⎩⎨⎧=+=-16.12b27a,34b16a解得,a=31, b=127.∴这个函数的解析式是y =31x2+1273分⑵∵△AOB∽△BOC(相似比不为1),∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分∴AC是△ABC外接圆的直径.∴ r =21AC=21×[49-(-4)]=825. ………………5分⑶∵点N在以BM为直径的圆上,∴∠MNB=90°. ……………………6分①.当AN=ON时,点N在OA的中垂线上,∴点N1是AB的中点,M1是AC的中点.∴AM1= r =825,点M1(-87, 0),即m1= -87. ………………7分②.当AN=OA时,Rt△AM2N2≌Rt△ABO,∴AM2=AB=5,点M2(1, 0),即m2=1.③. 当ON=OA时,点N显然不能在线段AB上.综上,符合题意的点M(m,0)存在,有两解:m= -87,或1. ……………………8分。

九年级数学上册测试题(含答案)

九年级数学上册测试题(含答案)

九年级数学上册测试卷满分100分 用时90分钟 家长签名:班级: 姓名: 座号: 评分:一、选择题( 10×3′=30′)1.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°2.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形.C .直角三角形斜边上的高等于斜边的一半.D .正方形的两条对角线相等且互相垂直平分.3.下列函数中,属于反比例函数的是( )A .2x y =B .12y x =C .23y x =+D .223y x =+4.方程 x (x +3)= 0的根是( )A .x =0B .x =-3C .x 1=0,x 2 =3D .x 1=0,x 2 =-35.如图所示,圆柱体的主视图是( )6. 下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )A .球B .圆柱C .三棱柱D .圆锥7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )A .38B .12C .14D .138.如图,菱形ABCD 的对角线交于点O ,AC = 8cm ,BD = 6cm ,则菱形的高为( )A .485 cmB .245cm C .125 cm D.105cm A B CD9.若反比例函数1y x=-的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C . 12- D . 1210.函数xk y =的图象经过(1,-1),则函数2y kx =+的图象是( )二、填空题( 6×4′=24′)11.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 .12.如果43=y x ,那么=-yy x 13.若反比例函数x k y =的图象经过点(-3, 4),则k= ,则此函数在每一个象限内y 随x 的增大而 .14.在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DFE 的周长为 cm .15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。

九年级上册数学全部试卷【含答案】

九年级上册数学全部试卷【含答案】

九年级上册数学全部试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 2x + 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 下列哪个图形不是中心对称图形?()A. 正方形B. 圆C. 等边三角形D. 矩形二、判断题(每题1分,共5分)6. 平行四边形的对角线互相平分。

()7. 任何两个等边三角形都是相似的。

()8. 一元二次方程的解可以是两个不相等的实数根。

()9. 函数y = x² + 1的图像是一条直线。

()10. 对角线相等的平行四边形一定是矩形。

()三、填空题(每题1分,共5分)11. 若一个等边三角形的边长为6cm,则它的面积是_______ cm²。

12. 若函数y = kx + b的图像经过点(2, 5)和(4, 9),则k的值是 _______。

13. 在直角坐标系中,点A(1, 2)到原点的距离是 _______。

14. 一个等差数列的前5项和为35,公差为3,则首项是 _______。

15. 若一个圆的半径为r,则它的周长是 _______。

四、简答题(每题2分,共10分)16. 简述平行线的性质。

17. 解释一元二次方程的判别式及其意义。

18. 什么是相似三角形?给出一个判定相似三角形的方法。

19. 描述一次函数图像的特点。

20. 什么是圆的标准方程?如何从标准方程中找到圆心和半径?五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,若长方形的周长是30cm,求长方形的长和宽。

初三上册九年级数学试卷

初三上册九年级数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 02. 若方程 2x - 5 = 3x + 1 的解为 x,则 x 的值为()A. -6B. -4C. 2D. 13. 在直角坐标系中,点 P(2,3)关于 y 轴的对称点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 若 a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 15. 已知三角形的三边长分别为 3、4、5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形6. 下列函数中,y = kx 是一次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x - 4D. y = √x7. 在△ABC中,∠A = 30°,∠B = 45°,则∠C 的度数为()A. 75°B. 90°C. 105°D. 120°8. 若 a、b、c 是等差数列的前三项,且 a + b + c = 18,a + c = 12,则公差d 为()A. 2B. 3C. 4D. 59. 已知一次函数 y = kx + b 的图象经过点(1,2),则该函数的斜率 k 和截距b 分别为()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 110. 若sin α = 1/2,则α 的值为()A. 30°B. 45°C. 60°D. 90°二、填空题(每题4分,共40分)11. 若 a = 3,b = -2,则 a - b 的值为 _______。

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】

九年级上册数学试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. 3x^2 5x + 2C. √x + 1D. 1/x + 24. 一个正方形的边长为6cm,那么它的面积是多少cm²?()A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 两个等腰三角形的底边长相等,那么这两个三角形全等。

()2. 一个数的平方根有两个,它们互为相反数。

()3. 两个负数相乘,结果一定是正数。

()4. 任何数乘以0都等于0。

()5. 两个正方形的面积相等,那么它们的边长也相等。

()三、填空题1. 一个等边三角形的边长为6cm,那么它的周长是____cm。

2. 一个数的平方是64,那么这个数是____。

3. 两个数的和为9,它们的差为3,那么这两个数分别是____和____。

4. 一个长方形的长是8cm,宽是4cm,那么它的面积是____cm²。

5. 下列各数中,____是合数。

四、简答题1. 解释什么是素数。

2. 解释什么是等腰三角形。

3. 解释什么是多项式。

4. 解释什么是无理数。

5. 解释什么是长方形的面积。

五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

3. 解方程:2x + 3 = 11。

4. 计算下列各式的值:√9,√16,√25。

5. 判断下列各数中,哪些是素数:23,39,47,57。

六、分析题1. 两个等腰三角形的底边长相等,那么这两个三角形是否全等?为什么?2. 两个正方形的面积相等,那么它们的边长是否相等?为什么?七、实践操作题1. 画出一个边长为6cm的正方形,并计算它的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册试题
一.单项选择题(每小题2分,共20九年级数学上册试题。

)
1.抛物线y=-x 2+2x+3的顶点坐标是
A .(-1,4)
B .(1,3)
C .(-1,3)
D .(1,4)
2.若抛物线y=x 2﹣2x+3不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再
沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为 A .y=(x ﹣2)2+3 B .y=(x ﹣2)2+5 C .y=x 2﹣1 D .y=x 2+4
3.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是
A .321y y y >>
B .312y y y >=
C .123y y y >>
D .123y y y =>
4.二次函数224y x x =-+化为2()y a x h k =-+的形式,下列正确的是
A .2(1)2y x =-+
B .2(1)3y x =-+
C .2(2)2y x =-+
D .2
(2)4y x =-+
5.二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是
A .t≥﹣1
B .﹣1≤t<3
C .﹣1≤t<8
D .3<t <8
6.如图是抛物线y=ax 2+bx+c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x
轴的一个交点在点(3,0)和(4,0)之间.则下列结论中正确结论的个数是
①a ﹣b+c >0 ②3a+b=0
③b 2=4a (c ﹣n ) ④一元二次方程ax 2+bx+c=n ﹣1有两个不相等的实数根.
A .1
B .2
C .3
D .4
7.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是
A .
B .
C .
D .
8.设a ﹨b 为常数,且b >0,抛物线y=ax 2+bx+a 2
﹣5a ﹣6为下列图形之一,则a 的值为
A .6或﹣1
B .﹣6或 1
C .6
D .﹣1
9.在同一平面直角坐标系中,函数y=ax+b 与y=ax 2﹣bx 的图象可能是
A .
B .
C .
D . 10.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直
线x=﹣1,下列给出四个结论中,正确结论的个数是
①c>0; ②若点B (32-,1y )﹨C (52
-,2y )为函数图象上的两点,则12y y <; ③2a﹣b=0; ④2
44ac b a
-<0 A .1 B .2 C .3 D .4
二.填空题(每小题3分,共15分)
11.在平面直角坐标系中,将函数y=﹣2x 2的图象先向右平移1个单位长度,再向
上平移5个单位长度,所得图象的函数表达式是
12.将抛物线y=2(x ﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物
线的表达式为
13.已知二次函数m ax ax y ++-=22
的图像与x 轴的一个交点是(3,0),则关于x 的一元二次方程022=++-m ax ax 的解为______________
14.若(1,2)A ,(3,2)B ,(0,5)C ,(,5)D m 是抛物线2y ax bx c =++图像上的四点,
则m = 15.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (-3,0),对称轴为x=-1.给
出四个结论:①b 2>4ac ;②2a+b=0;③a -b+c=0;④5a<b .其中正确结论是
三.解答题(6小题,共65分)
16.(9分)某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P (件)与销售时间x (天)之间有如下关系:P=﹣2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格Q 1(元/件)与销售时间x (天)之间有如下关系:Q 1=3021 x (1≤x≤20,且x 为整数),后10天的销售价格Q 2(元/件)与销售时间x (天)之间有如下关系:Q 2=45(21≤x≤30,且x 为整数).
(1)试写出该商店前20天的日销售利润R 1(元)和后10天的日销售利润R 2(元)分别与销售时间x (天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. (注:销售利润=销售收入﹣购进成本)
17.(11分)已知二次函数y=2x 2+bx ﹣1.
(1)求证:无论b 取什么值,二次函数y=2x 2+bx ﹣1图象与x 轴必有两个交点.
(2)若两点P (﹣3,m )和Q (1,m )在该函数图象上.
①求b ﹨m 的值;
②将二次函数图象向上平移多少单位长度后,得到的函数图象与x 轴只有一个公共点?
18.(12分)已知抛物线y 1=ax 2+bx+c(a ≠0,a ≠c)过点A(1,0),顶点为B ,且抛物线不经过第
三象限.
(1)使用a ﹨c 表示b ;(2)判断点B 所在象限,并说明理由;
(3)若直线y 2=2x+m 经过点B ,且交抛物线于另一点C(
c a
,b+8),求当x ≥1时,y 1的取值范围.
19.(9分)已知抛物线
c
bx
x
y+
+
-
=2
2
1
与y轴交于点C,与x轴的两个交点分别为
A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角
形,求点P的坐标;
20.(12分)如图,抛物线y=x2﹣3x+与x轴相交于A﹨B两点,与y轴相交于点C,点D 是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
21.(12分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;。

相关文档
最新文档