江苏省徐州市-2017学年高一(上)期末数学试卷(解析版)
【最新经典文档】2016-2017年江苏省徐州市高一上学期数学期中试卷带答案
![【最新经典文档】2016-2017年江苏省徐州市高一上学期数学期中试卷带答案](https://img.taocdn.com/s3/m/1a9a4dd76edb6f1afe001f68.png)
【解答】 解:(1)∵函数 f( x) =| 2x﹣1| ﹣x=
,
函数的图象如下图所示:
第 9 页(共 20 页)
( 2)由图可得:函数的值域为: [ ﹣ , +∞); 单调减区间为:为: (﹣∞, ] ,单调增区间为: [ ,+∞); ( 3)若对任意 x∈R,不等式 | 2x﹣1| ≥a+x 恒成立, 则 a≤| 2x﹣1| ﹣ x 恒成立, 即 a≤﹣ .
表示以 M 为定义域, N 为值域的函数关系是
.
3.( 5 分)已知函数 f( x)与 g( x)分别由如表给出,那么 g( f(2))=
.
x
1234
f( x) 2 3 4 1
x
1
2
3
4
g(x) 2
1
4
3
4.(5 分)化简:
=
.
5.(5 分)用 “< ”将 0.2﹣0.2、 2.3﹣2.3、log0.22.3 从小到大排列是 6.(5 分)函数 f( x)=( )x+1,x∈[ ﹣1,1] 的值域是
所以原函数的定义域为 { x| ﹣ 4≤ x≤2} .
令 t=﹣x2﹣ 2x+8,其图象是开口向下的抛物线,对称轴方程为
.
所以当 x∈[ ﹣4,﹣ 1] 时,函数 t=﹣x2﹣2x+8 为增函数,
且函数
为增函数,
所以复合函数
故答案为 [ ﹣ 4,﹣ 1] .
的单调增区间为 [ ﹣4,﹣ 1] .
12.( 5 分)已知函数 f (x) =
二、解答题(共 6 小题,满分 90 分)
15.( 14 分)已知二次函数 f (x)满足 f(x+1)﹣ f( x) =2x( x∈ R),且 f( 0) =1, ( 1)求 f (x)的解析式; ( 2)当 x∈[ ﹣1,1] 时,求函数 g(x)=f(x)﹣ 2x 的值域. 【解答】 解:(1)设二次函数的解析式为 f (x)=ax2+bx+c (a≠0), 由 f( 0) =1 得 c=1, 故 f( x)=ax2+bx+1. 因为 f (x+1)﹣ f(x)=2x, 所以 a(x+1)2+b(x+1) +1﹣( ax2+bx+1) =2x. 即 2ax+a+b=2x,
江苏省徐州市高一数学上学期期末考试试题(扫描版)
![江苏省徐州市高一数学上学期期末考试试题(扫描版)](https://img.taocdn.com/s3/m/edbca7bdd4d8d15abe234efe.png)
2016—2017学年度第一学期期末抽测高一数学试题参考答案一、填空题 1.{}0,1 2.π23.(2,1) 4.12 5.12- 6.[e,)+∞ 7.108.12 9.6 10.35- 11.1 12.0 13.[1,2)[4,)+∞ 14.{}4,24-二、解答题15.(1)当1a =-时,[)1,1B =-,由于[)0,3A =, 所以[)1,3A B =-.…………6分 (2)由A B B =,得B A ⊆,………………………………………………………9分于是0,23,a a ⎧⎨⎩+≥≤即01a ≤≤,所以,a 的取值范围是[]0,1.…………………………………………………14分16.(1)因为145⋅=-a b ,所以142cos 2sin 5αα-+=, 即7sin cos 5αα-=,……………………………………………………………2分于是22749(sin cos )12sin cos ()525αααα-=-==,从而242sin cos 25αα=-.………………………………………………………4分因此,2241(sin cos )12sin cos 12525αααα+=+=-=.……………………6分 (2)因为//a b ,所以2cos (2)sin 0αα--⋅=,即cos sin 0αα+=,……………8分于是tan 1α=-,………………………………………………………………10分 因此,πsin(π)sin()sin cos 2αααα-⋅+=⋅ …………………………………12分222sin cos tan 1sin cos tan 12αααααα⋅===-++.………14分 17.(1)根据表中已知数据可得:3A =,ππ62ωϕ+=,2π3π32ωϕ+=,解得2ω=,π6ϕ=. 数据补全如下表:x ωϕ+π2 π 3π22π xπ12- π6 5π12 2π3 11π12sin()A x ωϕ+ 0 3 0 3-0 …………………………………………………………………………………………3分函数表达式为π()3sin(2)6f x x =+.……………………………………………5分(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,所以π()3sin()6g x x =+.………………………………………7分当ππ[,]33x ∈-时,πππ[,]662x +∈-,所以π1sin()[,1]62x +∈-.于是函数)(x g 的值域为3[,3]2-.………………………………………………9分(3)由(1)可得,π()3sin(22)6h x x q =++, 由()h x 图象的一个对称中心为π(,0)12可得,π()012h =, 所以ππ3sin(22)0126q ?+=,即πsin(2)03q +=,………………………12分从而π2π,3k k Z q +=?,解得ππ,26k k Z q =-?,由0q >可得,当1k =时,q 取得最小值π3.…………………………………14分18.(1)3m =-时,()3,1=--a ,于是3⋅=-a b ,……………………………3分又2=a ,1=b , 所以3cos 2θ⋅==-a b a b ,因为[]0,θ∈π,所以6θ5π=.…………………6分 (2)①因为⊥a b ,所以0⋅=a b ,即()131022m -⨯=+,得3m =.………8分②3m =时,2=a ,1=b ,由()()23t k t ⎡⎤-⊥-⎣⎦++a b a b ,得()()230t k t ⎡⎤-⋅-=⎣⎦++a b a b , 因为0⋅=a b ,所以()22230k t t --=+a b,于是()234t t k -=,…………12分故()()23222341174324444k t t t t t t t t t -==-=+-+++,当2t =-时,2k t t +取最小值74-.…………………………………………16分19.(1)当甲的用水量不超过5吨时,即55x ≤,1x ≤时,乙的用水量也不超过5吨,()2.65320.8y x x x ==+;…………………………………………………2分 当甲的用水量超过5吨,乙的用水量不超过5吨,即55,35,x x >⎧⎨⎩≤513x <≤时,()5 2.64553 2.627.87y x x x =⨯⨯-⨯=-++;……………………………4分当乙的用水量超过5吨,即35x >,53x >时, ()()25 2.6435553214y x x x =⨯⨯⨯⎡--⎤=-⎣⎦++.…………………………6分所以20.8,01,527.87,1,353214,.3x x y x x x x ⎧⎪⎪⎪=-<⎨⎪⎪->⎪⎩≤≤≤ …………………………………………………7分(2)由于()y f x =在各段区间上均单调增,当[]0,1x ∈时,()134.7y f <≤;……………………………………………9分 当5(,)3x ∈∞+时,5()34.73y f >>;…………………………………………11分 当5(1,]3x ∈时,令27.8734.7x -=,解得 1.5x =.…………………………13分 所以甲户用水量为57.5x =(吨), 付费15 2.6 2.5423y =⨯⨯=+(元); 乙户用水量为3 4.5x =(吨),付费2 4.5 2.611.7y =⨯=(元).………………………………………………15分 答:甲户该月的用水量为7.5吨、水费为23元,乙户该月的用水量为4.5吨、水费为11.7元.………………………………16分 20.(1)由函数2()45f x x x a =++-的对称轴是2x =-,知()f x 在区间[]1,1-上是增函数, …………………………………2分 因为函数在区间[]1,1-上存在零点,则必有: ()()1010f f ⎧-⎪⎨⎪⎩≤≥即800a a -⎧⎨⎩≤≥,解得08a ≤≤, 故所求实数a 的取值范围为[]0,8. ………………………………4分 (2)若对任意的[]11,2x ∈,总存在[]21,2x ∈,使12()()f x g x =成立,只需函数()y f x =的值域是函数()y g x =的值域的子集. …………………6分 当0a =时,2()45f x x x =+-,[]1,2x ∈的值域为[]0,7, ………………… 7分 下面求1()427x g x m m -=⋅-+,[]1,2x ∈的值域. 令14x t -= ,则[1,4]t ∈,27y mt m =-+①当0m =时,()7g x =为常数,不符合题意,舍去;②当0m >时,()g x 的值域为[]7,27m m -+,要使[][]0,77,27m m ⊆-+, 需70277m m -⎧⎨+⎩≤≥,解得7m ≥;③当0m <时,()g x 的值域为[]27,7m m +-,要使[][]0,727,7m m ⊆+-, 需2707m m +⎧⎨-⎩≤≥7,解得72m -≤;综上,m 的取值范围为[)7,7,2⎛⎤-∞-+∞ ⎥⎝⎦. ……………………………10分(3)由题意知2640t t <⎧⎨->⎩,可得32t <. ………………………………… 12分①当6t -≤时,在区间[],2t 上,()f t 最大,(2)f -最小, 所以2()(2)4464f t f t t t --=++=-,即2820t t +-=,解得432t =--或432t =-+(舍去); ②当26t -<-≤时,在区间[],2t 上,(2)f 最大,(2)f -最小,所以(2)(2)1664f f t --==-,解得52t =-;③当322t -<<时,在区间[],2t 上,(2)f 最大,()f t 最小, 所以2(2)()41264f f t t t t -=--+=-,即26t =,解得6t =或6t =-,所以此时不存在常数t 满足题意;综上所述,存在常数t 满足题意,432t =--或52t =-.……………………16分。
2017年江苏省徐州市高一上学期物理期末试卷和解析
![2017年江苏省徐州市高一上学期物理期末试卷和解析](https://img.taocdn.com/s3/m/8bbc64f5e009581b6ad9eb1f.png)
2016-2017学年江苏省徐州市高一(上)期末物理试卷一、单项选择题:本题共10小题,每小题12分,共48分.每小题只有一个选项符合题意.(12.00分)阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.1.阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.下列说法正确的是()A.“2天”是时刻B.“17日7时30分”是时间间隔C.对接时可以将神舟十一号飞船看作质点D.研究天宫二号绕地运动时,可以将其看作质点2.阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.下列关于惯性的说法正确是()A.对接后空间站的惯性变小B.对接前后飞船的惯性不变C.对接后组合体的惯性小于飞船的惯性D.对接后组合体的惯性小于空间站的惯性3.阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.下列关于超重与失重的说法正确的是()A.飞船加速升空过程中重力消失B.飞船加速升空过程中处于失重状态C.飞船减速着陆过程中处于超重状态D.飞船减速着陆过程中处于完全失重状态4.(4.00分)国际单位制由基本单位和导出单位组成,下列单位中是导出单位的是()A.牛顿B.千克C.米D.秒5.(4.00分)下列图中表示物体做匀减速直线运动的是()A.B.C.D.6.(4.00分)如图所示,重为G的书本置于水平桌面上,桌面对书本的支持力为F1,书本对桌面的压力为F2,下列说法正确的是()A.F1大于F2B.G与F2是一对平衡力C.G与F1是一对作用力与反作用力D.F1与F2是一对作用力与反作用力7.(4.00分)2016年8月10日里约奥运会举重比赛中,我国选手石智勇获得男子69公斤级冠军.若其所举杠铃的质量为m,杠铃平衡时每只手臂与竖直线所成的夹角均为45°,则他每只手臂承受的作用力为()A.mg B.mg C.mg D.mg8.(4.00分)质点沿曲线从M向P点运动,关于其在P点的速度v与加速度a 的方向,下列图示正确的是()A.B.C.D.9.(4.00分)2012年我国自行研制的“歼﹣﹣31”战机在某地试飞成功.假设该战机起飞前从静止开始做匀加速直线运动,达到起飞速度v所需时间为t,则起飞前的运动距离为()A.vt B.C.2vt D.不能确定10.(4.00分)一小船在静水中的速度为5m/s,它在一条河宽150m、水流速度为3m/s的河流中渡河,则该小船()A.不能到达正对岸B.渡河的时间可能少于30sC.以最短位移渡河时,船头与上游河岸所成的夹角为53°D.以最短时间渡河时,它沿水流方向的位移大小为112.5m11.(4.00分)如图所示,小物块以v1=2m/s的初速度从水平传送带左端点A处向右运动,传送带A、B的长度为0.75m,且以v2=3m/s的速度逆时针匀速转动,物块与传送带表面之间的动摩擦因数为0.2,则小物块在传送带上运动的时间是()A.3s B.s C.1s D.0.5s12.(4.00分)如图所示,一固定在水平面上、表面粗糙的斜面,其上放罝一固定挡板弹簧一端与挡板栓接,另一端自由伸长至O点,质量为m的物块从斜面上的B点释放后沿着斜面向下运动,将弹簧压缩最短至C点,关于此过程,下列说法正确的是()A.运动至O点时物块速度达到最大B.从B至O点过程中物块做变加速运动C.从O点运动至C点的过程中物块加速度先减小后增大D.从B点运动至C点的过程中物块速度先增大后减小再增大二、简答题:本题共2小题,共18分.把答案填在答题卡相应的横线上或按题目要求作答.13.(7.00分)在“探究力的平行四边形定则”的实验中,某同学的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.图乙是在白纸上根据实验结果画出的图.(1)图甲中与B相连的弹簧测力计的示数为N.(2)图乙中一定沿着OA方向的力是(选填“F”或“F′”)(3)关于本实验,下列说法正确的是.A.两细绳必须等长B.弹簧秤、细绳、橡皮筋都应与木板平行C.两次拉伸橡皮条,只要使橡皮条伸长到相同长度即可D.拉橡皮筋的细绳要长些,标记同一细绳方向的两点要适当远些.14.(11.00分)如图甲所示为“探究加速度与物体质量、物体受力的关系”的实验装置.(1)实验过程中,以下操作正确的有(填字母代号)A.应先释放小车,再接通电源B.跨过定滑轮连接小车的细线应该与长木板平行C.平衡摩擦力时,应将砝码盘用细线跨过定滑轮系在小车上D.为减小实验误差,应使小车总质量M远大于砝码和盘的总质量m(2)实验中使用的交流电频率为50Hz,打出的纸带如图乙所示,相邻计数点间还有四个点未画出,其中x1=7.05cm,x2=7.68cm,x3=8.31cm,x4=8.94cm,由此可以算出小车运动的加速度是m/s2.(结果保留2位有效数字)(3)下表记录了小车总质量一定时,牵引力大小F与对应的加速度a的几组数据,请在坐标图中描点作出a﹣F图线.从作出的图象可以得出的结论为.(4)平衡摩擦力后,保持小车所受的合外力不变探究小车加速度a与小车总质量M的关系,经过多次实验甲、乙同学分别利用各自测出的数据作出a﹣的关系图象.从如图丁可以看出甲、乙两同学做实验时(填“甲”或“乙”)同学实验中绳子的拉力更大.三、计算题:本题共4小题,共34分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.15.(6.00分)某日雾霾天气,司机王师傅驾驶汽车在一段平直路面上以v=72km/h 匀速行驶,突然发现前方路中间有一静止障碍物,为使汽车不撞上障碍物,司机立即刹车,制动加速度为5m/s2,忽略驾驶员反应时间,求:(1)汽车经过多长时间停下来;(2)为了不撞上障碍物,刹车时距前方障碍物的最小距离.16.(8.00分)水平地面上放置一质量m=2kg的物块,物块与水平面间的动摩擦因数μ=0.2,用水平向右F=10N的力推物块,物块从静止开始运动,2s后撤去外力,最大静摩擦力等于滑动摩擦力,重力加速度客取l0m/s2.求:(1)木箱前两秒运动的加速度;(2)木箱从静止开始运动后,6秒内的位移.17.(8.00分)如图所示,跨过光滑定滑轮O的细绳,一端与质量m1=0.4kg的物块A相连,另一端与斜面上质量为m2=lkg的物体B相连.物块B与斜面间的最大静摩擦力为3N,斜面倾角为30°,斜面及物块A、B均保持静止,重力加速度g取10m/s2.求:(1)物块B受到的摩擦力大小:(2)用水平外力缓慢向左拉物块儿当物块B即将滑动时,OA绳与水平方向的夹角θ.18.(12.00分)如图所示,质量m=3kg、可视为质点的小物块A沿斜面下滑,经O点以速度v0水平飞出,落在木板上瞬间,物块水平速度不变,竖方向速度消失.飞出点O距离地面度h=1.8m,质量M=3kg、长为L=3.6m的木板B静止在粗糙水平面上,木板高度忽略不计,其左端距飞出点正下方P点距离为s=1.2m.木板与物块间的动摩擦因数μ1=0.3,与水平面之间的动摩擦因数的μ2=0.1,重力加速度g取10m/s2.求:(1)小物块水平飞出后经多长时间小物块落到长木板上;(2)为了保证小物块能够落在木板上,初速度v0的范围;(3)若小物块水平速度v 0=4m/s,小物块停止运动时距P点距离是多少.2016-2017学年江苏省徐州市高一(上)期末物理试卷参考答案与试题解析一、单项选择题:本题共10小题,每小题12分,共48分.每小题只有一个选项符合题意.(12.00分)阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.1.阅读下面一段材料,回答第1﹣3小题神舟十一号飞船于2016年10月17日7时30分在酒泉卫星发射中心升空,飞船入轨后经过2天独立飞行,完成与天宫二号空间实验室自动对接形成组合体,完成各项任务后,飞船于11月18日13时59分着陆,这是我国持续时间最长的一次载人飞行任务.下列说法正确的是()A.“2天”是时刻B.“17日7时30分”是时间间隔C.对接时可以将神舟十一号飞船看作质点D.研究天宫二号绕地运动时,可以将其看作质点【解答】解:A、“17日7时30分”在时间轴上对应一个点,表示时刻,2天在时间轴上对应线段,表示时间间隔,故AB错误;C、对接时神舟十一号飞船的大小和形状不能忽略,不能看作质点,故C错误;D、研究“天宫二号”绕地球运行时,天宫二号大小对运动影响不大,可以看成质点,故D正确。
2023-2024学年江苏省徐州市区域联考高一上册期中考试数学试卷(含解析)
![2023-2024学年江苏省徐州市区域联考高一上册期中考试数学试卷(含解析)](https://img.taocdn.com/s3/m/eb7e9c5cdcccda38376baf1ffc4ffe473368fdcb.png)
2023-2024学年江苏省徐州市区域联考高一上册期中考试数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}3M x x =≥-,{}24N x x =≤,则M N ⋂=()A.[]3,2-- B.[]3,2-C.[]22-,D.[)3,-+∞2.命题“0x ∀≤,都有20x ≥”的否定是()A 00x ∃≤,使得200x < B.00x ∃≤,使得200x ≥C.∀0x >,都有20x > D.0x ∀<,都有20x ≤3.下列四组函数中,表示同一函数的是().A.0y x =与1y = B.y x =与2xy x=C.y x =与2y =D.y x =与y =4.“1x <”是“2230x x --<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.三国时期赵爽所制的弦图由四个全等的直角三角形构成,该图可用来解释下列哪个命题()A 如果,a b b c >>,那么a c >B.如果0a b >>,那么22a b >C.对任意正实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立D.如果,0a b c >>,那么ac bc>6.若关于x 的不等式20ax bx c ++>的解集为{|12}x x -<<,则20cx bx a ++≤的解集为()A.{|12}x x -≤≤ B.1|12x x ⎧⎫-≤≤⎨⎬⎩⎭C.{112x x -≤≤且0x ≠} D.{|1x x ≤-或12x ≥}7.已知集合A ,B 是实数集R 的子集,定义{|A B x x A -=∈,且}x B ∉,若集合A =11|13y y x x ⎧=-≤≤⎨⎩,且20}{|1x B y y x ≠==-,,12}x -≤≤,则B A -=()A.[—1,1]B.[—1,1)C.[0,1]D.[0,1)8.已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A.13B.21C.26D.30二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列说法中正确的是()A.“,a b 都是偶数”是“a b +是偶数”的充要条件B.两个三角形全等是两个三角形的面积相等的充分不必要条件C.“1m £”是“关于x 的方程2210mx x ++=有两个实数解”的必要不充分条件D.“0a ≠”是“0ab ≠”的既不充分也不必要条件10.下列说法中正确的是()A.若2x >,则函数11y x x =+-的最小值为3B.若2m n +=,则22m n +的最小值为4C.若003x y x y xy >>++=,,,则xy 的最大值为1D.若10x y >>,满足2x y +=,则121x y+-的最小值为3+11.下列不等式成立的是()A.若a <b <0,则a 2>b 2B.若ab =4,则a +b ≥4C.若a >b ,则ac 2>bc 2D.若a >b >0,m >0,则b b m a a m+<+12.若关于x 的不等式213ax bx c -<++<解集为(-1,3),则正实数a 的可能取值是()A.12B.14C.1D.2三、填空题:本题共4小题,每小题5分,共20分13.已知lg 2a =,lg 3b =,则lg15=________.(用a ,b 表示)14.若函数2lg(1)y ax ax =-+的值域为R ,则实数a 的取值范围是________15.已知二次函数24y x x m =-+,m 为实数.(1)若此函数有两个不同的零点,一个在(,1)-∞内,另一个在(2,)+∞内则m 的取值范围是_____________(2)若此函数的两个不同零点都在区间()1,+∞内,则m 的取值范围是____________.16.若正实数,x y 满足1x y +=,且不等式241312m m x y +<++有解,则实数m 的取值范围__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.求下列各式的值:(1)3ln2145log 2lg4lg e 82+++;(2)()1134272e 188-⎛⎫++-- ⎪⎝⎭;18.已知命题p :∀x ∈R ,x 2-2mx-3m >0成立;命题q :∃x ∈R ,x 2+4mx+1<0成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p ,q 中恰有一个为真命题,求实数m 的取值范围.19.在所给的三个条件中任选一个,将下面问题补充完整,并求解①函数()f x 的最小值为1;②函数()f x 的图像过点()2,2-;③函数()f x 的图像与y 轴交点的纵坐标为2.已知二次函数()()20f x ax bx c a =++≠,满足()()123f x f x x +-=+,且满足(填所选条件的序号).(1)求函数()f x 的解析式(2)设()()2g x f x tx =-,当[1,)x ∞∈+时,函数()g x 的最小值为2-,求实数t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.某公司欲将一批生鲜用冷藏汽车从甲地运往相距90千米的乙地,运费为每小时80元,装卸费为1000元,生鲜在运输途中的损耗费的大小(单位:元)是汽车速度(km/h )值的2倍.(注:运输的总费用=运费+装卸费+损耗费)(1)若汽车的速度为每小时50千米,试求运输的总费用;(2)为使运输的总费用不超过1260元,求汽车行驶速度的范围;(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?21.设函数()f x x a=-(1)当2a =时,解不等式()71f x x ≥--;(2)若()2f x ≤的解集为[]1,3-,11002a m n m n+=>>(,),求4m n +的最小值22.已知函数2()(1)1f x ax a x =-++,a R ∈.(1)若不等式()2f x x >--对x R ∈恒成立,求实数a 的取值范围;(2)当a R ∈时,求关于x 的不等式()0f x >的解集.答案9.BC10.BCDDACBBB 9.BC 10.BCD 11.AD 12.AB13.1b a +-14.4a ≥15.①.(,3)-∞②.(3,4)16.3m <-或32m >##()3,3,2⎛⎫-∞-⋃+∞ ⎪⎝⎭17.(1)解:323ln22ln212455log 2lg4lg e log l g 22g4l e 88-+++++=+ln825log l 1g 16e 228⎛⎫+⨯+ ⎪⎝⎭=-17lg108212++==-(2)解:()1134272e 188-⎛⎫+-- ⎪⎝⎭133443122232-⎡⎤⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1333272223⎛⎫⨯- ⎪⎝⎭⎛⎫=- ⎪⎝⎭-227722333-+-=-=18.(1)若命题p 为真命题,则24120m m ∆=+<,即()30m m +<,解得30m -<<,所以实数m 的取值范围是()3,0-;(2)由(1)若命题p 为真命题,则30m -<<.又若命题q 为真命题,则21640m ∆=->,解得12m >或12m <-,故若命题p ,q 中恰有一个为真命题,则p 真q 假或q 真p 假.①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,即102m -≤<;②当q 真p 假时,0m ≥或3m ≤-,且12m >或12m <-,即3m ≤-或12m >;所以实数m 的取值范围是(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭;19.(1)解:因为()()20f x ax bx c a =++≠,()()123f x f x x +-=+所以()()()()22111223f x f x a x b x c ax bx c ax a b x +-=++++--+=-=++,所以223a a b =⎧⎨+=⎩,解得12a b =⎧⎨=⎩,即()22f x x x c=++所以,当选①时,因为函数的最小值为1,()()22211f x x x c x c =++=++-所以当=1x -时,函数()f x 有最小值11c -=,解得2c =,所以,()222f x x x =++当选②时,因为函数()f x 的图像过点()2,2-所以422a b c -+=,解得2c =,所以()222f x x x =++当选③时,因为函数()f x 的图像与y 轴交点的纵坐标为2.所以,()20200f c ==++,解得2c =,所以,()222f x x x =++(2)解:结合(1)得()()()22222g x f x tx x t x =-=+-+,因为函数()g x 的对称轴为1x t =-,所以,当11t -≤,即2t ≤时,函数()g x 在[1,)∞+上单调递增,所以,()()min 1522g x g t ==-=-,解得72t =,与2t ≤矛盾,舍.当11t ->,即2t >时,函数()g x 在[1,1)t -上单调递减,在()1,t -+∞上单调递增,所以()()min 12g x g t =-=-,即2230t t --=,解得3t =或1t =-(舍),综上,实数t 的值为320.(1)当汽车速度为50km/h 时,运输总费用为:90801000250124450⨯++⨯=(元)(2)设汽车行驶的速度为x km/h 由题意可得:9080100021260x x⨯++≤化简得213036000-+≤x x ,解得4090x ≤≤∴汽车行驶速度的范围为[]40,90.(3)设汽车行驶的速度为x km/h ,则运输的总费用为907200801000221000x x x x⨯++=++10001240≥=当且仅当72002=x x,即60x =时,等号成立答:故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.21.(1)解:当2a =时,()71f x x ≥--即217x x -+-≥,∴1217x x x <⎧⎨-+-≥⎩,或12217x x x ≤≤⎧⎨-+-≥⎩,或2217x x x >⎧⎨-+-≥⎩,解得2x ≤-或无解,或5x ≥,∴不等式的解集为(][),25,-∞-⋃+∞.(2)解:由()2f x ≤,即2x a -≤,解得22a x a -≤≤+,∵()2f x ≤的解集是[]1,3-,∴2123a a -=-⎧⎨+=⎩,解得1a =,∴()1110,02m n m n+=>>.∴()114443322n m m n m n m n m n ⎛⎫+=++=++≥+⎪⎝⎭(当且仅当m =时取等号).即1112m m n ⎧=⎪⎨+=⎪⎩,解得124m n ⎧=+⎪⎨+=⎪⎩,∴当21,4m n +=+=时,4m n +的最小值为3+.22.(1)由题意得2(1)12ax a x x -++>--对x R ∈恒成立即230ax ax -+>对x R ∈恒成立若0a =,则不等式30>恒成立若0a ≠,则2120a a a >⎧⎨∆=-<⎩解得012a <<,综上,实数a 的取值范围为[)0,12.(2)不等式()0f x >为(1)(1)0x ax -->,若0a =,则不等式为(1)0x -->,∴1x <若0a >,则不等式可化为1(1)(0x x a-->,①当11a>即01a <<时,不等式解为1x <或1x a >,②当11a=即1a =时,不等式解为1x ≠,③当11a <即1a >时,不等式解为1x >或1x a<,若a<0,则不等式可化为1(1)()0x x a--<解得11x a<<,综上,当a<0时,不等式解集为1,1a ⎛⎫⎪⎝⎭,当0a =时,不等式解集为(),1∞-,当01a <<时,不等式解集为()1,1,a ⎛⎫-∞+∞⎪⎝⎭,当1a =时,不等式解集为()(),11,-∞+∞ ,当1a >时,不等式解集为()1,1,a ⎛⎫-∞+∞ ⎪⎝⎭.。
2017-2018年江苏省徐州市高一上学期期中数学试卷带答案
![2017-2018年江苏省徐州市高一上学期期中数学试卷带答案](https://img.taocdn.com/s3/m/656088c93186bceb19e8bbc1.png)
2017-2018学年江苏省徐州市高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)已知集合A={0,1,2},B={1,2,3,4},则A∩B=.2.(5分)函数y=lg(1﹣x)的定义域为.3.(5分)若幂函数y=x a的图象经过点(4,2),则f(16)的值是.4.(5分)满足{2}⊆A⊊{1,2,3}的集合A的个数为.5.(5分)若指数函数f(x)=(2a﹣1)x在R上单调递减,则实数a的取值范围是.6.(5分)已知a=0.32、b=20.3、c=log0.32,则a,b,c的大小关系是.(用“<”链接)7.(5分)已知函数f(x)满足f(+1)=x+3,则f(3)=.8.(5分)已知+=2,则a2+a﹣2=.9.(5分)函数y=log a(x﹣1)+1(a>0,a≠1)的图象必定经过的点坐标为.10.(5分)已知函数f(x)=,若f(m)=2,则实数m的值等于.11.(5分)若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,不等式(x﹣1)f(x﹣1)>0的解集为.12.(5分)若关于x的方程3tx2+(3﹣7t)x+2=0的两实根α,β满足0<α<1<β<2,则实数t的取值范围是.13.(5分)函数f(x)=,若f(x)在区间(﹣∞,+∞)上是单调减函数,则实数a的取值范围是.14.(5分)定义min{a,b}=,若f(x)=min{2,|x﹣2|},且直线y=m与y=f(x)的图象有3个交点,横坐标分别为x1、x2、x3,则x1•x2•x3的取值范围是.二、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.15.(14分)计算:(1)()﹣(﹣9.6)0﹣()+()﹣2;(2)(lg5)2+lg2×lg50.16.(14分)已知全集U=R,集合A={x|1≤x≤5},B={x|a≤x≤a+2}.(1)若a=4,求A∪B,B∩∁U A;(2)若B⊆A,求实数a的取值范围.17.(14分)已知函数f(x)=x2﹣2|x|﹣1.(1)在所给的纵坐标系中画出该函数的图象,并写出函数的单调增区间;(2)求函数f(x)在[0,a]上的最小值.18.(16分)经市场调查,一种防雾霾口罩在过去30天内的销售量(单位:件)和价格(单元:元)均为时间(单位:天)的函数,且销售量近似地满足g(t)=﹣t+72(1≤t≤30,t∈N),销售价格f(t)与时间的关系可用如图的一条折线上的点表示.(1)写出该口罩的日销售额S与时间t的函数关系式;(2)求日销售额S的最大值.19.(16分)已知函数f(x)=m﹣.(1)若f(x)是R上的奇函数,求m的值;(2)用定义证明f(x)在R上的单调递增;(3)若函数f(x)在(﹣4,4)上的奇函数,求使f(2a)+f(1﹣a)<0成立的实数a的取值范围.20.(16分)已知函数g(x)=ax2﹣2ax+1+b(a>0)的定义域为[2,3],值域为[1,4],设f(x)=.(1)求a,b的值;(2)若不等式f(2x)﹣k•2k≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)若f(|2x﹣1|)+k﹣3k=0有三个不同的实数解,求实数k的取值范围.2017-2018学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)已知集合A={0,1,2},B={1,2,3,4},则A∩B={1,2} .【解答】解:∵集合A={0,1,2},B={1,2,3,4},∴A∩B={1,2}.故答案为:{1,2}.2.(5分)函数y=lg(1﹣x)的定义域为(﹣∞,1).【解答】解:y=lg(1﹣x)的定义域满足{x|1﹣x>0},解得:{x|x<1}.∴函数y=lg(1﹣x)的定义域为(﹣∞,1).故答案为:(﹣∞,1).3.(5分)若幂函数y=x a的图象经过点(4,2),则f(16)的值是4.【解答】解:∵幂函数f(x)=x a的图象经过点(4,2),∴4a=2,解得a=;∴f(x)=,∴f(16)==4.故答案为:4.4.(5分)满足{2}⊆A⊊{1,2,3}的集合A的个数为3.【解答】解:∵满足{2}⊆A⊊{1,2,3},∴集合A中必有元素2,且具有元素1,3中的0个或1个,∴满足条件的集合A的个数为:=3个.故答案为:3.5.(5分)若指数函数f(x)=(2a﹣1)x在R上单调递减,则实数a的取值范围是.【解答】解:∵指数函数f(x)=(2a﹣1)x在R上单调递减∴0<2a﹣1<1∴故答案为:6.(5分)已知a=0.32、b=20.3、c=log0.32,则a,b,c的大小关系是c<a<b.(用“<”链接)【解答】解:0<a=0.32<1,b=20.3>1,c=log0.32<0,∴c<a<b,故答案为:c<a<b.7.(5分)已知函数f(x)满足f(+1)=x+3,则f(3)=7.【解答】解:∵函数f(x)满足f(+1)=x+3,令x=4,则f(3)=7,故答案为:78.(5分)已知+=2,则a2+a﹣2=2.【解答】解:∵+=2,∴a+a﹣1+2=4,即a+a﹣1=2,∴a2+a﹣2+2=4,∴a2+a﹣2=2.故答案为2.9.(5分)函数y=log a(x﹣1)+1(a>0,a≠1)的图象必定经过的点坐标为(2,1).【解答】解:令x﹣1=1,解得x=2,求得y=1,故函数的图象经过定点(2,1),故答案为(2,1).10.(5分)已知函数f(x)=,若f(m)=2,则实数m的值等于﹣2.【解答】解:∵函数f(x)=,f(m)=2,∴当m>0时,f(m)=2m+3=2,解得m=﹣,不成立;当m≤0时,f(m)=m2﹣2=2,解得m=﹣2或m=2(舍).综上,实数m的值为﹣2.故答案为:﹣2.11.(5分)若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,不等式(x﹣1)f(x﹣1)>0的解集为(﹣∞,﹣1)∪(3,+∞).【解答】解:定义在R上的奇函数,可得f(﹣x)=﹣f(x),在(0,+∞)为减函数,即在R上是减函数,∵f(2)=0,则f(﹣2)=0.令t=x﹣1,不等式(x﹣1)f(x﹣1)>0转化为tf(t)>0.当t>0时,则f(t)<0,可得:t>2,即x﹣1>2,解得:x>3;当t<0时,则f(t)>0,可得:t<﹣2,即x﹣1<﹣2,解得:x<﹣1;综上所得:不等式(x﹣1)f(x﹣1)>0的解集为(﹣∞,﹣1)∪(3,+∞).故答案为:(﹣∞,﹣1)∪(3,+∞).12.(5分)若关于x的方程3tx2+(3﹣7t)x+2=0的两实根α,β满足0<α<1<β<2,则实数t的取值范围是(,4).【解答】解:令f(x)=3tx2+(3﹣7t)x+2,由题意可得,求得<t<4,故答案为:(,4).13.(5分)函数f(x)=,若f(x)在区间(﹣∞,+∞)上是单调减函数,则实数a的取值范围是[,3).【解答】解:∵f(x)在区间(﹣∞,+∞)上是单调减函数,则,解得:a∈[,3),故答案为:[,3)14.(5分)定义min{a,b}=,若f(x)=min{2,|x﹣2|},且直线y=m与y=f(x)的图象有3个交点,横坐标分别为x1、x2、x3,则x1•x2•x3的取值范围是(0,1] .【解答】解:作出f(x)的函数图象如图所示:由图象可知0<x1<4﹣2,x2+x3=4,由2=2﹣x 2可得x2=2﹣2,∴x3=2+2,∴x 1•x2•x3=x1(2﹣2)(2+2)=﹣4x12+4x1=﹣4(x1﹣)2+1,∵0<x1<4﹣2,∴当x1=时,x1•x2•x3取得最大值1,当x=0时,x1•x2•x3取得最小值0,∴x1•x2•x3的取值范围是(0,1],故答案为:(0,1].二、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.15.(14分)计算:(1)()﹣(﹣9.6)0﹣()+()﹣2;(2)(lg5)2+lg2×lg50.【解答】解:(1)()﹣(﹣9.6)0﹣()+()﹣2=+=﹣.(2)(lg5)2+lg2×lg50=(lg5)2+lg2(1+lg5)=(lg5)2+lg2+lg2lg5=lg5(lg5+lg3)+lg2=lg5+lg2=1.16.(14分)已知全集U=R,集合A={x|1≤x≤5},B={x|a≤x≤a+2}.(1)若a=4,求A∪B,B∩∁U A;(2)若B⊆A,求实数a的取值范围.【解答】解:(1)∵a=4时,全集U=R,集合A={x|1≤x≤5},B={x|4≤x≤6}.∴A∪B={x|1≤x≤6},C U A={x|x<1或x>5},∴B∩∁U A={x|5<x≤6}.(2)∵集合A={x|1≤x≤5},B={x|a≤x≤a+2},B⊆A,∴,解得1≤a≤3,∴实数a的取值范围是[1,3].17.(14分)已知函数f(x)=x2﹣2|x|﹣1.(1)在所给的纵坐标系中画出该函数的图象,并写出函数的单调增区间;(2)求函数f(x)在[0,a]上的最小值.【解答】解:(1)函数f(x)=x2﹣2|x|﹣1.则f(x)=,根据二次函数的图象及性质作图:从图象可得:x∈(﹣1,0)和(1,+∞)时单调递增区间;(2)∵x∈[0,a]上,∴f(x)=x2﹣2x﹣1其对称轴x=1,当0<a≤1时,f(x)min=f(a)=a2﹣2a﹣1.当a>1时,f(x)min=f(1)=﹣2.18.(16分)经市场调查,一种防雾霾口罩在过去30天内的销售量(单位:件)和价格(单元:元)均为时间(单位:天)的函数,且销售量近似地满足g(t)=﹣t+72(1≤t≤30,t∈N),销售价格f(t)与时间的关系可用如图的一条折线上的点表示.(1)写出该口罩的日销售额S与时间t的函数关系式;(2)求日销售额S的最大值.【解答】解:(1)由已知中销售价格f(t)与时间的关系式对应的图象过(1,30.5),(20,40),(30,40)点,故f(t)=又由销售量近似地满足g(t)=﹣t+72(1≤t≤30,t∈N),故该口罩的日销售额S=,(2)由(1)中S的解析式可得:当1≤t≤6时函数为增函数,6≤t≤30时,函数为减函数,故当t=6时,日销售额S取最大值2178.即日销售额S的最大值2178元.19.(16分)已知函数f(x)=m﹣.(1)若f(x)是R上的奇函数,求m的值;(2)用定义证明f(x)在R上的单调递增;(3)若函数f(x)在(﹣4,4)上的奇函数,求使f(2a)+f(1﹣a)<0成立的实数a的取值范围.【解答】(1)解:(1)∵f(x)是R上的奇函数,∴f(x)+f(﹣x)=m﹣+m﹣=0,即m﹣(+)=0⇒m﹣1=0,解得m=1;(2)设x1<x2且x1,x2∈R,则f(x1)﹣f(x2)=m﹣﹣(m﹣)=,∵x1<x2∴>0,>0,,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在R上单调递增;(3)∵函数f(x)在(﹣4,4)上的奇函数,且由(2)得函数为增函数,则f(2a)+f(1﹣a)<0可化为:f(2a)<﹣f(1﹣a)=f(a﹣1),即:﹣4<2a<a﹣1<4,解得:a∈(﹣2,﹣1)20.(16分)已知函数g(x)=ax2﹣2ax+1+b(a>0)的定义域为[2,3],值域为[1,4],设f(x)=.(1)求a,b的值;(2)若不等式f(2x)﹣k•2k≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)若f(|2x﹣1|)+k﹣3k=0有三个不同的实数解,求实数k的取值范围.【解答】解:(1)∵函数g(x)=ax2﹣2ax+1+b(a>0)其图象对称轴为直线x=1,函数的定义域为[2,3],值域为[1,4],∴,解得:a=1,b=0(2)由(1)得:g(x)=x2﹣2x+1,f(x)==x+﹣2若不等式f(2x)﹣k•2k≥0在x∈[﹣1,1]上恒成立,则t≤()2﹣2()+1在x∈[﹣1,1]上恒成立,2x∈[,2],∈[,2],当=1即x=0时,()2﹣2()+1取最小值0,故t≤0,(3)令t=|2x﹣1|,t≥0,f(|2x﹣1|)+k﹣3k=0,化为:f(t)+k﹣3k=0,则原方程可化为:t+﹣2+k﹣3k=0,即t2﹣(2+3k)t+(1+k)=0,若关于x的f(|2x﹣1|)+k﹣3k=0有三个不同的实数解,∴由t=|2x﹣1|的图象知,t2﹣(2+3k)t+(1+2k)=0(t≠0),有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1.记h(t)=t2﹣(2+3k)t+(1+2k),则,或,∴k>0.。
2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/8eb29c9efbb069dc5022aaea998fcc22bdd14311.png)
2023-2024学年江苏省徐州市高一(上)期末数学试卷一、选择题。
本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|14<2x <4},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}2.已知扇形的半径为2cm ,弧长为4cm ,则该扇形的面积为( ) A .1cm 2B .2cm 2C .4cm 2D .8cm 23.若命题“∃x ∈R ,x 2+4x +t <0“是假命题,则实数t 的最小值为( ) A .1B .2C .4D .84.已知a >b ,则下列不等式中,正确的是( ) A .a 2>b 2 B .|a |>|b |C .sin a >sin bD .2a >2b5.若α=4π3,则√1−sinα1+sinα+√1+sinα1−sinα=( ) A .4B .2C .4√33D .2√336.2023年12月30日,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功发射卫星互联网技术试验卫星.在不考虑空气阻力的情况下,火箭的最大速度v (单位:km /s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是v =alg(1+Mm)(a 是参数).当M =5000m 时,v 大约为( )(参考数据:1g 2≈0.3010) A .2.097aB .3.699aC .3.903aD .4.699a7.已知函数f(x)=1x 2+1−e 4x +1e2x ,若a =tan171°,b =tan188°,c =tan365°,则( )A .f (a )<f (b )<f (c )B .f (b )<f (a )<f (c )C .f (b )<f (c )<f (a )D .f (c )<f (b )<f (a )8.已知函数f (x )=x +1x −2,且关于x 的方程f (|e x ﹣1|)+2k|e x −1|−3k 2=0有三个不同的实数解,则实数k 的取值范围为( ) A .(0,23)B .(−12,0)∪(23,+∞)C .(1+√73,+∞) D .{−12}∪(1+√73,+∞)二、选择题。
2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷【答案版】
![2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷【答案版】](https://img.taocdn.com/s3/m/c6c6ee645627a5e9856a561252d380eb629423b7.png)
2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷一、单选题1.已知集合A ={﹣3,﹣2,0},B ={﹣1,0,1},则A ∩B =( ) A .{0}B .{0,1}C .{﹣1,0}D .{﹣1,1}2.已知命题p :∃x ∈R ,x 2﹣2x +a +6>0,则命题p 的否定是( ) A .∀x ∈R ,x 2﹣2x +a +6<0 B .∀x ∈R ,x 2﹣2x +a +6>0C .∃x ∈R ,x 2﹣2x +a +6≤0D .∀x ∈R ,x 2﹣2x +a +6≤03.设a =lg 2,b =lg 3,则lg 6=( ) A .a +bB .a ﹣bC .abD .b ﹣a4.已知实数a ,b ,c ,若a >b >c 则下列不等式一定成立的是( ) A .a ﹣b >b ﹣cB .ac >b 2C .a 3>b 3D .1a<1b5.设P :﹣2<x <4,q :0<x <2,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.函数f(x)={−x 2+2x +2,x ≤26x ,x >2,则函数f (x )的值域是( )A .(﹣∞,3)B .(﹣∞,3]C .(0,3]D .(0,3)7.设全集U =R ,集合A ={x |4<x ﹣2<8},B ={x |2+a <x <1+2a },若A ∪B =A ,则a 的取值范围是( ) A .(﹣∞,1] B .(−∞,92] C .[4,92]D .(−∞,1]∪[4,92]8.若函数f (x )与g (x )对于任意x 1,x 2∈[c ,d ],都有f (x 1)•g (x 2)≥m ,则称函数f (x )与g (x )是区间[c ,d ]上的“m 阶依附函数”.已知函数f (x )=3x ﹣1与g (x )=x 2﹣ax ﹣a +4是区间[1,2]上的“4阶依附函数”,则实数a 的取值范围是( ) A .(﹣∞,2] B .(−∞,32]C .(−∞,2√3−2]D .(−∞,2√3]二、多选题9.下列命题中,为真命题的是( ) A .若a 2<1,则a <2B .若a ,b ∈R ,且ab +1=a +b 的充要条件是a =b =1C .∃x ∈R ,2x >x 2D .二次函数y =x 2+2x +3的值域是[2,+∞) 10.如图所示的图象表示的函数的解析式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|( 0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y ={32x ,x ∈[0,1]3−32x ,x ∈(1,2]11.已知关于x 的一元二次不等式ax 2+bx +c ≥0的解集为{x |x ≤﹣3或x ≥2},则下列说法正确的是( ) A .b >0且c <0 B .4a +2b +c =0C .不等式bx +c >0的解集为{x |x <6}D .不等式cx 2﹣bx +a <0的解集为{x|−12<x <13}12.如图所示,四边形ABDC 为梯形,其中AB =a ,CD =b ,O 为对角线的交点.有4条线段(GH 、KL 、EF 、MN )夹在两底之间.GH 表示平行于两底且与他们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABDC 分为面积相等的两个梯形的线段.下列说法中正确的有( )A .若a =1,b =2,则KL =√2B .∀a ,b ∈R ,a ≠b ,KL <GHC .∀a ,b ∈R ,a ≠b ,MN =2aba+bD .∀a ,b ∈R ,a ≠b ,EF =2aba+b三、填空题13.已知函数f (x )满足f (x +2)=4x ﹣3,则f (4)= . 14.已知a +a ﹣1=1,则a 12+a −12= .15.正实数x ,y 满足1x+3y=2时,则x +y 的最小值为 .16.若关于x 的不等式x 2−(m +52)x +2m <0的解集中恰有2个整数,则实数m 的取值范围为 .四、解答题17.(10分)记函数f(x)=√1+x +√2−x 的定义域为集合M ,函数g(x)=−1x +1,x ∈[13,1]的值域为集合N ,求: (1)M ,N ;(2)M ∪N ,(∁R M )∩N . 18.(12分)计算下列格式的值: (1)(√3−1)0+√(3−π)2+813;(2)2lg4+lg 58+log 23⋅log 34.19.(12分)已知二次函数f (x )=x 2﹣2ax +a 2﹣1(a ∈R ).若函数f (x )的两个零点都在区间(0,+∞)内,求实数a 的取值范围.20.(12分)已知二次函数f (x )=ax 2+bx +c ,当x =2时,函数y =f (x )取得最小值2,且f (0)=6. (1)求函数f (x )的解析式;(2)若函数f (x )在区间[t ,t +2]的最小值为11,求t .21.(12分)如图所示,为宣传2023年杭州亚运会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为450dm 2,为了美观,要求海报上四周空白的宽度为1dm ,两个宣传栏之间的空隙的宽度为2dm ,设海报纸的长和宽分别为xdm ,ydm . (1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?22.(12分)已知二次函数f (x )=ax 2+bx +c ,其中a ,b ,c ∈R . (1)若a +b +2=0,c =2,解关于x 的不等式f (x )>0; (2)若a <b 且不等式f (x )≥0对一切实数x 恒成立,求a+2b+4c b−a的最小值.2023-2024学年江苏省徐州市铜山区高一(上)期中数学试卷参考答案与试题解析一、单选题1.已知集合A={﹣3,﹣2,0},B={﹣1,0,1},则A∩B=()A.{0}B.{0,1}C.{﹣1,0}D.{﹣1,1}解:集合A={﹣3,﹣2,0},B={﹣1,0,1},则A∩B={0}.故选:A.2.已知命题p:∃x∈R,x2﹣2x+a+6>0,则命题p的否定是()A.∀x∈R,x2﹣2x+a+6<0B.∀x∈R,x2﹣2x+a+6>0C.∃x∈R,x2﹣2x+a+6≤0D.∀x∈R,x2﹣2x+a+6≤0解:命题p:∃x∈R,x2﹣2x+a+6>0,则命题p的否定是:∀x∈R,x2﹣2x+a+6≤0.故选:D.3.设a=lg2,b=lg3,则lg6=()A.a+b B.a﹣b C.ab D.b﹣a解:∵a=lg2,b=lg3,∴lg6=lg2+lg3=a+b.故选:A.4.已知实数a,b,c,若a>b>c则下列不等式一定成立的是()A.a﹣b>b﹣c B.ac>b2C.a3>b3D.1a <1b解:因为a>b>c,若a=3,b=2,c=1,则a﹣b=3﹣2=1=2﹣1=b﹣c,A错误;ac=3<22=b2,B错误;由于y=x3为R上的增函数,故a3>b3,C正确;若a=1,b=﹣1,则1a=1>1−1=1b,D错误.故选:C.5.设P:﹣2<x<4,q:0<x<2,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当﹣2<x<4时,可能x=﹣1,不能推出0<x<2;反之,当0<x<2时,可以推出﹣2<x<4.因此,p是q成立的必要不充分条件.故选:B.6.函数f(x)={−x 2+2x +2,x ≤26x,x >2,则函数f (x )的值域是( )A .(﹣∞,3)B .(﹣∞,3]C .(0,3]D .(0,3)解:x ≤2时,f (x )=﹣(x ﹣1)2+3≤3; x >2时,f(x)=6x ∈(0,3), ∴f (x )的值域为:(﹣∞,3]. 故选:B .7.设全集U =R ,集合A ={x |4<x ﹣2<8},B ={x |2+a <x <1+2a },若A ∪B =A ,则a 的取值范围是( ) A .(﹣∞,1] B .(−∞,92] C .[4,92]D .(−∞,1]∪[4,92]解:A ={x |4<x ﹣2<8}={x |6<x <10}, 因为A ∪B =A ,所以B ⊆A ,若B =∅,B ⊆A 此时2+a ≥1+2a ,得a ≤1, 若B ≠∅,由B ⊆A 得{2+a ≥62+a <1+2a 1+2a ≤10,得4≤a ≤92,故a 的取值范围是(−∞,1]∪[4,92]. 故选:D .8.若函数f (x )与g (x )对于任意x 1,x 2∈[c ,d ],都有f (x 1)•g (x 2)≥m ,则称函数f (x )与g (x )是区间[c ,d ]上的“m 阶依附函数”.已知函数f (x )=3x ﹣1与g (x )=x 2﹣ax ﹣a +4是区间[1,2]上的“4阶依附函数”,则实数a 的取值范围是( ) A .(﹣∞,2]B .(−∞,32]C .(−∞,2√3−2]D .(−∞,2√3]解:因为函数f (x )=3x ﹣1在[1,2]上单调递增, 所以当x ∈[1,2]时,2≤f (x )≤5,依题意,对任意x 1,x 2∈[1,2]时,都有f (x 1)•g (x 2)≥4,对任意x 1,x 2∈[1,2]时,都有g(x 2)≥4f(x 1),即g(x)min ≥[4f(x)]max ,因为[4f(x 1)]max =2,所以当a 2<1,即a <2时,g (x )min =g (1)=5﹣2a ≥2,解得a ≤32;当a2>2,即a >4时,g (x )min =g (2)=8﹣3a ≥2,解得a ≤2(舍去);当1≤a 2≤2,即2≤a ≤4时,g(x)min =g(a2)=−a 24−a +4≥2,解得−2−2√3≤a ≤−2+2√3(舍去).综上,实数a 的取值范围为(−∞,32]. 故选:B . 二、多选题9.下列命题中,为真命题的是( ) A .若a 2<1,则a <2B .若a ,b ∈R ,且ab +1=a +b 的充要条件是a =b =1C .∃x ∈R ,2x >x 2D .二次函数y =x 2+2x +3的值域是[2,+∞)解:A 中,由a 2<1,可得﹣1<a <1,所以a <2成立,所以A 正确;B 中,由ab +1=a +b ,可得a (b ﹣1)﹣(b ﹣1)=0,即(a ﹣1)(b ﹣1)=0,解得a =1或b =1,即充要条件为a =1或b =1,所以B 不正确;C 中,因为2x >x 2,解得0<x <2,即存在x ∈(0,2),使不等式成立,所以C 正确;D 中,二次函数y =x 2+2x +3=(x +1)2+2≥2,即函数的值域为[2,+∞).故D 正确. 故选:ACD .10.如图所示的图象表示的函数的解析式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|( 0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2) D .y ={32x ,x ∈[0,1]3−32x ,x ∈(1,2]解:当0≤x ≤1时,设f (x )=kx ,由图象过点(1,32),得k =32,所以此时f (x )=32x ;当1≤x ≤2时,设f (x )=mx +n ,由图象过点(1,32),(2,0),得{32=m +n 0=2m +n ,解得{m =−32n =3,所以f (x )=3−32x ,∴y =f (x )={32x ,x ∈[0,1]3−32x ,x ∈(1,2],D 正确; 对于A ,当0≤x ≤1时,y =32(1﹣x )≠32x ,A 错误;对于B ,当0≤x ≤1时,y =32−32(1﹣x )=32x , 当1<x ≤2时,y =32−32(x ﹣1)=3−32x ,B 正确,C 错误; 故选:BD .11.已知关于x 的一元二次不等式ax 2+bx +c ≥0的解集为{x |x ≤﹣3或x ≥2},则下列说法正确的是( ) A .b >0且c <0 B .4a +2b +c =0C .不等式bx +c >0的解集为{x |x <6}D .不等式cx 2﹣bx +a <0的解集为{x|−12<x <13}解:A 选项,由题意得﹣3,2为一元二次方程ax 2+bx +c =0的两个根, 且a >0,故−3+2=−ba ,−3×2=c a ,即b =a >0,c =﹣6a <0,A 正确; B 选项,2为一元二次方程ax 2+bx +c =0的根,故4a +2b +c =0,B 正确; C 选项,由A 选项可知,bx +c >0⇒ax ﹣6a >0,解得x >6,C 错误; D 选项,cx 2﹣bx +a <0⇒﹣6ax 2﹣ax +a <0,又a >0,故6x 2+x ﹣1>0, 解得x >13或x <−12,D 错误. 故选:AB .12.如图所示,四边形ABDC 为梯形,其中AB =a ,CD =b ,O 为对角线的交点.有4条线段(GH 、KL 、EF 、MN )夹在两底之间.GH 表示平行于两底且与他们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABDC 分为面积相等的两个梯形的线段.下列说法中正确的有( )A .若a =1,b =2,则KL =√2B .∀a ,b ∈R ,a ≠b ,KL <GHC .∀a ,b ∈R ,a ≠b ,MN =2aba+bD .∀a ,b ∈R ,a ≠b ,EF =2aba+b解:由梯形中位线性质可得GH =a+b 2,因为梯形ABLK 与梯形KLDC 相似, 所以AB KL=KL CD,即KL =√AB ⋅CD =√ab ,当a =1,b =2时,KL =√2,A 正确;由基本不等式可知∀a ,b ∈R ,实为a >0,b >0, a ≠b 时,GH =a+b2>√ab =KL ,B 正确; 设梯形ABNM ,MNDC ,ABDC 的面积分别为S 1,S 2,S , 高分别为h 1,h 2,h ,则2S 1=2S 2=S , 即(a +MN)ℎ1=(b +MN)ℎ2=12(a +b)ℎ, 解得ℎ1=(a+b)ℎ2(a+MN),ℎ2=(a+b)ℎ2(b+MN), 由题意可知ℎ1+ℎ2=(a+b)ℎ2(a+MN)+(a+b)ℎ2(b+MN)=ℎ,解得MN =√a 2+b22,C 错误;因为AB ∥CD ,所以∠ABC =∠DCB ,∠BAD =∠CDA , 所以△OAB ∽△ODC ,所以CO BO=CD BA =ba,易知△COE ~△CBA ,所以OE BA=CO CB=b a+b,得OE =aba+b ,所以EF =2aba+b ,D 正确. 故选:ABD . 三、填空题13.已知函数f (x )满足f (x +2)=4x ﹣3,则f (4)= 5 . 解:根据题意,函数f (x )满足f (x +2)=4x ﹣3, 令x =2可得:f (4)=4×2﹣3=5. 故答案为:5.14.已知a +a ﹣1=1,则a 12+a −12= √3 .解:a +a ﹣1=1,则(a 12+a−12)2=a +a ﹣1+2=3,∵a 12+a−12>0, ∴a 12+a −12=√3. 故答案为:√3. 15.正实数x ,y 满足1x +3y=2时,则x +y 的最小值为 2+√3 .解:因为正实数x ,y 满足1x+3y=2,则x +y =12(x +y )(1x +3y )=12(4+yx +3xy )≥12(4+2√y x ⋅3xy )=2+√3,当且仅当y =√3x ,即x =1+√32,y =3+√32时取等号. 故答案为:2+√3.16.若关于x 的不等式x 2−(m +52)x +2m <0的解集中恰有2个整数,则实数m 的取值范围为 [32−√5,32)∪(32,32+√5].解:关于x 的不等式x 2−(m +52)x +2m <0对应方程为x 2﹣(m +52)x +2m =0,Δ=(m +52)2−8m =m 2﹣3m +254=(m −32)2+4>0恒成立,所以对应方程有两个不等实根,求解得:x 1=m+52−√Δ2,x 2=m+52+√Δ2;所以原不等式的解集为(x 1,x 2).因为不等式的解集中恰有2个整数,则2<x 2﹣x 1≤3, 因为x 2﹣x 1=√Δ=√(m −32)2+4,所以{ √(m −32)2+4>2√(m −32)2+4≤3,化简得{(m −32)2+4>4(m −32)2+4≤9, 解得{m ≠3232−√5≤m ≤32+√5,即32−√5≤m <32,或32<m ≤32+√5;所以m 的取值范围是[32−√5,32)∪(32,32+√5].故答案为:[32−√5,32)∪(32,32+√5].四、解答题17.(10分)记函数f(x)=√1+x +√2−x 的定义域为集合M ,函数g(x)=−1x +1,x ∈[13,1]的值域为集合N ,求: (1)M ,N ;(2)M ∪N ,(∁R M )∩N . 解:(1)由题意得:{1+x ≥02−x ≥0,解得:﹣1≤x ≤2,即M =[﹣1,2], 由题意得:g (x )=−1x +1,x ∈[13,1],得到N =[﹣2,0];(2)∵M =[﹣1,2],N =[﹣2,0], M ∪N =[﹣2,2],∁R M =(﹣∞,﹣1)∪(2,+∞), (∁R M )∩N =[﹣2,﹣1). 18.(12分)计算下列格式的值: (1)(√3−1)0+√(3−π)2+813; (2)2lg4+lg 58+log 23⋅log 34. 解:(1)(√3−1)0+√(3−π)2+813=1+π﹣3+2=π.(2)2lg4+lg 58+log 23⋅log 34=lg 16+lg 58+lg3lg2×lg4lg3=lg 10+2=3.19.(12分)已知二次函数f (x )=x 2﹣2ax +a 2﹣1(a ∈R ).若函数f (x )的两个零点都在区间(0,+∞)内,求实数a 的取值范围.解:因为f (x )=x 2﹣2ax +a 2﹣1,对称轴方程为x =a , 要使函数f (x )的两个零点都在区间(0,+∞),可得{f(0)=a 2−1>0a >0f(a)=a 2−2a 2+a 2−1<0,解得a >1.所以a 的范围为(1,+∞).20.(12分)已知二次函数f (x )=ax 2+bx +c ,当x =2时,函数y =f (x )取得最小值2,且f (0)=6. (1)求函数f (x )的解析式;(2)若函数f (x )在区间[t ,t +2]的最小值为11,求t . 解:(1)由已知可得f (x )=a (x ﹣2)2+2, 则f (0)=4a +2=6,解得a =1,所以f (x )=(x ﹣2)2+2,即为f (x )=x 2﹣4x +6; (2)因为函数f (x )在区间[t ,t +2]的最小值为11, 所以函数的对称轴x =2在区间[t ,t +2]外,当t >2时,f (x )在区间[t ,t +2]上单调递增,所以f (x )min =f (t )=t 2﹣4t +6=11,解得t =5或﹣1(舍去);当t +2<2,即t <0时,函数f (x )在区间[t ,t +2]上单调递减,所以f (x )min =f (t +2)=(t +2﹣2)2+2=11,解得t =﹣3或3(舍去),综上,实数t 的值为5或﹣3.21.(12分)如图所示,为宣传2023年杭州亚运会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为450dm 2,为了美观,要求海报上四周空白的宽度为1dm ,两个宣传栏之间的空隙的宽度为2dm ,设海报纸的长和宽分别为xdm ,ydm .(1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?解:(1)根据题意可得两个矩形宣传栏的长为x−42,宽为y ﹣2, ∴2⋅x−42⋅(y −2)=45,∴y =450x−4+2,(x >4);(2)由(1)知(x ﹣4)(y ﹣2)=450,∴xy =2x +4y +442,x >4,y >2,∴xy =2x +4y +442≥4√2xy +442,解得√xy ≥17√2,∴xy ≥578,当且仅当{2x =4y xy =578,即x =34,y =17时等号成立, ∴当海报长为34dm ,宽为17dm 时,用纸量最少,最少为578dm 2.22.(12分)已知二次函数f (x )=ax 2+bx +c ,其中a ,b ,c ∈R .(1)若a +b +2=0,c =2,解关于x 的不等式f (x )>0;(2)若a <b 且不等式f (x )≥0对一切实数x 恒成立,求a+2b+4c b−a 的最小值. 解:(1)因为a +b +2=0,所以b =﹣a ﹣2,又c =2,所以不等式ax 2+bx +c >0,所以ax 2﹣(a +2)x +2>0,所以(ax ﹣2)(x ﹣1)>0,当a =0时,原不等式即﹣2(x ﹣1)>0,解得x <1,当a >0时,原不等式即(x −2a )(x −1)>0,若2a=1,即a =2时,解得x ≠1; 若{2a >1a >0,即0<a <2时,解得x >2a 或x <1; 若{2a <1a >0,即a >2时,解得x >1或x <2a ;当a <0时,原不等式即(x −2a )(x −1)<0,解得2a <x <1, 综上,当a =0时,原不等式的解集为(﹣∞,1),当a =2时,不等式的解集为(﹣∞,1)∪(1,+∞), 当0<a <2时,原不等式的解集为(−∞,1)∪(2a ,+∞), 当a >2时,原不等式的解集为(−∞,2a )∪(1,+∞), 当a <0时,不等式的解集为(2a,1).(2)因为对任意x ∈R ,不等式f (x )≥0恒成立,所以{b >a >0b 2−4ac ≤0,所以4c ≥b 2a , 所以a+2b+4c b−a ≥a+2b+b 2a b−a =1+2b a +(b a )2b a −1(当判别式等于0时等号成立), 令b a −1=t ,则b a =t +1,因为b >a >0,所以b a−1=t >0, 所以1+2b a +(b a )2b a −1=1+2(t+1)+(t+1)2t =t 2+4t+4t =t +4t +4≥2√4+4=8,当且仅当t =4t ,即t =2时等号成立,所以当b 2﹣4ac =0且b =3a 时,a+2b+4c b−a 有最小值8.。
徐州市2017-2018学年度第一学期高一期中考试数学试卷
![徐州市2017-2018学年度第一学期高一期中考试数学试卷](https://img.taocdn.com/s3/m/e8d00c54326c1eb91a37f111f18583d049640feb.png)
徐州市2017—2018学年度第一学期期中考试高一数学试题(满分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.请把答案直接填在答题卡相应位置上)⒈设集合A={0,1,2},B={1,2,3,4},则A∩B=;⒉函数y=lg lg (1−x x))的定义域为;的定义域为;⒊若幂函数y=xα的图像经过点(4,2),则f16的值是;的值是;⒋满足{2}⊆A {1,2,3}的集合A的个数为;的个数为;⒌若函数f x=(2(2a a−1)x在R上是减函数,则实数a的取值范围是;的取值范围是;⒍已知a=0.32、b=20.3、c=log0.32,则a a,,b b,,c的大小关系是;(用“<”链接) ⒎已知函数f x满足满足 f x2+1=x+3,则f3=;⒏已知a+1a=2,则a2+a−2=;⒐已知函数y=log a(x−1)+1(1(a a>0,a≠1)的图像恒过点A,则点A的坐标为;的坐标为;⒑已知函数f x=2x+3,x>0x2−2,x≤0,若f m=2,则实数m的值等于;的值等于;⒒已知f x是定义在R上的奇函数,在上的奇函数,在 0,+∞上为减函数,且f2=0,则不等式f x−1>0的解集为;⒓若关于x的方程3tx2+3−7t x+2=0的两实根αα,,β满足0<α<1<β<2,则实数t的取值范围是;的取值范围是;⒔函数f x=−x−12,x>1 a−3x+4a a,,x≤1,若f x在区间(−∞−∞,,+∞)上是单调减函数,则实数a的取值范围是;的取值范围是;⒕定义min a a,,b=a a,,a≤bb b,,a>b,若f x=min2x x,,|x−2|,且直线y=m与y=f x的图像有3个交点,横坐标分别为x1,x2,x3,则x1∙x2∙x3的取值范围是. 二、解答题:本大题共6小题,共90分.请在答题卡指定区域....内作答,解答时应写出必要的文字说明、证明过程或演算步骤.⒖(本小题满分14分)计算:计算:⑴(49)12−−9.60−278−23+(32)−2;⑵(lg5)2+lg2×lg50.⒗(本小题满分14分) 已知全集U=R,集合A=x1≤x≤5,B=x a≤x≤a+2. ⑴若a=4,求A∪B,B∩C U A;⑵若B⊆A,求实数a的取值范围. ⒘(本小题满分14分) 已知函数f x=x2−2x−1.⑴在所给的坐标系中画出该函数的图像,并写出函数的单调增区间;⑴在所给的坐标系中画出该函数的图像,并写出函数的单调增区间;yxO ⑵求函数f x 在[0,a a]]上的最小值. ⒙(本小题满分16分) 经市场调查,一种防雾霾口罩在过去30天内的销售量(单位:件)和价格(单位:元)均为时间(单位:天)的函数,且销售量近似地满足g t =−t +72(1≤t ≤30,t ∈N N)),销售价格f t 与时间的关系可用下图的一条折线上的点表示. ⑴写出该口罩的日销售额S 与时间t 的函数关系式;的函数关系式;⑵求日销售额S 的最大值. x. .x([………………………………………2 1x x )x x故g2=1g3=4,解得,解得a=1b=0…………………………………………………4分⑵由已知可得f x=x+1x−2,所以f2x−k∙2x≥0可化为2x+12x−2≥k∙2x化为k≤1+(12x)2−2∙12x,令t=12x,则k≤t2−2t+1………………………………………………8分因x∈[−1,1],故t∈[12,2],记 (t t))=t2−2t+1,因为t∈[12,2],故 (t t))min=0,所以k的取值范围是(−∞−∞,,0]………………………………………………10分⑶当x=0时,2x−1=0,所以x=0不是方程的解;不是方程的解;当x≠0时,令2x−1=t,则t∈(0,+∞),原方程有三个不等的实数解可转化为t2−3t+2t+2k+1=0有两个不同的实数解,有两个不同的实数解,其中0<t1<1<t2,或0<t1<1,t2=1……………………………13分记 t=t2−3t+2t+2k+1,则①,则①2k+1>0 1=−k<0或②或②2k+1>0 1=−k=00<3k k+2+22<1 ,解不等式组①得k>0,而不等式组②无实数解。
江苏省徐州市2016-2017学年高一上学期期末考试数学试题(扫描版,含答案)
![江苏省徐州市2016-2017学年高一上学期期末考试数学试题(扫描版,含答案)](https://img.taocdn.com/s3/m/c11614b72e3f5727a4e9621e.png)
2016〜2017学年度第-学期期末抽测•高一年级数学试题一、填空题:本大题共14小题,每小题5分,共计70分.i?l把答案填写在等狀堆舉図型辻・1 •己知集合八{-1,0,1}, 2? = {0,1,2},则JCIB= A ・,2.函数y = 3tan(2x + —)的扱小正周期为_4_・« '63・己知点3(1,3),则向量乔的坐标为.▲.・4. 若指数函数f(x) = a x SO,且XI)的图象经过点(3,8),则"-1)的值为▲.5. cos240°的值等于▲ 一.6. 函数/(x) = J-l + lnx的定义域是_4_・!7. 已知向叶,b满足|fl| = 2, |b|M,"与b的夹角为寸’则0 + 6卜▲・8. 若偶函数/(x)满足/(x + n) = /(x),且/(-|)=-,则/(-于)的值为丄_・9. 设函数/⑴屮严2(4-加<0,则/(也14) + /(_4)的他为」・2 二x^09b10. 已知。
函数/(x) = 4 + log u(x + 4)的IYI釧fl过定点/>,若的终边经过点P,则cosa的值力▲・11. 将函数/(x) = sin^>0)的图線向右平移扌个爪位示得到函数曲)的图彖,若对于满足|/(齐)-曲2)|=2的召內,Yf|x,-x2|min=-j>则/(》的ffi为_Jk .高一数学试题笫I页(共4页)12. 设四边形ABCD为平行四边形,\AB\=6t \AD\=4,若点E , F满足BE = EC tDF = 2FC t则乔•丽的值为▲•13. 设函数/⑴』才一必,Y<2,若函数/(x)恰冇2个零点,则实数a的取值范[X2 -3ax + 2a\x^-2.■围是▲.14. 已知不尊式(〃ir + 5Xx2-〃)W0对任意x G(0, +00)恒成立,其中加,n是整数,则m + n 的取值的集合为▲.二、解答题:本大题共6小題,共计90分.请在等題级爭雀够g填内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知集合J = [0,3), B = [a,a + 2).(1) 若a = -1,求(2) 若= 求实数a的取值范围.16. (本小题满分14分)己知向fl: a = (cosa, sin a), A = (-2,2).(1) 若a •力=耳,求(sin a + cos a)2的值;5(2) 若a//〃,求sin(7t-a) sin(-| + a)的值.17・(本小题满分14分)某同学用“五点法”画函数/(x) = As\n(a)x +(p\a)> 0,| cp |< 在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,填写在答题卡相应位置上,并直接写出函数/(x)的解析式;(2) 若将函数/(X)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象.求当xe[~y]W,函数g(x)的值域;(3) 若将y = /(x)图象上所有点向左平移0(&>0)个单位长度,得到y^Kx)的图彖.若y = A(x)图彖的一个对称中心为(―,0),求&的最小值.18-(本小题满分16分)已知向量a = (m,-l) , 6 = (—,—)・(1)若m = ->/3,求a与力的夹角0;(2)设alb.①求实数加的值;②若存在非零实数上,t,使得8 + (厂-3)切丄(-如+忙),求土J•的最小值.19・(本小题满分16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元.某月甲、乙两户共交水费y元,己知甲、乙两户该月用水鈕分别为5x, 3x吨.(1) 求y关于x的函数;(2) 若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(本小题满分16分)已知函数/(x) = x2+4x + a-5, g(x) = m-4x_,-2m + 7 ・(1)若函数/(x)在区间卜1,1]上存在零点,求实数°的取值范围;(2)当"0时,若对任意的^6[1,2],总存在X26[1,2],使/(x,)=:g(七)成立,求实数加的取值范围;(3)若y = /(x) (XG[/,2J)的值域为区间D,是否存在常数r,使区间Q的长度为6-4/?若存在,求出f的值;若不存在,请说明理由.(注:区间[p,g]的长度为q_p).2016—2017学年度第一学期期末抽测高一数学试题参考答案、填空题(2,1)1 _6 . [e,…)7. . 1026 1011.1 120 13 . [1,2)U[4,二)14 . \ -4,24;二、解答题15.(1) --1 时, 由于 A- 0,3 ,所以 AUB - 1_1,3 . (2),得 B A ,a > 0, a + 2 < 3,所以, a 的取值范围是0,1].14分16.(1) 因为ab - -14,所以-2cos t -2sin •,二14 , 5 5(2)即si27 2 49疋(sin 用 cos : )1 -2sin : cos :=(—)5 25 从而 2sin _:i cos :;=25224 1因此,(sin :亠COS H ) =1 2sin t cos : =1 -25 25因为 a // b ,所以 2cos .:: -(一2) sin : = 0 ,即 cos _:i 】si n : - 0 , 于是 tan : - -1 ,10分 因此, sin( n-- ) sin(n,二i ) =sin : cos : 2 12分17. (1)根据表中已知数据可得:sin 二 cos 一:匚 tan 一:匚 1 sincos 2: tan1214分数据补全如下表:(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,的图象,所以 g(x) =3sin(x - n ) . ......................................................... 7分 6n n_ n _ n n_ "F ]时,x +n 【u ,n ,所以 sin(x $ • [-1 ,1].6 2于是函数g(x)的值域为[―三3] . .................................................................. 9分2'「冗(3)由(〔)可得,h(x) = 3sin(2 x+ 2q +),6由h(x)图象的一个对称中心为(n ,0)可得,h( n )= 0 ,12 12所以 3sin(2? — 2q + n )= 0 ,即 sin(2q+ —) = 0 , .......................................... 12 分12 63从而 2q+ n = k n ,k? Z ,解得 q= ®- n ,k? Z ,326由q>0可得,当k = 1时,q 取得最小值 n ......................................................... 14分3(1) m = - 3 时,a= - 3, -1,于是 ab=_3 , .......................................................... 3 分又 a =2 , \b= 1 ,所以cos^= 粘=——,因为日丘b,兀】,所以0=— . ......................................... 6分a||b 26(2)①因为a _b ,所以a b =0 ,即卩丄m + -13二。
江苏省徐州市2017-2018学年高一下学期期末考试数学试题答案
![江苏省徐州市2017-2018学年高一下学期期末考试数学试题答案](https://img.taocdn.com/s3/m/6f71a9ecaa00b52acfc7caec.png)
2017~2018学年度第二学期期末抽测高一数学参考答案与评分标准一、填空题1.14 2. 3.350 4.23 5.4 6.7 7.50 8.3109.52 10.2- 11.23π 12.9 13.(,1]-∞- 14.4033 二、解答题15.(1)直线l的斜率为tan 30︒=,…………………………………………………1分 所以直线l的方程为1y x -=-,即y x =.……………………4分 (2)因为m l ⊥,所以直线m的斜率为 ……………………………………7分所以直线m的方程为1y x -=40y +-=.……………10分(3)因为n ∥l ,所以直线n, ………………………………………12分 所以直线n的方程为3y x -=-,即0x =.…………14分 16.(1)因为(,)2απ∈π,3sin 5α=,所以4cos 5α=-,…2分 所以sin()sin cos cos sin 44αααπππ+=+ 34()55=+-. ………………………………6分 (2)由(1)可知,3sin 35tan 4cos 45ααα===--, ……………………………………8分所以2232()2tan 244tan 231tan 71()4ααα⨯-===----, …………………………………11分 所以241tan 2tan 1774tan(2)244311tan 2tan 1()147αααπ-++π+===-π---⨯.……………………14分 17.(1sin 1sin A A ==, …………………………………………2分 即tan C =,…………………………………………………………………4分 因为(0,)C ∈π,所以6C π=.…………………………………………………6分 (2)由余弦定理,2222cos c a b ab C =+-,即2243cosb b π=+-,即210b b +-=, ……………………………10分 解得b =或b =, ………………………………………12分所以ABC △的面积11sin 226S ab C π===.……14分 18.(1)当2a =-时,不等式()0f x >即2430x x ++<,即(1)(3)0x x ++<,所以31x -<<-,………………………………………3分 故不等式()0f x >的解集为(3,1)--.…………………………………………4分(2)由题意知,24620ax ax a +--≤对任意的x ∈R 恒成立,所以20,164(62)0,a a a a <⎧⎨++⎩≤ …………………………………………………6分解得10a -<≤,故a 的取值范围为[1,0)-.…………………………………8分(3)由题意知,不等式2()54f x x x a >+-即2(1)(45)460a x a x a -+-+->,即[(1)23](2)0a x a x -+-+>的解集中恰含有两个小于2-的整数.…………10分 若1a ≥,则解集中含有无数多个整数,不符合题意; 所以1a <,则3201a a -<-,且3221a a -≠--. …………………………………12分 所以不等式的解集为32(,2)1a a ---,其中所含的两个整数应为3-,4-, 所以32541a a --<--≤,…………………………………………………………14分 即32541a a --<--≤,解得1223a <≤. 综上所述,a 的取值范围为12(,]23.……………………………………………16分 19.设ADF α∠=,BDF β∠=,则tan AF DF α=,tan BF DFβ=,tan tan()θαβ=-. (1)因为100a x ==,所以100tan 1100α==,501tan 1002β==, 所以tan tan tan 1tan tan αβθαβ-=+111213112-==+⨯.…………………………………4分 (2)因为100a =,所以100tan x α=,50tan xβ=, 所以210050tan tan 50tan 1tan tan 50001x x x x x xαβθαβ--===+++⋅………………………6分505000x x ==+ 当且仅当5000x x=,即60x =>时,取“=”.答:当无人机离大楼的水平距离为θ最大.…………………10分(3)因为200tan a x α-=,150tan a x β-=,所以2200150tan tan 501tan 2001501tan tan (200)(150)31a a x x x a a x a a x xαβθαβ----====--++--+⋅, 即22150350200150x x a a -+=-+⨯.………………………………………12分 因为50100a ≤≤,所以2500035020015015000a a -+⨯≤≤,所以2500015015000x x -+≤≤,解得50100x ≤≤, …………………14分 又因为60x ≥,所以60100x ≤≤.答:无人机D 与大楼的水平距离x 的取值范围[60,100].………………………16分20.(1)当1n =时,12112a a a S ==,又11a =,所以22a =; ………………………1分 当2n ≥时,1112n n n n n n n a a a a a S S +---=-=,即112()n n n n a a a a +-=-. 因为0n a >,所以112n n a a +--=,……………………………………………4分 所以{}n a 的奇数项成以1为首项,2为公差的等差数列,偶数项成以2为首项,2为公差的等差数列.因此当21n k =-,*k ∈N 时,211(1)221k a k k -=+-⨯=-;当2n k =,*k ∈N 时,22(1)22k a k k =+-⨯=.即数列{}n a 的通项公式为n a n =.……………………………………………6分(2)由(1)知,n a n =,所以2n n b n =⋅.则1231222322n n T n =⨯+⨯+⨯++⋅,23121222(1)22n n n T n n +=⨯+⨯++-⨯+⋅,所以23122222n n n T n +-=++++-⋅12(12)212n n n +-=-⋅-…………………8分 1(1)22n n +=--,所以1(1)22n n T n +=-+.………………………………………………………10分(3)因为6n ≥时,1(1)()32n m m n -<+,所以111(1)32n n n m m m m n ==-<+∑∑, 即121431()()()()33332n n n n n m m n n n n n n =++++++<++++∑. 而23111(1)1111112211122222212n n m n n m =-=++++==-<-∑, 所以(2)(1)43(3)(3)n a n n n n n n n n n a ++++++<+=+.所以当6n ≥时,34(2)(3)n a n n n n n a ++++=+无解.…………………14分 当1n =时,34<;当2n =时,222345+=;3n =时,33333456++=; 当4n =时,44443456+++为偶数,而47为奇数,不符合;当5n =时,5555534567++++为奇数,而58为偶数,不符合.综上可知,满足条件的n的所有值为2,3.………………………………16分。
2015-2016学年江苏省徐州市高一上学期期末数学试卷 解析版
![2015-2016学年江苏省徐州市高一上学期期末数学试卷 解析版](https://img.taocdn.com/s3/m/a36d600e55270722192ef787.png)
2015-2016学年江苏省徐州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,将答案填在答题纸上)1.已知全集U={1,2,3},A={1,m},∁U A={2},则m=3.【考点】补集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由全集U及A的补集,确定出A,再根据元素集合的特征即可求出m.【解答】解:∵全集U={1,2,3},且∁U A={2},∴A={1,3}∵A={1,m},∴m=3.故答案为:3.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.函数y=log2(x﹣1)的定义域是(1,+∞).【考点】对数函数的定义域.【专题】计算题.【分析】由函数的解析式知,令真数x﹣1>0即可解出函数的定义域.【解答】解:∵y=log2(x﹣1),∴x﹣1>0,x>1函数y=log2(x﹣1)的定义域是(1,+∞)故答案为(1,+∞)【点评】本题考查求对数函数的定义域,熟练掌握对数函数的定义及性质是正确解答本题的关键.3.幂函数f(x)=xα的图象经过点(2,),则α=﹣2.【考点】幂函数的单调性、奇偶性及其应用.【专题】计算题;方程思想.【分析】幂函数f(x)=xα的图象经过点(2,),故将点的坐标代入函数解析式,建立方程求α【解答】解:∵幂函数f(x)=xα的图象经过点(2,),∴2α==2﹣2∴α=﹣2故答案为:﹣2.【点评】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是利用幂函数的解析式建立关于参数的方程求参数.4.sin240°=.【考点】运用诱导公式化简求值.【专题】计算题.【分析】由诱导公式sin(180°+α)=﹣sinα和特殊角的三角函数值求出即可.【解答】解:根据诱导公式sin(180°+α)=﹣sinα得:sin240°=sin(180°+60°)=﹣sin60°=﹣.故答案为:﹣【点评】此题考查了学生利用诱导公式sin(180°+α)=﹣cosα进行化简求值的能力,以及会利用特殊角的三角函数解决问题的能力.5.已知向量,,且,则x的值为.【考点】平面向量共线(平行)的坐标表示.【专题】转化思想;构造法;平面向量及应用.【分析】根据平行向量或共线向量的坐标交叉相乘差为0,构造一个关于x的方程,解方程即可.【解答】解:∵向量,,且,∴3x﹣(﹣1)•(﹣1)=0,解得x=.故答案为:.【点评】本题考查了平行向量与共线向量的坐标表示与应用问题,是基础题目.6.若sinα=,,则tanα的值为﹣.【考点】同角三角函数基本关系的运用.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】由已知利用同角三角函数基本关系的运用可先求cosα,从而可求tanα的值.【解答】解:∵sinα=,,∴cosα==﹣=﹣,∴tan==﹣.故答案为:﹣【点评】本题主要考查了同角三角函数基本关系的运用,属于基础题.7.已知,,且,则向量与的夹角为.【考点】平面向量数量积的运算.【专题】计算题;方程思想;定义法;平面向量及应用.【分析】设向量与的夹角为θ,根据向量的数量积运算即可得到cosθ=,问题得以解决.【解答】解:设向量与的夹角为θ,,,且,∴(3)•()=|3|•||cosθ=3×10××12cosθ=36,∴cosθ=,∵0≤θ≤π,∴θ=,故答案为:.【点评】本题考查了向量的数量积运算,以及向量的夹角公式,和三角函数值,属于基础题.8.若方程lnx+x=3的根x0∈(k,k+1),其中k∈Z,则k=2.【考点】二分法求方程的近似解.【专题】计算题;函数思想;转化法;函数的性质及应用.【分析】由题意可得可得x0是函数f(x)=lnx+x﹣3 的零点.再由f(2)f(3)<0,可得x0∈(2,3),从而求得k的值.【解答】解:令函数f(x)=lnx+x﹣3,则由x0是方程lnx+x=3的根,可得x0是函数f(x)=lnx+x﹣3 的零点.再由f(2)=ln2﹣1=ln2﹣lne<0,f(3)=ln3>0,可得f(2)f(3)<0,故x0∈(2,3),∴k=2,故答案为2.【点评】本题主要考查函数的零点的判定定理的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于中档题.9.若角α的终边经过点P(1,2),则sin2α﹣cos2α=.【考点】任意角的三角函数的定义.【专题】计算题;方程思想;定义法;三角函数的求值.【分析】由已知条件利用任意角的三角函数定义分别求出sinα,cosα,由此能求出结果.【解答】解:∵角α的终边经过点P(1,2),∴,∴sin2α﹣cos2α=()2﹣()2=.故答案为:.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意任意角三角函数的定义的合理运用.10.已知向量=(2,1),=(1,﹣2),若m=(9,﹣8)(m,n∈R),则m+n的值为7.【考点】平面向量的坐标运算.【专题】方程思想;转化法;平面向量及应用.【分析】根据平面向量的加法运算,利用向量相等列出方程组,求出m、n的值即可.【解答】解:∵向量=(2,1),=(1,﹣2),∴m=(2m+n,m﹣2n)=(9,﹣8),即,解得,∴m+n=7.故答案为:7.【点评】本题考查了平面向量的加法运算与向量相等的应用问题,也考查了解方程组的应用问题,是基础题.11.已知函数g(x)=x3+x,若g(3a﹣2)+g(a+4)>0,则实数a的取值范围是a>﹣.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据题意,由函数的解析式分析可得函数g(x)为奇函数,并且是增函数;进而将g(3a﹣2)+g(a+4)>0变形为g(3a﹣2)>﹣g(a+4)=g(﹣a﹣4),由函数的单调性可将其转化为3a﹣2>﹣a﹣4,解可得答案.【解答】解:根据题意,对于函数g(x)=x3+x,有g(﹣x)=﹣x3﹣x=﹣g(x),即函数g(x)为奇函数;而g(x)=x3+x,g′(x)=2x2+1,则g′(x)≥0恒成立,即函数g(x)为增函数;若g(3a﹣2)+g(a+4)>0,即g(3a﹣2)>﹣g(a+4)=g(﹣a﹣4),又由函数g(x)为增函数,则可以转化为3a﹣2>﹣a﹣4,解可得a>﹣;即a的取值范围是a>﹣;故答案为:a>﹣.【点评】本题考查函数的奇偶性、单调性的判定与性质的运用,关键是判断并运用函数的奇偶性与单调性.12.若函数f(x)=log a(2x2+x)(a>0,a≠1)在区间恒有f(x)>0,则f(x)的单调递增区间是.【考点】对数函数的单调性与特殊点;函数恒成立问题.【专题】计算题.【分析】本题要根据题设中所给的条件解出f(x)的底数a的值,由x∈,得2x2+x∈(0,1),至此可由恒有f(x)>0,得出底数a的取值范围,再利用复合函数单调性求出其单调区间即可.【解答】解:函数f(x)=log a(2x2+x)(a>0,a≠1)在区间恒有f(x)>0,由于x∈,得2x2+x∈(0,1),又在区间恒有f(x)>0,故有a∈(0,1)对复合函数的形式进行,结合复合函数的单调性的判断规则知,函数的单调递增区间为(﹣∞,﹣)故应填(﹣∞,﹣)【点评】本题考查用复合函数的单调性求单调区间,在本题中正确将题设中所给的条件进行正确转化得出底数的范围,解决本题的关键.13.已知函数f(x)=,若关于x的方程f2(x)+bf(x)+3b﹣2=0有4个不同的实数根,则实数b的取值范围是(﹣,6﹣2)∪[﹣2,﹣).【考点】根的存在性及根的个数判断.【专题】计算题;作图题;数形结合;分类讨论;函数的性质及应用.【分析】作函数f(x)=的图象,从而可得x2+bx+3b﹣2=0有2个不同的实数根,从而根据根的不同位置求解即可.【解答】解:作函数f(x)=的图象如下,,∵关于x的方程f2(x)+bf(x)+3b﹣2=0有4个不同的实数根,∴x2+bx+3b﹣2=0有2个不同的实数根,令g(x)=x2+bx+3b﹣2,若2个不同的实数根都在[﹣2,2)上,则,解得,﹣<b<6﹣2,若2个不同的实数根都在(3,+∞)上,则,无解;若分别在[﹣2,2),(3,+∞)上,令g(x)=x2+bx+3b﹣2,则,解得,﹣2≤b<﹣;故答案为:(﹣,6﹣2)∪[﹣2,﹣).【点评】本题考查了分段函数的应用及数形结合的思想应用.14.若方程2sin2x+sinx﹣m﹣2=0在[0,2π)上有且只有两解,则实数m的取值范围是(﹣1,1)∪{﹣}.【考点】三角函数的化简求值.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由题意可得函数y=2sin2x+sinx的图象和直线y=m+2在[0,2π)上有且只有两个交点,即函数y=2t2+t的图象和直线直线y=m+2在(﹣1,1)上有且只有一个交点,数形结合求得m的范围.【解答】解:由于方程2sin2x+sinx﹣m﹣2=0在[0,2π)上有且只有两解,故函数y=2sin2x+sinx的图象和直线y=m+2在[0,2π)上有且只有两个交点.由于sinx在(﹣1,1)上任意取一个值,在[0,2π)上都有2个x值和它对应,故令t=sinx∈[﹣1,1],则函数y=2t2+t的图象和直线直线y=m+2在(﹣1,1)上有且只有一个交点,如图所示:∵当t=﹣时,y=﹣,故1<m+2<3或m+2=﹣,求得﹣1<m<1或m=﹣,故答案为:(﹣1,1)∪{﹣}.【点评】本题主要考查正弦函数的值域,二次函数的性质,方程根的存在性以及个数判断,属于中档题.二、解答题(本大题共6小题,满分90分.解答应写出文字说明、证明过程或演算步骤.)15.已知集合A={x|0≤x≤5,x∈Z},B={x|≤2x≤4,x∈Z}.(1)用列举法表示集合A和B;(2)求A∩B和A∪B;(3)若集合C=(﹣∞,a),B∩C中仅有3个元素,求实数a的取值范围.【考点】交集及其运算;集合的表示法.【专题】计算题;集合思想;集合.【分析】(1)找出A与B中不等式的整数解,分别确定出A与B即可;(2)由A与B,求出A与B的交集,并集即可;(3)由B,C,以及B与C的交集仅有3个元素,确定出a的范围即可.【解答】解:(1)由题意得:A={x|0≤x≤5,x∈Z}={0,1,2,3,4,5},B={x|﹣1≤x≤2,x∈Z}={﹣1,0,1,2};(2)∵A={0,1,2,3,4,5},B={﹣1,0,1,2},∴A∩B={0,1,2},A∪B={﹣1,0,1,2,3,4,5};(3)∵B={﹣1,0,1,2},C=(﹣∞,a),且B∩C中仅有3个元素,∴实数a的取值范围为1<a≤2.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,),若函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,当时,函数y=f(x)取得最大值3.(1)求函数f(x)的解析式;(2)求函数f(x)的单调减区间;(3)若,求函数f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】计算题;数形结合;分析法;三角函数的求值;三角函数的图像与性质.【分析】(1)先确定A的值,函数的周期,利用周期公式可得ω的值,利用函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,﹣π<φ<π)在x=处取得最大值3,即可求得f(x)的解析式;(2)利用正弦函数的单调性求解函数的单调减区间.(3)由,可求,利用正弦函数的性质可得,从而得解.【解答】解:(1)因为当时,函数y=f(x)取得最大值3,所以A=3,…因为函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,所以,即,所以ω=2,…将点代入f(x)=3sin(2x+φ),得,因为,所以,…所以.…(2)令,k∈Z,…解得,k∈Z,所以f(x)的单调减区间是.…(结果未写出区间形式或缺少k∈Z的,此处两分不得)(3)当,,,…所以函数f(x)的值域是.…【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查函数的单调性,正确求函数的解析式是关键,属于基础题.17.设向量,,且.求:(1)tanα;(2);(3)sin2α+sinαcosα.【考点】平面向量数量积的运算;同角三角函数基本关系的运用.【专题】计算题;转化思想;三角函数的求值;平面向量及应用.【分析】解法一:(1)由a⊥b,得2cosα﹣sinα=0,即可解得tanα.(2)利用同角三角函数基本关系式转化后,由(1)即可代入得解.(3)利用同角三角函数基本关系式转化后,由(1)即可代入得解.解法二:(1)由a⊥b,得2cosα﹣sinα=0即可解得tanα.(2)由,解得sinα,cosα的值,代入即可得解.(3)由(2),代入数值得.【解答】(本题满分为14分)解:解法一:(1)由a⊥b,得2cosα﹣sinα=0,…解得tanα=2.…(2)…=.…(3)…==.…解法二:(1)由a⊥b,得2cosα﹣sinα=0,…解得tanα=2.…(2)由,解得或.…将数值代入得=3.…(3)由(2),代入数值得.…【点评】本题主要考查了同角三角函数基本关系式,平面向量数量积的运算的应用,考查了转换思想,属于基础题.18.如图,在菱形ABCD 中,AB=1,∠BAD=60°,且E 为对角线AC 上一点. (1)求•; (2)若=2,求•;(3)连结BE 并延长,交CD 于点F ,连结AF ,设=λ(0≤λ≤1).当λ为何值时,可使•最小,并求出的最小值.【考点】向量在几何中的应用.【专题】数形结合;数形结合法;平面向量及应用.【分析】(1)代入数量积公式计算;(2)用表示,代入数量积公式计算;(3)建立平面直角坐标系,用λ表示出的坐标,代入数量积公式计算,求出关于λ的函数最值.【解答】解:(1)•=AB •AD •cos ∠BAD=1×1×cos60°=.(2)∵=2,∴==(),∴•=()•=+=+×=1.(3)以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系,则A (0,0),B (1,0),D (,).C (,).∴,=(,).∵=λ,∴=(﹣λ,0),=(1﹣λ,0).∴==(,),==(,),∴•=()×()+=λ2﹣2λ=(λ﹣1)2+.∴当λ=1时,•最小,的最小值是.【点评】本题考查了平面向量的数量积运算,属于中档题.19.某民营企业生产甲乙两种产品.根据市场调查与预测,甲产品的利润P(x)与投资额x成正比,其关系如图1;乙产品的利润Q(x)与投资额x的算术平方根成正比,其关系如图2(利润与投资单位:万元).(1)试写出利润P(x)和Q(x)的函数关系式;(2)该企业已筹集到3万元资金,并全部投入甲乙两种产品的生产.问怎样分配这3万元资金,才能使企业获得最大利润,其最大利润是多少万元?【考点】函数模型的选择与应用.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)设P(x)=k1x,代入(1,0.2),能求出P(x),设,代入(4,1.2),能求出Q(x).(2)设投入乙产品x万元,则甲产品投入3﹣x万元,fiy bm 利润总和,利用换元法和配方法能求出怎样分配这3万元资金,才能使企业获得最大利润及其最大利润是多少万元.【解答】解:(1)设P(x)=k1x,代入(1,0.2),解得,所以,…设,代入(4,1.2),解得,所以.…(2)设投入乙产品x万元,则甲产品投入3﹣x万元,利润总和为,0≤x≤3,…记,则,…此时,…当,即时,g(t)取得最大值.…答:对甲乙产品分别投入0.75万元和2.25万元时,可使获利总额最大,最大获利为1.05万元.…【点评】本题考查函数解析式的求法,考查企业最大利润的求法,是中档题,解题时要认真审题,注意待定系数法、换元法的合理运用.20.已知函数f(x)=a x+a﹣x(a>0且a≠1).(1)判断函数f(x)的奇偶性;(2)设g(x)=,当x∈(0,1)时,求函数g(x)的值域;(3)若f(1)=,设h(x)=a2x+a﹣2x﹣2mf(x)的最小值为﹣7,求实数m的值.【考点】函数奇偶性的判断;函数的最值及其几何意义.【专题】数形结合;分类讨论;函数的性质及应用.【分析】(1)函数f(x)的定义域为R.计算f(﹣x)与±f(x)的关系,即可判断出.(2)x∈(0,1)时,a x>0.0<g(x)===,即可得出函数g(x)的值域.(3)f(1)==a+a﹣1,解得a=2.h(x)=(2x+2﹣x﹣m)2﹣m2﹣2,对m分类讨论,利用二次函数的单调性即可得出.【解答】解:(1)函数f(x)的定义域为R.f(﹣x)=a﹣x+a x=f(x),∴函数f(x)为偶函数.(2)x∈(0,1)时,a x>0.0<g(x)===<,∴函数g(x)的值域为.(3)f(1)==a+a﹣1,解得a=2.h(x)=a2x+a﹣2x﹣2mf(x)=22x+2﹣2x﹣2m(2x+2﹣x)=(2x+2﹣x﹣m)2﹣m2﹣2,当m≤2时,h(x)的最小值为h(0)=2﹣4m=﹣7,解得m=,舍去;当m>2时,h(x)的最小值为﹣m2,∴﹣m2﹣2=﹣7,解得m=.综上可得:m=.【点评】本题考查了函数的奇偶性、单调性、二次函数的单调性,考查了分类讨论、推理能力与计算能力,属于中档题.。
2021-2022学年江苏省徐州市高一(上)期末数学试卷【含答案】
![2021-2022学年江苏省徐州市高一(上)期末数学试卷【含答案】](https://img.taocdn.com/s3/m/2f49ec0d4a35eefdc8d376eeaeaad1f346931191.png)
20212022学年江苏省徐州市高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |﹣1<x ≤2},B ={﹣2,﹣1,0,2,4},则(∁R A )∩B =()A .∅B .{﹣1,2}C .{﹣2,4}D .{﹣2,﹣1,4}2.若幂函数y =f (x )的图象过点(4,2),则f (2)的值为()A .2B .12C .√2D .43.命题“∀x >1,x 2+1>2”的否定为()A .∃x ≤1,x 2+1≤2B .∀x >1,x 2+1≤2C .∃x >1,x 2+1≤2D .∀x ≤1,x 2+1≤2(14.已知函数f (x )={3)x ,x ≤0,则f (f (﹣3))的值为()log 3x −2,x >0A .﹣3B .﹣2C .0D .15.已知函数y =a x +4+2(a >0,且a ≠1)的图象恒过点P ,若角α的终边经过点P ,则cos α的值为(A .−435B .−2√23C .√23D .56.设m ,n 为正数,且m +n =2,则4m11n1的最小值为()A .13974B .4C .4D .957.设a =3−12,b =log12,c =tan70°,则()3A .a >c >bB .b >c >aC .c >b >aD .c >a >b)8.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为|y |=(3−3[π613x])•|sin ωx |(0≤x π17π6≤3π)(其中记[x ]为不超过x 的最大整数),且过点P (,3),若葫芦曲线上一点M 到y 轴的距离为则点M 到x 轴的距离为(),A .21√3B .2C .31√3D .3二、多项选择题:本题共4小题,每小题5分,共20分。
江苏省徐州市沛县中学2017-2018学年高一上学期第一次质量检测数学试题Word版含答案
![江苏省徐州市沛县中学2017-2018学年高一上学期第一次质量检测数学试题Word版含答案](https://img.taocdn.com/s3/m/ad29266e960590c69ec376dd.png)
2017-2018学年度沛县中学高一年级第一次质量检测数学试卷考试时间:120分钟命题人: 审核人:注意事项:1 •答题前请在答题卡上填写姓名、班级,涂好自己的考号等信息。
2•请将答案正确填写在答题卡的相应位置上,答错区域本题 0分。
一、填空题(每小题 5分,本题共70分)1. 若全集 U={ 0,1 , 2, 3,4},集合 A={ 0, 1,3} , B={0, 2, 3,4},则 C u (A - B )= ..【解析】由题意得: Ap|B 二{3,0},所以C u (A ,B ) ={1,2,4} 考点:集合的运算2. 函数f (x ) = 4-x 的定义域为x —1J 4 x4 — X 工 0[4 x【解析】要使 f (x )= ^4—x 有意义,需丿,即函数f (x ) = W — x 的定义域为X -1彳-1 式0X-1(-打)(1,4]. 考点:函数的定义域•3. 设全集u = R , A 二{x ・N |1乞x 乞10}, B 二{x ・R|x 2 • x -6=0},则下图中阴影表示【解析】由 A 二{1,2,3,4,5,6,7,8,9,10} , B 二{-3,2} A“ B 二{2} 考点:集合运算• 4•下列图象表示函数关系 y = f (x )的有 ________ .(填序号)5 .某班共有40人,其中18人喜爱篮球运动,20人喜爱乒乓球运动,12人对这两项运 动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 【解析】10人.6 .已知集合A 二-2或 x 1, B = 2a -3,a • 1 ,若A 一 B = R ,则a 的范围【解析】因为 2a 一3 ' 一2,所以o ::: a 岂1.2x 2,x _ -1X 2, —1 ex v2,若 f (x) = 3,贝y x 的值是2x, x K2填入:,3 • 考点:分段函数.&已知集合a =[0,8] , B -[0,4],则下列对应关系中不能看作从 A 到B 的映射的是 写序号)1③ f:x 「y x ④ f : x r y2【答案】④【解析】按照对应关系 f : X T y = x ,对①中某些元素(如x = 8),②中不存在元素与之对应. 9.若函数f (x)是定义在R 上的奇函数,且当x 0时,f (x) = x 2 ■ 2x —1,则当x 0时,f (x)二2【解析】f (X )二-x 2x1 考点:函数的奇偶性的概念【解析】根据函数定义,定义域内任意的一个自变量x 的值都有唯一一个 y 与之对应.7 •已知函数f(X )【解析】由已知得: f(x) = 3二丿X_ -1 x 2 =3or* or Jx _22X = 3,解得:x 「3 ;故应 •(填1 ② f : ^― y x410. 若集合A = &kx? +4x+4 =0〉中只有一个元素,则实数k的值为【解析】k=0或k =1111. 已知f(^x_1)=2x+3,且f (m)=6,则m 等于______________________ .1【解析】令t x -1,则x =2t 2 , f (t) =2(2t 2) 3 = 4t 7,令f(m) = 4m 7 = 6 , 2冲1则m = _ _ .4考点:函数的解析式.12. 设A是整数集的一个非空子集,若集合A满足:①A,k 1 A ;②对于-k・A ,都有k -2「一A,此时就称集合A具备M性质.给定S ={1,2,3,4,5,6},由S的3个元素构成的所有集合中,具备M性质的集合共有___________________ 个.【解析】【解析】符合题意的集合是:{1,2,5} , {1,2,6} , {2,3,6} , {1,4,5} , {1,5,6} , {2,5,6},共6个.13. 若函数f(x)= 4x? — mx + 5在[—2, +力)上递增,在(-°°, -2]上递减,则f (1) = ______ .【解析】依题意,知函数图像的对称轴为x = —―m = — =—2,即m=—16,从而f(x) = 4x28 8+ 16x + 5, f(1) = 4 + 16+ 5 = 25.14. 对于任意两集合A, B,定义A —B A且x送B =(A —BQ(B —A)记A —y y - 0[B =3:',则A B -—.【解析】A B 二{x | -3 _ x :: 0或x 3}三、解答题15. (本题14分)A =*2 -10x+21 兰。
江苏省徐州市高一数学上学期期末考试试题(含解析)苏教版
![江苏省徐州市高一数学上学期期末考试试题(含解析)苏教版](https://img.taocdn.com/s3/m/f544eb7bcf84b9d528ea7a89.png)
江苏省徐州市2013-2014学年高一数学上学期期末考试试题(含解析)苏教版一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题纸相应位置上................ 1. 设},3,2,1{=M },4,3,2{=N 求=N M .2. 函数)62sin(π+=x y 最小正周期为 .3. ︒150sin 的值为 .4. 设},2{},1{,<=<==x x B x x A R U 则=B A C U )( .5. 圆心角为3π弧度,半径为6的扇形的面积为 .6. 函数42-=x y 的定义域为 .7. 已知向量),3,2(),4,2(-=-=k k 若,⊥= .8. 已知函数⎩⎨⎧≤>-=,0,1,0,43)(2x x x x f ,则=))0((f f .9. 已知,31)125sin(=-︒α则)α+︒55sin(的值为 . 【答案】13【解析】试题分析:因为()()00012555180a a -++=,所以()()()00001sin 55sin 180125sin 1253a a a ⎡⎤+=--=-=⎣⎦. 考点:凑角及诱导公式.10. 已知)32(log )(22--=x x x f 的单调增区间为.11. 若函数xxk k x f 212)(⋅+-=在其定义域上为奇函数,则实数=k.12. 若存在),2[+∞∈x ,使不等式121≥⋅+xx ax成立,则实数a 的最小值为.13. 如图,在ABC ∆中,,12,==⊥AB AD 则AD AC ⋅的值为 . 【答案】2 【解析】试题分析:因为()..AC AD AB BC AD =+,.0AB AD =,所以()2..2.2.22AC AD BC AD BD AD AD AB AD AD ===-==考点:向量的数量积运算及线性运算.14. 给出下列四个命题:BADC第13题图①函数)32sin(π-=x y 的图象可以由x y 2sin =的图象向右平移6π个单位长度得到;②函数x y 23⋅=的图象可以由函数x y 2=的图象向左或向右平移得到; ③设函数x x x f sin lg )(-=的零点个数为,n 则;6=n④已知函数e e e x g m x m x m x f x ()(),3)(2()(-=++-=是自然对数的底数),如果对于任意,R x ∈总有0)(<x f 或,0)(>x g 且存在),6,(--∞∈x 使得,0)()(<x g x f 则实数m 的取值范围是)3,4(--.则其中所有正确命题的序号是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.........内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)设D C B A ,,,为平面内的四点,且).1,4(),2,2(),3,1(C B A - (1)若,=求D 点的坐标;(2)设向量,,b a ==若b ka -与b a 3+平行,求实数k 的值.16. (本题满分14分) 已知.2tan =α (1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.17. (本题满分14分)设向量b a ,满足.53,1=-==b a b a (1)求b a 3+的值;(2)求b a -3与b a 3+夹角的正弦值.18. (本题满分16分)某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件 .经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示). (1)根据图象,求一次函数b kx y +=的表达式; (2)设公司获得的毛利润(毛利润=销售总价—成本总价)为S 元. 试用销售单价x 表示毛利润,S 并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?【答案】(1)()1000500800y x x =-+≤≤;(2)当750x =时,max 62500S =,此时250y =.200第18题19. (本题满分16分)已知函数),0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象的一个最高点为),2,12(π-与之相邻的与x 轴的一个交点为).0,6(π(1) 求函数)(x f y =的解析式;(2) 求函数)(x f y =的单调减区间和函数图象的对称轴方程; (3) 用“五点法”作出函数)(x f y =在长度为一个周期区间上的图象. 【答案】(1)()22sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()122k x k Z ππ=-+∈. 【解析】⑶ 1)列表…………13分2)描点画图x3π- 12π- 6π 125π 32π 223x π+2π π23π 2πy 0 2 2- 0 2……………………………………16分考点:1.求三角函数解析式;2.三角函数的性质;3.五点作图法.20. (本题满分16分)函数)(x f 定义在区间,),,0(R y ∈+∞都有),()(x yf x f y =且)(x f 不恒为零. (1) 求)1(f 的值;(2) 若,1>>>c b a 且,2ac b =求证:2)]([)()(b f c f a f <;(3) 若,0)21(<f 求证:)(x f 在),0(+∞上是增函数.()()()()()()()log log log y x x x f ac f x yf x ac f x a c f x ====+()()()()()()()()log log log log x x a c x x a f x c f x f x f x f a f c ===+++,……………5分。
江苏省徐州市2017-2018学年高一下学期期末考试数学试题答案
![江苏省徐州市2017-2018学年高一下学期期末考试数学试题答案](https://img.taocdn.com/s3/m/1c1cb8b5daef5ef7bb0d3c13.png)
2017~2018学年度第二学期期末抽测高一数学参考答案与评分标准一、填空题1.14 2.42 3.350 4.23 5.4 6.7 7.50 8.3109.52 10.2- 11.23π 12.9 13.(,1]-∞- 14.4033 二、解答题15.(1)直线l 的斜率为3tan 30︒=,…………………………………………………1分 所以直线l 的方程为313)y x -=,即3y x =.……………………4分 (2)因为m l ⊥,所以直线m 的斜率为3- ……………………………………7分所以直线m 的方程为13(3)y x -=-340x y +-=.……………10分(3)因为n ∥l ,所以直线n 3 ………………………………………12分 所以直线n 的方程为3323)y x -=-,即330x .…………14分 16.(1)因为(,)2απ∈π,3sin 5α=,所以2234cos 1sin 1()55αα=-----,…2分 所以sin()sin cos cos sin 44αααπππ+=+ 32422()55=- ………………………………6分 (2)由(1)可知,3sin 35tan 4cos 45ααα===--, ……………………………………8分所以2232()2tan 244tan 21tan 71()4ααα⨯-===----, …………………………………11分 所以241tan 2tan 1774tan(2)244311tan 2tan 1()147αααπ-++π+===-π---⨯.……………………14分 17.(13sin sin 1sin C A A ==, …………………………………………2分 即3tan C =,…………………………………………………………………4分 因为(0,)C ∈π,所以6C π=.…………………………………………………6分 (2)由余弦定理,2222cos c a b ab C =+-,即224323cos b b b π=+-,即210b b +-=, ……………………………10分 解得51b -或51b --=, ………………………………………12分所以ABC △的面积1151153sin 3226S ab C -π-===.……14分 18.(1)当2a =-时,不等式()0f x >即2430x x ++<,即(1)(3)0x x ++<,所以31x -<<-,………………………………………3分 故不等式()0f x >的解集为(3,1)--.…………………………………………4分(2)由题意知,24620ax ax a +--≤对任意的x ∈R 恒成立,所以20,164(62)0,a a a a <⎧⎨++⎩≤ …………………………………………………6分解得10a -<≤,故a 的取值范围为[1,0)-.…………………………………8分(3)由题意知,不等式2()54f x x x a >+-即2(1)(45)460a x a x a -+-+->,即[(1)23](2)0a x a x -+-+>的解集中恰含有两个小于2-的整数.…………10分 若1a ≥,则解集中含有无数多个整数,不符合题意; 所以1a <,则3201a a -<-,且3221a a -≠--. …………………………………12分 所以不等式的解集为32(,2)1a a ---,其中所含的两个整数应为3-,4-, 所以32541a a --<--≤,…………………………………………………………14分 即32541a a --<--≤,解得1223a <≤. 综上所述,a 的取值范围为12(,]23.……………………………………………16分 19.设ADF α∠=,BDF β∠=,则tan AF DF α=,tan BF DFβ=,tan tan()θαβ=-. (1)因为100a x ==,所以100tan 1100α==,501tan 1002β==, 所以tan tan tan 1tan tan αβθαβ-=+111213112-==+⨯.…………………………………4分 (2)因为100a =,所以100tan x α=,50tan xβ=, 所以210050tan tan 50tan 100501tan tan 50001x x x x x xαβθαβ--===+++⋅………………………6分 50250002x x x x==+⋅ 当且仅当5000x x=,即50260x =时,取“=”. 答:当无人机离大楼的水平距离为502θ最大.…………………10分(3)因为200tan a x α-=,150tan a x β-=,所以2200150tan tan 501tan 2001501tan tan (200)(150)31a a x x x a a x a a x xαβθαβ----====--++--+⋅, 即22150350200150x x a a -+=-+⨯.………………………………………12分 因为50100a ≤≤,所以2500035020015015000a a -+⨯≤≤,所以2500015015000x x -+≤≤,解得50100x ≤≤, …………………14分 又因为60x ≥,所以60100x ≤≤.答:无人机D 与大楼的水平距离x 的取值范围[60,100].………………………16分20.(1)当1n =时,12112a a a S ==,又11a =,所以22a =; ………………………1分 当2n ≥时,1112n n n n n n n a a a a a S S +---=-=,即112()n n n n a a a a +-=-. 因为0n a >,所以112n n a a +--=,……………………………………………4分 所以{}n a 的奇数项成以1为首项,2为公差的等差数列,偶数项成以2为首项,2为公差的等差数列.因此当21n k =-,*k ∈N 时,211(1)221k a k k -=+-⨯=-;当2n k =,*k ∈N 时,22(1)22k a k k =+-⨯=.即数列{}n a 的通项公式为n a n =.……………………………………………6分(2)由(1)知,n a n =,所以2n n b n =⋅.则1231222322n n T n =⨯+⨯+⨯++⋅,23121222(1)22n n n T n n +=⨯+⨯++-⨯+⋅,所以23122222n n n T n +-=++++-⋅12(12)212n n n +-=-⋅-…………………8分 1(1)22n n +=--,所以1(1)22n n T n +=-+.………………………………………………………10分(3)因为6n ≥时,1(1)()32n m m n -<+,所以111(1)32n n n m m m m n ==-<+∑∑, 即121431()()()()33332n n n n n m m n n n n n n =++++++<++++∑. 而23111(1)1111112211122222212n n m n n m =-=++++==-<-∑, 所以(2)(1)43(3)(3)n a n n n n n n n n n a ++++++<+=+.所以当6n ≥时,34(2)(3)n a n n n n n a ++++=+无解.…………………14分 当1n =时,34<;当2n =时,222345+=;3n =时,33333456++=; 当4n =时,44443456+++为偶数,而47为奇数,不符合;当5n =时,5555534567++++为奇数,而58为偶数,不符合.综上可知,满足条件的n 的所有值为2,3.………………………………16分。
高一(数学)江苏省徐州市2016-2017学年高一上学期期中数学试卷 Word版含解析
![高一(数学)江苏省徐州市2016-2017学年高一上学期期中数学试卷 Word版含解析](https://img.taocdn.com/s3/m/67fa59a3fd0a79563c1e7257.png)
2016-2017学年江苏省徐州市云高一(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在答题卡的相应位置上.1.设全集A={0,1,2},B={﹣1,0,1},则A ∪B= . 2.函数f (x )=ln (﹣x +1)的定义域为 .3.函数f (x )=,则f [f (1)]的值为 .4.函数f (x )=()x +1,x ∈[﹣1,1]的值域是 . 5.已知f (2x )=6x ﹣1,则f (x )= .6.幂函数f (x )的图象过点,则f (4)= .7.函数f (x )=的单调递减区间为 .8.已知函数f (x )=x 3+ax +3,f (﹣m )=1,则f (m )= .9.已知a +a ﹣1=3,则a +a= .10.方程的实数解的个数为 .11.若函数y=x 2﹣4x 的定义域为[﹣4,a ],值域为[﹣4,32],则实数a 的取值范围为 . 12.设定义在R 上的奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )<0的解集为 .13.已知函数y=lg (ax 2﹣2x +2)的值域为R ,则实数a 的取值范围为 .14.定义在(﹣1,1)上的函数f (x )满足:f (x )﹣f (y )=f (),当x ∈(﹣1,0)时,有f (x )>0;若P=f ()+f (),Q=f (),R=f (0);则P ,Q ,R 的大小关系为 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.设集合A={x |a ﹣1≤x ≤a +1},集合B={x |﹣1≤x ≤5}. (1)若a=5,求A ∩B ;(2)若A ∪B=B ,求实数a 的取值范围. 16.计算下列各式的值(1)(2)﹣()0+0.25×()﹣4.17.已知y=f (x )(x ∈R )是偶函数,当x ≥0时,f (x )=x 2﹣2x .(1)求f(x)的解析式;(2)若不等式f(x)≥mx在1≤x≤2时都成立,求m的取值范围.18.已知销售“笔记本电脑”和“台式电脑”所得的利润分别是P(单位:万元)和Q(单位:万元),它们与进货资金t(单位:万元)的关系有经验公式P=t和Q=.某商场决定投入进货资金50万元,全部用来购入这两种电脑,那么该商场应如何分配进货资金,才能使销售电脑获得的利润y(单位:万元)最大?最大利润是多少万元?19.已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.(1)求函数f(x)的解析式;(2)令g(x)=(2﹣2m)x﹣f(x);①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;②求函数g(x)在x∈[0,2]的最小值.20.设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大值;(2)若a>2,写出函数f(x)的单调区间(不必证明);(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.2016-2017学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在答题卡的相应位置上.1.设全集A={0,1,2},B={﹣1,0,1},则A∪B={﹣1,0,1,2} .【考点】并集及其运算.【分析】直接利用并集运算得答案.【解答】解:∵A={0,1,2},B={﹣1,0,1},则A∪B={0,1,2}∪{﹣1,0,1}={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}.2.函数f(x)=ln(﹣x+1)的定义域为(﹣∞,1).【考点】函数的定义域及其求法.【分析】直接由对数的性质计算得答案.【解答】解:由﹣x+1>0,得x<1.∴函数f(x)=ln(﹣x+1)的定义域为:(﹣∞,1).故答案为:(﹣∞,1).3.函数f(x)=,则f[f(1)]的值为1.【考点】函数的值.【分析】先求出f(1)=﹣1,从而f[f(1)]=f(﹣1),由此能求出结果.【解答】解:∵函数f(x)=,∴f(1)=﹣1,f[f(1)]=f(﹣1)=(﹣1)2=1.故答案为:1.4.函数f(x)=()x+1,x∈[﹣1,1]的值域是.【考点】指数函数的定义、解析式、定义域和值域.【分析】根据x的范围确定的范围,然后求出函数的值域.【解答】解:因为x∈[﹣1,1],所以所以即f(x)∈故答案为:5.已知f(2x)=6x﹣1,则f(x)=3x﹣1.【考点】函数解析式的求解及常用方法.【分析】利用配凑法或者换元法求解该类函数的解析式,注意复合函数中的自变量与简单函数自变量之间的联系与区别.【解答】解:由f(2x)=6x﹣1,得到f(2x)=3(2x﹣)=3(2x)﹣1故f(x)=3x﹣1故答案为:3x﹣1.6.幂函数f(x)的图象过点,则f(4)=2.【考点】幂函数的概念、解析式、定义域、值域.【分析】设出幂函数的解析式,由图象过,确定出解析式,然后令x=4即可得到f(4)的值.【解答】解:设f(x)=x a,因为幂函数图象过,则有=3a,∴a=,即f(x)=x,∴f(4)=(4)=2.故答案为:2.7.函数f(x)=的单调递减区间为(﹣∞,0),(0,+∞).【考点】函数单调性的判断与证明.【分析】先求导,再令f′(x)<0,解得即可.【解答】解:∵f(x)=1+,∴f′(x)=﹣<0∵x≠0∴函数f(x)的单调递减区间为(﹣∞,0),(0,+∞),故答案为:(﹣∞,0),(0,+∞).8.已知函数f(x)=x3+ax+3,f(﹣m)=1,则f(m)=5.【考点】函数奇偶性的性质.【分析】结合函数的奇偶性,利用整体代换求出f(m)的值.【解答】解:由已知f(m)=﹣m3﹣am+3=1,所以m3+am=2.所以f(m)=m3+am+3=2+3=5.故答案为5.9.已知a+a﹣1=3,则a+a=.【考点】有理数指数幂的化简求值.【分析】利用a+a=,即可得出.【解答】解:∵a>0,∴a+a==.故答案为:.10.方程的实数解的个数为2.【考点】根的存在性及根的个数判断.【分析】将方程变为2﹣x=,方程的根即相关的两个函数的交点的横坐标,故判断方程实数解的个数的问题可以转化求两个函数y=2﹣x与y=的两个函数的交点个数的问题,至此解题方法已明.【解答】解:方程变为2﹣x=,令y=2﹣x与y=,作出两函数的图象如图,两个函数在(0,+∞)有两个交点,故方程有两个根.故应填2.11.若函数y=x2﹣4x的定义域为[﹣4,a],值域为[﹣4,32],则实数a的取值范围为2≤a≤8.【考点】二次函数在闭区间上的最值.【分析】先配方,再计算当x=2时,y=﹣4;当x=﹣4时,y=(﹣4﹣2)2﹣4=32,利用定义域为[﹣4,a],值域为[﹣4,32],即可确定实数a的取值范围.【解答】解:配方可得:y=(x﹣2)2﹣4当x=2时,y=﹣4;当x=﹣4时,y=(﹣4﹣2)2﹣4=32;∵定义域为[﹣4,a],值域为[﹣4,32],∴2≤a≤8∴实数a的取值范围为2≤a≤8故答案为:2≤a≤812.设定义在R上的奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式f(x)<0的解集为(﹣∞,﹣2)∪(0,2).【考点】函数奇偶性的性质;函数单调性的性质.【分析】利用奇函数的对称性、单调性即可得出.【解答】解:如图所示,不等式f(x)<0的解集为(﹣∞,﹣2)∪(0,2).故答案为:(﹣∞,﹣2)∪(0,2).13.已知函数y=lg(ax2﹣2x+2)的值域为R,则实数a的取值范围为(0,] .【考点】对数函数的图象与性质.【分析】本题中函数y=lg(ax2﹣2x+2)的值域为R,故内层函数ax2﹣2x+2的值域要取遍全体正实数,当a=0时不符合条件,当a>0时,可由△≥0保障内层函数的值域能取遍全体正实数.【解答】解:当a=0时不符合条件,故a=0不可取;当a>0时,△=4﹣8a≥0,解得a≤,故0<a≤,故答案为:(0,].14.定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f(),当x∈(﹣1,0)时,有f(x)>0;若P=f()+f(),Q=f(),R=f(0);则P,Q,R的大小关系为R>P>Q.【考点】抽象函数及其应用.【分析】令x=y,可求得f(0)=0,令x=0,可得f(﹣y)=﹣f(y),判断出f(x)为奇函数,当x∈(﹣1,0)时,有f(x)>0可得当x∈(0,1)时,有f(x)<0.令x=,y=,则f()﹣f()=f(),求出f()+f(),从而可将进行比较.【解答】解:∵定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f(),∴令x=y,则f(x)﹣f(x)=f(0),即f(0)=0,令x=0,则f(0)﹣f(y)=f(﹣y),即f(﹣y)=﹣f(y),∴f(x)在(﹣1,1)是奇函数,∵当x∈(﹣1,0)时,有f(x)>0,∴当x∈(0,1)时,有f(x)<0.令x=,y=,则f()﹣f()=f()=f(),∴f()+f()=f()﹣f()+f()﹣f()=f()﹣f(),∴P﹣Q=﹣f()>0,P>Q,∵P,Q<0,∴R>P>Q.故答案为:R>P>Q.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.设集合A={x|a﹣1≤x≤a+1},集合B={x|﹣1≤x≤5}.(1)若a=5,求A∩B;(2)若A∪B=B,求实数a的取值范围.【考点】并集及其运算;交集及其运算.【分析】(1)利用交集的定义求解.(2)利用并集的性质求解.【解答】解:(1)∵a=5,A={x|a﹣1≤x≤a+1}={x|4≤x≤6},集合B={x|﹣1≤x≤5}.∴A∩B={x|4≤x≤5}.(2)∵A∪B=B,∴A⊆B,∴,解得0≤a≤4.16.计算下列各式的值(1)(2)﹣()0+0.25×()﹣4.【考点】对数的运算性质;根式与分数指数幂的互化及其化简运算.【分析】(1)根据对数的运算性质计算即可,(2)根据幂的运算性质计算即可.【解答】解:(1)原式====1,(2)原式=﹣4﹣1+×()4=﹣5+2=﹣317.已知y=f(x)(x∈R)是偶函数,当x≥0时,f(x)=x2﹣2x.(1)求f(x)的解析式;(2)若不等式f(x)≥mx在1≤x≤2时都成立,求m的取值范围.【考点】二次函数的性质.【分析】(1)当x<0时,有﹣x>0,由f(x)为偶函数,求得此时f(x)=f(﹣x)的解析式,从而得到函数f(x)在R上的解析式.(2)由题意得m≤x﹣2在1≤x≤2时都成立,而在1≤x≤2时,求得(x﹣2)min=﹣1,由此可得m的取值范围.【解答】解:(1)当x<0时,有﹣x>0,∵f(x)为偶函数,∴f(x)=f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,∴f(x)=.(2)由题意得x2﹣2x≥mx在1≤x≤2时都成立,即x﹣2≥m在1≤x≤2时都成立,即m≤x﹣2在1≤x≤2时都成立.而在1≤x≤2时,(x﹣2)min=﹣1,∴m≤﹣1.18.已知销售“笔记本电脑”和“台式电脑”所得的利润分别是P(单位:万元)和Q(单位:万元),它们与进货资金t(单位:万元)的关系有经验公式P=t和Q=.某商场决定投入进货资金50万元,全部用来购入这两种电脑,那么该商场应如何分配进货资金,才能使销售电脑获得的利润y(单位:万元)最大?最大利润是多少万元?【考点】函数模型的选择与应用.【分析】设用于台式电脑的进货资金为m万元,则用于笔记本电脑的进货资金为(50﹣m)万元,那么y=P+Q,代入可得关于x的解析式,利用换元法得到二次函数f(t),再由二次函数的图象与性质,可得结论..【解答】解:设用于台式电脑的进货资金为m万元,则用于笔记本电脑的进货资金为(50﹣m)万元,…所以,销售电脑获得的利润为y=P+Q=(50﹣m)+(0≤m≤50).…令u=,则u∈[0,5],(不写u的取值范围,则扣1分)则y=﹣u2+u+=﹣(u﹣4)2+.…当u=4,即m=16时,y取得最大值为.所以当用于台式机的进货资金为16万元,用于笔记本的进货资金为34万元时,可使销售电脑的利润最大,最大为万元.…19.已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.(1)求函数f(x)的解析式;(2)令g(x)=(2﹣2m)x﹣f(x);①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;②求函数g(x)在x∈[0,2]的最小值.【考点】二次函数的性质.【分析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;②分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.【解答】解:(1)设f(x)=ax2+bx+c,∵f(2)=15,f(x+1)﹣f(x)=﹣2x+1,∴4a+2b+c=15;a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=﹣2x+1;∴2a=﹣2,a+b=1,4a+2b+c=15,解得a=﹣1,b=2,c=15,∴函数f(x)的表达式为f(x)=﹣x2+2x+15;(2)∵g(x)=(2﹣2m)x﹣f(x)=x2﹣2mx﹣15的图象是开口朝上,且以x=m为对称轴的抛物线,①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;②当m≤0时,g(x)在[0,2]上为增函数,当x=0时,函数g(x)取最小值﹣15;当0<m<2时,g(x)在[0,m]上为减函数,在[m,2]上为增函数,当x=m时,函数g (x)取最小值﹣m2﹣15;当m≥2时,g(x)在[0,2]上为减函数,当x=2时,函数g(x)取最小值﹣4m﹣11;∴函数g(x)在x∈[0,2]的最小值为20.设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大值;(2)若a>2,写出函数f(x)的单调区间(不必证明);(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.【考点】函数的最值及其几何意义;函数单调性的判断与证明;函数的图象.【分析】(1)通过图象直接得出,(2)将x分区间进行讨论,去绝对值写出解析式,求出单调区间,(3)将a分区间讨论,求出单调区间解出即可.【解答】解:(1)当a=2,x∈[0,3]时,作函数图象,可知函数f(x)在区间[0,3]上是增函数.所以f(x)在区间[0,3]上的最大值为f(3)=9.(2)①当x≥a时,.因为a>2,所以.所以f(x)在[a,+∞)上单调递增.②当x<a时,.因为a>2,所以.所以f(x)在上单调递增,在上单调递减.综上所述,函数f(x)的递增区间是和[a,+∞),递减区间是[,a].(3)①当﹣2≤a≤2时,,,11 ∴f (x )在(﹣∞,+∞)上是增函数,关于x 的方程f (x )=t ﹣f (a )不可能有三个不相等的实数解.②当2<a ≤4时,由(1)知f (x )在和[a ,+∞)上分别是增函数,在上是减函数,当且仅当时,方程f (x )=t •f (a )有三个不相等的实数解. 即. 令,g (a )在a ∈(2,4]时是增函数, 故g (a )max =5.∴实数t 的取值范围是.。
2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】
![2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】](https://img.taocdn.com/s3/m/224b856d11661ed9ad51f01dc281e53a58025191.png)
2023-2024学年江苏省徐州市高一(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .325.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥276.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+18.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤1011.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a )(b +1b )≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为212.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}三、填空题(本大题共4题,每小题5分,共20分)13.命题p :所有的质数都是奇数,则命题p 的否定是 .14.已知函数f (x )对任意实数x 都有f (x )+2f (﹣x )=2x +1,则f (x )= .15.已知函数f (x )=ax 2﹣2x +1(x ∈R )有两个零点,一个大于1另一个小于1,则实数a 的取值范围为 .16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的 倍;大约经过 天后“进步”的分别是“落后”的10倍.(参考数据:lg 101≈2.004,lg 99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2. 18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围. 19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4. (1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式; (2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.2023-2024学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}解:由已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B ={0,1}. 故选:A .2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件解:若关于x 的方程x 2+x +a =0有实数根, 则Δ=12﹣4a ≥0,解得a ≤14, 而﹣2∈(−∞,14],所以“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的充分条件, 故选:A .3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 解:y =x +1与y =|x +1|的对应关系不同,不是同一函数; y =2x ,x >0与y =2x ,x <0定义域不同,不是同一函数;y =√x 2的定义域为R ,y =(√x )2的定义域为[0,+∞)不同,不是同一函数; y =x+x 3x 2+1=x 与y =x 的定义域都为R ,对应关系相同,是同一函数. 故选:D .4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .32解:在a +2b =ab 的两边都除以ab ,整理得2a+1b=1,所以a +b =(2a +1b )(a +b)=3+ab +2ba ≥3+2√ab ⋅2ba =3+2√2,当且仅当a b=2b a时,即a =2+√2,b =√2+1时,a +b 的最小值是3+2√2.故选:B .5.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥27解:命题p :“∀x ∈(2,3),3x 2﹣a >0”,命题p 是真命题, 当∀x ∈(2,3)时, 则a <(3x 2)min <3×22, 故a <12. 故选:C .6.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}解:因为不等式ax 2+bx +c >0的解集为{x |2<x <3}, 所以2和3是方程ax 2+bx +c =0的两个实数解,且a <0; 由根与系数的关系知,{2+3=−ba 2×3=c a ,所以b =﹣5a ,c =6a ;所以不等式bx 2+ax +c <0可化为﹣5ax 2+ax +6a <0, 即5x 2﹣x ﹣6<0,解得﹣1<x <65, 所求不等式的解集为{x |﹣1<x <65}. 故选:A .7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+1解:∵a =lg 6=lg 2+lg 3,b =lg 20=1+lg 2, ∴lg 2=b ﹣1,lg 3=a ﹣lg 2=a ﹣(b ﹣1), ∴log 43=lg3lg4=lg32lg2=a−(b−1)2(b−1)=a−b+12(b−1). 故选:C .8.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)解:因为f (x )=ax +b (a >0),满足f (f (x ))=f (ax +b )=a (ax +b )+b =x +2, 所以{a 2=1ab +b =2,解得a =1,b =1或a =﹣1(舍), 故f (x )=x +1,则函数y =x −√f(x)=x −√x +1, 令t =√x +1,则t ≥0,原函数化为y =t 2﹣t ﹣1=(t −12)2−54≥−54. 故选:C .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .解:对于A ,D ,存在一个x 对应两个y 的情况,故不满足函数的定义,故排除A ,D , B ,C 均满足函数定义. 故选:AD .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤10解:当a =1,b =﹣1时,A ,B 显然错误; 若a >b >0,则b+1a+1−b a=a−b a(a+1)>0,则b+1a+1>ba,C 正确;若1≤a ﹣b ≤2,2≤a +b ≤4,则4a ﹣2b =3(a ﹣b )+a +b ∈[5,10],D 正确.故选:CD .11.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a)(b +1b)≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为2解:对于A ,ab =1,可能a =b =﹣1,此时a +b ≥2不成立,故A 不正确; 对于B ,a +b =(1a +1b )(a +b)=2+ba +ab ≥2+2√b a ⋅ab =4, 由于取等号的条件是ba =a b=1,即a =b ,与题设a >b >0矛盾,故a +b 最小值大于4,故B 不正确;对于C ,a >0,b >0,由a +1a ≥2√a ⋅1a =2,b +1b ≥2√b ⋅1b =2,两不等式相乘,得(a +1a )(b +1b)≥4,当且仅当a =1且b =1时,等号成立,故C 正确;对于D ,a >0,b >0且a +b =4,设m =a +2,n =b +2,则m >2,n >2,且m +n =8,a 2a+2+b 2b+2=(m−2)2m+(n−2)2n =m +4m−4+n +4n−4=(m +n)+4m+4n−8=4m+4n,因为4m+4n=4(m+n)mn=32mn≥32(m+n 2)2=2,当且仅当m =n =4时,即a =b =2时,等号成立,所以a 2a+2+b 2b+2的最小值为2,故D 正确.故选:CD .12.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}解:根据题意,可得(x ﹣a )⊗(x +a )>1,即(x ﹣a )[1﹣(x +a )]>1,命题p 可化为:∃x ∈R ,使得(x ﹣a )[1﹣(x +a )]>1,即:∃x ∈R ,使﹣x 2+x +a 2﹣a ﹣1>0成立.化简得:∃x∈R,使x2﹣x﹣a2+a+1<0成立,故Δ=1﹣4(﹣a2+a+1)>0,解得a<−12或a>32.综上所述,命题p成立的充要条件是a<−12或a>32,因此,命题p成立的充分不必要条件,对应的集合是{a|a<−12或a>32}的真子集,对照各个选项,可知C、D两项符合题意.故选:CD.三、填空题(本大题共4题,每小题5分,共20分)13.命题p:所有的质数都是奇数,则命题p的否定是存在某个质数不是奇数.解:命题p:所有的质数都是奇数,则命题p的否定是:存在某个质数不是奇数.故答案为:存在某个质数不是奇数.14.已知函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,则f(x)=﹣2x+13.解:因为函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,所以f(﹣x)+2f(x)=﹣2x+1,解得f(x)=﹣2x+1 3.故答案为:﹣2x+1 3.15.已知函数f(x)=ax2﹣2x+1(x∈R)有两个零点,一个大于1另一个小于1,则实数a的取值范围为(0,1).解:∵函数f(x)=ax2﹣2x+1(x∈R)有两个零点,∴a≠0,而且一个大于1另一个小于1,则{a>0f(1)=a−2+1<0或{a<0f(1)=a−2+1>0,解得:0<a<1.∴实数a的取值范围为(0,1).故答案为:(0,1).16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的832倍;大约经过125天后“进步”的分别是“落后”的10倍.(参考数据:lg101≈2.004,lg99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)解:lg 1.013650.99365lg 1.01365﹣lg 0.99365=365(lg 1.01﹣lg 0.99)=365(lg 101﹣lg 99)≈2.92,故1.013650.99365=102.92≈832,设x 天后“进步”的分别是“落后”的10倍,则1.01x 0.99x=10,即lg 1.01x0.99x =lg1.01x −lg0.99x =x(lg1.01−lg0.99)=x(lg101−lg99)=1, 解得x =1lg101−lg99≈125. 故答案为:832;125.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2.解:(1)原式=32+1+√(√5−1)2+94=32+1+√5−1+94=154+√5; (2)原式=log 3332+2lg 5﹣2+2lg 2=32+2(lg 5+lg 2)﹣2=32+2﹣2=32.18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围.解:(1)∵集合A ={x|x−3x+2<0}={x |﹣2<x <3},B ={x ||x ﹣1|>2}={x |x >3或x <﹣1}, ∴集合A ∪B ={x |x ≠3}.(2)由(1)可得A ∩B ={x |﹣2<x <﹣1},若a <0,则C ={x |x 2﹣4ax +3a 2<0}={x |(x ﹣a )(x ﹣3a )<0}={x |3a <x <a }. 由(A ∩B )⊆C ,可得{3a ≤−2a ≥−1,求得﹣1≤a ≤−23,即实数a 的取值范围为[﹣1,−23].19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 解:(1)由题意可得x 2﹣mx +3≤﹣4,即x 2﹣mx +7≤0,其解集为[2,n ], 所以x 1=2和x 2=n 是方程x 2﹣mx +7=0的两根,由韦达定理可得{2+n =m2n =7,解得n =72,m =112;(2)因为对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立, 即对于∀x ∈[12,+∞),不等式x 2﹣mx +3≥2﹣x 2恒成立, 即m ≤2x +1x 对于∀x ∈[12,+∞)恒成立, 又因为2x +1x≥2√2x ⋅1x=2√2, 当且仅当2x =1x ,即x =√22∈[12,+∞)时,等号成立,所以m ≤2√2,即实数m 的取值范围为(﹣∞,2√2].20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 解:(1)命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题,即不等式x 2﹣x >m 在R 上恒成立, 因为当x =12时,x 2﹣x 的最小值为−14,所以−14>m ,即实数m 的取值集合M =(−∞,−14); (2)若“x ∈N ”是“x ∈M ”的充分条件,则N ⊆M , 而M =(−∞,−14),N ={x |3a <x <a +4},有以下两种情况: ①若3a ≥a +4,则N =∅,符合题意,此时a ≥2; ②若N ≠∅,则a <2且a +4≤−14,解得a ≤−174. 综上所述,实数a 的取值范围是(−∞,−174]∪[2,+∞).21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.解:(1)该产品每件售价为x 元,则[8﹣(x ﹣25)×0.2](x ﹣20)≥(25﹣20)×8,解得25≤x ≤60,故产品每件售价最多为60元;(2)设下个月的总利润为W ,则W =(x −20)[8−0.45(x−25)2(x −25)]−334(x −26)=47.8−(x−254+2.25x−25) ≤47.8−2√x−254⋅2.25x−25=46.3, 当且仅当x−254= 2.25x−25,即x =28时等号成立,故当每件售价为28时,下月的月总利润最大,最大总利润为46.3.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式;(2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.解:(1)当a =2时,不等式f (x )>0的解集不能为{x |﹣3<x <1},且函数f (x )没有最大值,所以a =2不成立,即满足题意的两个条件是②③,由f (x )>0的解集为{x |﹣3<x <1},可令f (x )=a (x +3)(x ﹣1)=ax 2+2ax ﹣3a (a <0), f (x )的最大值为4,所以4a×(−3a)−(2a)24a =4,解得a =﹣1,所以f (x )=﹣x 2﹣2x +3;(2)不等式f (x )≥(m ﹣1)x 2+2可化为mx 2+2x ﹣1≤0,当m =0时,不等式等价于2x ﹣1≤0,解得x ≤12,所以不等式的解集为(−∞,12];当m >0时,对于一元二次方程mx 2+2x ﹣1=0,由于Δ=4+4m >0,方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m , 不等式的解集为[−1−√m+1m ,−1+√m+1m ]; 当m <0时,对于一元二次方程mx 2+2x ﹣1=0,Δ=4+4m ,当m <﹣1时,Δ<0,一元二次方程无实数根,所以不等式的解集为R ;当m =﹣1时,Δ=0,一元二次方程有两个相等的实数根,此时不等式的解集也为R ;当﹣1<m <0时,Δ>0,一元二次方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m,且x 1<x 2,所以不等式的解集为(−∞,−1+√m+1m ]∪[−1−√m+1m,+∞),综上,当m=0时,不等式的解集为(−∞,12 ];当m>0时,不等式的解集为[−1−√m+1m,−1+√m+1m];当m≤﹣1时,不等式的解集为R;当﹣1<m<0时,不等式的解集为(−∞,−1+√m+1m]∪[−1−√m+1m,+∞).。
江苏省徐州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析
![江苏省徐州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析](https://img.taocdn.com/s3/m/c74f632a10661ed9ad51f37b.png)
2017-2018学年江苏省徐州市高二(上)期末数学试卷(文科)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为.二、解答题:本大题共6小题,共计90分.15.已知p:4x2+12x﹣7≤0,q:a﹣3≤x≤a+3.(1)当a=0时,若p真q假,求实数x的取值范围;(2)若p是q的充分条件,求实数a的取值范围.16.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.17.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.2015-2016学年江苏省徐州市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.“∃x∈R,x2≤0”的否定为∀x∈R,x2>0.【考点】的否定.【分析】直接利用特称的否定是全称写出结果即可.【解答】解:因为特称的否定是全称,所以,“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为:=.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18.【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)=﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为2.【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为:=2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的范围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4.【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为e.【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m的取值范围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值范围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值范围.【解答】解:g′(x)=,令=0,解得x=1,∵e x>0,∴x∈(0,1)时,g′(x)>0;x∈(1,e]时,g′(x)<0,g(x)在(0,1]上单调递增,在(1,e]单调单调递减,根据极大值的定义知:g(x)极大值是g(1)=1,又g(0)=0,g(e)=,所以g(x)的值域是(0,1].函数f(x)=a(x﹣1)2﹣lnx,x>0,f′(x)=2ax﹣2a﹣=,令h(x)=2ax2﹣2ax﹣1,h(x)恒过(0,﹣1),当a=0时,f′(x)<0,f(x)是减函数,不满足题意.h(x)=0,可得2ax2﹣2ax﹣1=0,△=4a2+8a,△>0解得a<﹣2或a>0.当﹣2<a<0时,h(x)的对称轴为:x=,h(x)<0恒成立,f′(x)<0,f(x)是减函数,不满足题意.当a<﹣2时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,x∈,f′(x)<0,f(x)是减函数,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).可知f (x )极大值≥1,f (x )极小值≤0.可得,,∵f (x )=a (x ﹣1)2﹣lnx ,,不等式不成立.当a >0时,x ∈(0,),h (x )<0恒成立,f ′(x )<0,f (x )是减函数,x ∈,f ′(x )>0,f (x )是增函数,因为x=1时,f (1)=0,只需f (e )≥1.可得:a (e ﹣1)2﹣1≥1,解得a ≥.综上:实数a 的取值范围为:a ≥.二、解答题:本大题共6小题,共计90分. 15.已知p :4x 2+12x ﹣7≤0,q :a ﹣3≤x ≤a+3.(1)当a=0时,若p 真q 假,求实数x 的取值范围; (2)若p 是q 的充分条件,求实数a 的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合的真假.【分析】(1)将a=0代入q,求出x的范围即可;(2)根据集合的包含关系得到关于a的不等式组,解出即可.【解答】解:由4x2+12x﹣7≤0,解得:﹣≤x≤,q:a﹣3≤x≤a+3.(1)当a=0时,q:﹣3≤x≤3,若p真q假,则﹣≤x<﹣3;(2)若p是q的充分条件,则,解得:﹣≤x≤﹣,(“=”不同时取到).16.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.17.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,求实数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,求实数a的值;(3)点与圆的位置关系即可求出a的取值范围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值范围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.2016年7月21日。
江苏省徐州市沛县中学2017-2018学年高一上学期第一次质量检测数学试题 含答案 精品
![江苏省徐州市沛县中学2017-2018学年高一上学期第一次质量检测数学试题 含答案 精品](https://img.taocdn.com/s3/m/8ac39d6e2b160b4e767fcfba.png)
2017-2018学年度沛县中学高一年级第一次质量检测数学试卷考试时间:120分钟 命题人: 审核人:注意事项:1.答题前请在答题卡上填写姓名、班级,涂好自己的考号等信息。
2.请将答案正确填写在答题卡的相应位置上,答错区域本题0分。
一、填空题(每小题5分,本题共70分)1.若全集U={0,1,2,3,4},集合A={0,1,3},B={0,2,3,4},则)(B A C U ⋂= .. 【解析】由题意得: {3,0}A B =,所以(){1,2,4}U C A B ⋂=考点:集合的运算2.函数()f x =的定义域为 .【解析】要使()f x =有意义,需⎩⎨⎧≠-≥-0104x x ,即函数()f x =的定义域为]4,1()1,( -∞.考点:函数的定义域.3.设全集U R =,2{|110},{|60}A x N x B x R x x =∈≤≤=∈+-=,则下图中阴影表示的集合为 .【解析】由{1,2,3,4,5,6,7,8,9,10}A =,{3,2}B =-{2}A B =考点:集合运算.4.下列图象表示函数关系()y f x =的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x 的值都有唯一一个y 与之对应. 5.某班共有40人,其中18人喜爱篮球运动,20人喜爱乒乓球运动, 12人对这两项运 动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 . 【解析】10人.6.已知集合{}12>-≤=x x x A 或,()1,32+-=a a B ,若R B A =⋃,则a 的范围是 . 【解析】因为23211a a -≤-⎧⎨+>⎩,所以102a <≤.7.已知函数()f x =22,1,122,2x x x x x x +≤-⎧⎪-<<⎨⎪≥⎩,若()f x =3,则x 的值是 .【解析】由已知得:f(x)=3⎩⎨⎧=≥⎩⎨⎧=<<-⎩⎨⎧=+-≤⇔3223213212x x or x x or x x ,解得:3=x ;故应填入:3. 考点:分段函数.8.已知集合[0,8]a =,[0,4]B =,则下列对应关系中不能看作从A 到B 的映射的是____.(填写序号) ①1:8f x y x →= ②1:4f x y x →= ③1:2f x y x →= ④:f x y x →= 【答案】④【解析】按照对应关系f :x→y=x ,对①中某些元素(如x =8),②中不存在元素与之对应. 9.若函数()f x 是定义在R 上的奇函数,且当0x >时,2()21f x x x =+-,则当0x <时,()f x =__________. 【解析】2()21f x x x =-++考点:函数的奇偶性的概念10.若集合{}0442=++=x kx x A 中只有一个元素,则实数k 的值为 .【解析】01k k ==或11.已知32)121(+=-x x f ,且6)(=m f ,则m 等于_____________. 【解析】令121-=x t ,则22+=t x ,743)22(2)(+=++=t t t f ,令674)(=+=m m f ,则41-=m . 考点:函数的解析式.12.设A 是整数集的一个非空子集,若集合A 满足:①,1k A k A ∃∈+∈;②对于k A ∀∈,都有2k A -∉,此时就称集合A 具备M 性质.给定{1,2,3,4,5,6}S =,由S 的3个元素构成的所有集合中,具备M 性质的集合共有________个. 【解析】【解析】符合题意的集合是:{1,2,5},{1,2,6},{2,3,6},{1,4,5},{1,5,6},{2,5,6},共6个.13.若函数2()45f x x mx =-+在[2,)-+∞上递增,在(,2]-∞-上递减,则(1)f =________. 【解析】依题意,知函数图像的对称轴为x =-8m -=8m=-2,即 m =-16,从而f(x)=4x 2+16x +5,f(1)=4+16+5=25.14.对于任意两集合A ,B ,定义{}()()A B B A B A B x A x x B A -⋃-=*∉∈=-,且 记{}{}33,0≤≤-=≥=x x B y y A ,则=*B A . 【解析】{|303}A B x x x *=-≤<>或 三、解答题 15.(本题14分){}021102≤+-=x x x A ,{}无解的方程关于0532=-+-=m mx x x m B求⑴B A ⋃ ⑵B A C R ⋂)(.【解析】(1)由A 中不等式变形得:(3)(7)0x x --≤, 计算得出:37x ≤≤,即[3,7]A =;由B 中方程无解,得到24(35)0m m ∆=--<,即(2)(10)0m m --<, 计算得出:210m <<,即(2,10)B =, 则(2,10)A B =;(2)全集为R, [3,7]A =,(2,10)B =,∴(,3)(7,)R A =-∞+∞ð,则()(2,3)(7,10)R A B =ð16.(本题14分)定义在(1,1)-上的减函数()f x 的图象关于原点对称,且2(1)(1)0f a f a -+-<,求实数a 的取值范围. 【解析】()f x 是奇函数,22(1)(1)f a f a ∴--=-又由题意2(1)(1)0f a f a -+-< 可化为2(1)(1)f a f a -<--, 即2(1)(1)f a f a -<-,()f x 是定义在(1,1)-上的单调减函数,2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,解此不等式组, 得01a <<, a ∴的取值范围为01a <<.考点:奇偶性与单调性的综合.17.已知集合{|25},{|121}A x x B x m x m =-≤≤=+≤≤- (1)若AB A =,求实数m 的取值范围;(2)当x Z ∈时,求A 的非空真子集的个数;【解析】解:(1)因为A ∪B =A ,所以B ⊆A ,当B =∅时,m +1>2m -1,则m<2;当B≠∅时,根据题意作出如图所示的数轴,可得21112215m m m m -≥+⎧⎪+≥-⎨⎪-≤⎩,解得2≤m≤3.综上可得,实数m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={x|-2≤x≤5}={-2,-1,0,1,2,3,4,5},共有8个元素,所以A 的非空真子集的个数为28-2=254.18.设不等式452-≤x x 的解集为A . (1)求集合A ;(2)设关于x 的不等式02)2(2≤++-a x a x 的解集为M ,若A M ⊆,求实数a 的取值范围.【解析】(1)原不等式即为x 2-5x+4=(x-1)(x-4)≤0,所以1≤x ≤4, 所以不等式的解集A={x|1≤x ≤4}. (2)原不等式等价于0)2)((≤--x a x若2<a ,则]2,[a M =,要A M ⊆,只需21<≤a 若2>a ,则],2[a M =,要A M ⊆,只需42≤<a 若2=a ,则}2{=M ,符合A M ⊆ 综上所述,a 的取值范围为]4,1[.考点:一元二次不等式的解法;集合中的参数取值问题;集合包含关系的判断.19.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600无后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需要各种开支2 000元. (1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?【解析】:设该店月利润余额为L ,则由题设得L=Q (P-14)×100-3600-2000, ① 由销量图易得Q =⎪⎩⎪⎨⎧+-+4023502-P P ),2620(),2014(≤≤≤P P <代入①式得L=⎪⎩⎪⎨⎧-⨯-+--⨯-+5600100)14)(4023(5600100)14(502-P P P P )( ),2620(),2014(≤≤≤P P < (1)当2014≤≤P 时,max L =450元,此时5.19=P 元,当20<P ≤26时,L max =31250元,此时P=361元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省徐州市高一(上)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.函数y=3tan(2x+)的最小正周期为.3.已知点A(﹣1,2),B(1,3),则向量的坐标为.4.若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.5.cos240°的值等于.6.函数f(x)=的定义域是.7.已知向量,满足||=2,||=,与的夹角为,则||=.8.若偶函数f(x)满足f(x+π)=f(x),且f(﹣)=,则f()的值为.9.设函数f(x)=则f(log214)+f(﹣4)的值为.10.已知a>0且a≠1,函数f(x)=4+log a(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.11.将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f()的值为.12.平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则=.13.设函数f(x)=,若函数f(x)恰有2个零点,则实数a的取值范围是.14.已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为.二、解答题(共6小题,满分90分)15.(14分)已知集合A=[0,3),B=[a,a+2).(1)若a=﹣1,求A∪B;(2)若A∩B=B,求实数a的取值范围.16.(14分)已知向量=(cosα,sinα),=(﹣2,2).(1)若=,求(sinα+cosα)2的值;(2)若,求sin(π﹣α)•sin()的值.17.(14分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.18.(16分)已知向量=(m,﹣1),=()(1)若m=﹣,求与的夹角θ;(2)设.①求实数m的值;②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.19.(16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(16分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的置于为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)2016-2017学年江苏省徐州市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【考点】交集及其运算.【分析】利用交集的性质求解.【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.【点评】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.2.函数y=3tan(2x+)的最小正周期为.【考点】三角函数的周期性及其求法.【分析】根据正切函数的周期公式进行求解即可.【解答】解:由正切函数的周期公式得T=,故答案为:【点评】本题主要考查三角函数的周期的计算,根据条件结合正切函数的周期公式是解决本题的关键.3.已知点A(﹣1,2),B(1,3),则向量的坐标为(2,1).【考点】平面向量的坐标运算.【分析】根据平面向量的坐标表示,即可写出向量的坐标.【解答】解:点A(﹣1,2),B(1,3),则向量=(1﹣(﹣1),3﹣2)=(2,1).故答案为:(2,1).【点评】本题考查了平面向量的坐标表示与应用问题,是基础题目.4.若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.【考点】指数函数的图象与性质.【分析】先根据指数函数过点(3,8)求出a的值,再代入计算即可.【解答】解:指数函数f(x)=a x(a>0且a≠1)的图象经过点(3,8),∴8=a3,解得a=2,∴f(x)=2x,∴f(﹣1)=2﹣1=,故答案为:.【点评】本题考查了指数函数的图象和性质,属于基础题.5.cos240°的值等于﹣.【考点】运用诱导公式化简求值.【分析】将240°表示成180°+60°,再由诱导公式化简,再由特殊角的三角函数值求值.【解答】解:由题意得,cos240°=cos(180°+60°)=﹣cos60°=﹣.故答案为:﹣.【点评】本题考查了诱导公式的应用,熟记口诀:奇变偶不变,符号看象限,并会运用,注意三角函数值的符号,属于基础题.6.函数f(x)=的定义域是[e,+∞).【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,求解对数不等式得答案.【解答】解:要使原函数有意义,则﹣1+lnx≥0,即lnx≥1,解得x≥e.∴函数f (x )=的定义域是[e ,+∞).故答案为:[e ,+∞).【点评】本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.7.已知向量,满足||=2,||=,与的夹角为,则||=.【考点】平面向量数量积的运算.【分析】利用两个向量的数量积的定义,根据||==,计算求的结果. 【解答】解:由题意可得||====,故答案为:.【点评】本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.8.若偶函数f (x )满足f (x +π)=f (x ),且f (﹣)=,则f ()的值为.【考点】函数奇偶性的性质.【分析】根据偶函数f (x )满足f (x +π)=f (x ),可知函数的周期T=π,则f ()=f ()即可得答案.【解答】解:由题意,f (x +π)=f (x ),可知函数的周期T=π,则f ()=f ()∵f (﹣)=,f (x )是偶函数.∴f ()=即f ()的值为.故答案为:.【点评】本题考查了函数的周期性的运用和计算,比较基础.9.设函数f(x)=则f(log214)+f(﹣4)的值为6.【考点】分段函数的应用;函数的值.【分析】由已知中函数f(x)=,将x=log214和x=﹣4代入计算可得答案.【解答】解:∵函数f(x)=,∴f(log214)=7,f(﹣4)=﹣1,∴f(log214)+f(﹣4)=6,故答案为:6.【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.10.已知a>0且a≠1,函数f(x)=4+log a(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.【考点】对数函数的图象与性质.【分析】根据函数f(x)恒过定点P,求出P点的坐标,利用cosα的定义求值即可.【解答】解:函数f(x)=4+log a(x+4)的图象恒过定点P,即x+4=1,解得:x=﹣3,则y=4故P的坐标为(﹣3,4),角α的终边经过点P,则cosα=.故答案为:.【点评】本题考查考查了对数函数的恒过点坐标的求法和余弦的定义.属于基础题.11.将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f()的值为1.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意可得到函数g(x)=sinω(x﹣),对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=﹣,由此求得ω的值,可得f(x)的解析式,从而求得f()的值.【解答】解:将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)=sinω(x﹣)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则﹣=,∴T==π,∴ω=2,f(x)=sin2x,则f()=sin=1,故答案为:1.【点评】本题主要考查了三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答,属于中档题.12.平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则=9.【考点】平面向量数量积的运算.【分析】用,表示出,,在进行计算.【解答】解:∵=3,=2,∴,,==.∴==,==﹣.∴=()•(﹣)=﹣=36﹣=9.故答案为:9.【点评】本题考查了平面向量的数量积运算,属于中档题.13.设函数f(x)=,若函数f(x)恰有2个零点,则实数a的取值范围是1≤a<2,或a≥4.【考点】函数零点的判定定理.【分析】分段函数求解得出2x﹣a=0,x2﹣3ax+2a2=(x﹣a)(x﹣2a),分类分别判断零点,总结出答案.【解答】解:∵y=2x,x<2,0<2x<4,∴0<a<4时,2x﹣a=0,有一个解,a≤0或a≥4,2x﹣a=0无解∵x2﹣3ax+2a2=(x﹣a)(x﹣2a),∴当a∈(0,1)时,方程x2﹣3ax+2a2=0在[1,+∞)上无解;当a∈[1,2)时,方程x2﹣3ax+2a2=0在[1,+∞)上有且仅有一个解;当a∈[2,+∞)时,方程x2﹣3ax+2a2=0在x∈[1,+∞)上有且仅有两个解;综上所述,函数f(x)恰有2个零点,1≤a<2,或a≥4故答案为:1≤a<2,或a≥4【点评】本题考查了分段函数的性质的应用及分类讨论的思想应用,把问题分解研究的问题,拆开来研究,从多种角度研究问题,分析问题的能力.14.已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为{﹣4,24} .【考点】函数恒成立问题.【分析】对n分类讨论,当n≤0 时,由(mx+5)(x2﹣n)≤0得到mx+5≤0,由一次函数的图象知不存在;当n>0 时,由(mx+5)(x2﹣n)≤0,利用数学结合的思想得出m,n的整数解,进而得到所求和.【解答】解:当n≤0 时,由(mx+5)(x2﹣n)≤0,得到mx+5≤0 在x∈(0,+∞)上恒成立,则m不存在;当n>0 时,由(mx+5)(x2﹣n)≤0,可设f(x)=mx+5,g(x)=x2﹣n,那么由题意可知:,再由m,n是整数得到或,因此m+n=24或﹣4.故答案为:{﹣4,24}.【点评】本题考查不等式恒成立等知识,考查考生分类讨论思想、转化与化归思想及运算求解能力,属于较难题,根据一元一次函数和一元二次函数的图象和性质,得到两个函数的零点相同是解决本题的关键.二、解答题(共6小题,满分90分)15.(14分)(2016秋•徐州期末)已知集合A=[0,3),B=[a,a+2).(1)若a=﹣1,求A∪B;(2)若A∩B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)吧a的值代入确定出B,求出A与B的并集即可;(2)由A与B的交集为B,得到B为A的子集,确定出a的范围即可.【解答】解:(1)∵A=[0,3),B=[a,a+2)=[﹣1,1),∴A ∪B=[﹣1,3); (2)∵A ∩B=B ,∴B ⊆A , ∴,解得:0≤a ≤1.【点评】此题考查了集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.16.(14分)(2016秋•徐州期末)已知向量=(cosα,sinα),=(﹣2,2).(1)若=,求(sinα+cosα)2的值;(2)若,求sin (π﹣α)•sin ()的值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)利用数量积运算、同角三角函数基本关系式可求2sinαcosα的值,即可得解.(2)根据平面向量的共线定理,同角三角函数基本关系式可求sinαcosα,进而利用诱导公式化简所求即可得解. 【解答】(本题满分为14分)解:(1)∵向量=(cosα,sinα),=(﹣2,2).=2sinα﹣2cosα=,∴解得:sinα﹣cosα=,两边平方,可得:1﹣2sinαcosα=,解得:2sinαcosα=﹣,∴(sinα+co sα)2=1+2sinαcosα=1﹣=.(2)∵,∴2cosα+2sinα=0,解得:cosα+sinα=0,∴两边平方可得:1+2sinαcosα=0,解得:sinαcosα=﹣,∴sin (π﹣α)•sin ()=sinα•cosα=﹣.【点评】本题考查了数量积运算、平面向量的共线定理,同角三角函数基本关系式的综合应用,考查了计算能力和转化思想,属于基础题.17.(14分)(2016秋•徐州期末)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.【考点】函数y=Asin(ωx+φ)的图象变换;五点法作函数y=Asin(ωx+φ)的图象.【分析】(1)由表中数据列关于ω、φ的二元一次方程组,求得A、ω、φ的值,得到函数解析式,进一步完成数据补充.(2)根据函数y=Asin(ωx+φ)的图象变换规律可求g(x),利用正弦函数的性质可求其值域.(3)由(1)及函数y=Asin(ωx+φ)的图象变换规律得g(x),令2x+2θ+=kπ,解得x=﹣θ,k∈Z.令:﹣θ=,结合θ>0即可解得θ的最小值.【解答】解:(1)根据表中已知数据,解得A=3,ω=2,φ=,数据补全如下表:函数表达式为f(x)=3sin(2x+).(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到图象对于的函数解析式为:g(x)=3sin(x+).由x∈[﹣,],可得:x+∈[﹣,],可得:sin(x+)∈[﹣,1],可得:函数g(x)=3sin(x+)∈[﹣,3].(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若h(x)图象的一个对称中心为(),由(Ⅰ)知f(x)=3sin(2x+),得g(x)=3sin(2x+2θ+).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ+=kπ,解得x=﹣θ,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令:﹣θ=,解得θ=﹣,k∈Z.由θ>0可知,当k=1时,θ取得最小值.【点评】本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,函数y=Asin (ωx+φ)的图象变换规律的应用,考查了正弦函数的图象和性质的应用,其中关键是要根据图象分析出函数的最值,周期等,进而求出A,ω和φ值,属于中档题.18.(16分)(2016秋•徐州期末)已知向量=(m,﹣1),=()(1)若m=﹣,求与的夹角θ;(2)设.①求实数m的值;②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.【考点】平面向量数量积的运算.【分析】(1)由条件利用两个向量的数量积的定义求得cosθ=的值,可得θ的值.(2)①利用两个向量垂直的性质,求得m的值.②根据[+(t2﹣3)]•(﹣k+t)=0,求得4k=t(t2﹣3),从而求得=,再利用二次函数的性质求得它的最小值.【解答】解:(1)向量=(m,﹣1),=(),若m=﹣,与的夹角θ,则有cosθ===﹣,∴θ=.(2)①设,则=﹣=0,∴m=.②由①可得,=(,﹣1),=﹣=0,若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),故有[+(t2﹣3)]•(﹣k+t)=0,∴﹣k+[﹣k(t2﹣3)+t] +t(t2﹣3)=﹣k•4+0+t(t2﹣3)=0,∴4k=t (t2﹣3),∴=+t==≥﹣,当且仅当t=﹣2时,取等号,故的最小值为﹣.【点评】本题主要考查两个向量的数量积的运算,两个向量垂直的性质,二次函数的性质应用,属于中档题.19.(16分)(2016秋•徐州期末)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.【考点】分段函数的应用.【分析】(1)由题意知:x≥0,令5x=5,得x=1;令3x=5,得x=.将x取值范围分三段,求对应函数解析式可得答案.(2)在分段函数各定义域上讨论函数值对应的x的值【解答】解:(1)由题意知,x≥0,令5x=5,得x=1;令3x=5,得x=.则当0≤x≤1时,y=(5x+3x)×2.6=20.8x当1<x≤时,y=5×2.6+(5x﹣5)×4+3x×2.6=27.8x﹣7,当x>时,y=(5+5)×2.6+(5x+3x﹣5﹣5)×4=32x﹣14;即得y=(2)由于y=f(x)在各段区间上均单增,当x∈[0,1]时,y≤f(1)=20.8<34.7;当x∈(1,]时,y≤f()≈39.3>34.7;令27.8x﹣7=34.7,得x=1.5,所以甲户用水量为5x=7.5吨,付费S1=5×2.6+2.5×4=23元乙户用水量为3x=4.5吨,付费S2=4.5×2.6=11.7元【点评】本题是分段函数的简单应用题,关键是列出函数解析式,找对自变量的分段区间.20.(16分)(2016秋•徐州期末)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x ﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的置于为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的对称轴,得到函数的单调性,解关于a的不等式组,解出即可;(2)只需函数y=f(x)的值域是函数y=g(x)的值域的子集,通过讨论m=0,m>0,m<0的情况,得到函数的单调性,从而确定m的范围即可;(3)通过讨论t的范围,结合函数的单调性以及f(2),f(﹣2)的值,得到关于t的方程,解出即可.【解答】解:(1)由题意得:f(x)的对称轴是x=﹣2,故f(x)在区间[﹣1,1]递增,∵函数在区间[﹣1,1]存在零点,故有,即,解得:0≤a≤8,故所求实数a的范围是[0,8];(2)若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,只需函数y=f(x)的值域是函数y=g(x)的值域的子集,a=0时,f(x)=x2+4x﹣5,x∈[1,2]的值域是[0,7],下面求g(x),x∈[1,2]的值域,令t=4x﹣1,则t∈[1,4],y=mt﹣2m+7,①m=0时,g(x)=7是常数,不合题意,舍去;②m>0时,g(x)的值域是[7﹣m,2m+7],要使[0,7]⊆[7﹣m,2m+7],只需,解得:m≥7;③m<0时,g(x)的值域是[2m+7,7﹣m],要使[0,7]⊆[2m+7,7﹣m],只需,解得:m≤﹣,综上,m的范围是(﹣∞,﹣]∪[7,+∞);(3)由题意得,解得:t<,①t≤﹣6时,在区间[t,2]上,f(t)最大,f(﹣2)最小,∴f(t)﹣f(﹣2)=t2+4t+4=6﹣4t,即t2+8t﹣2=0,解得:t=﹣4﹣3或t=﹣4+3(舍去);②﹣6<t≤﹣2时,在区间[t,2]上,f(2)最大,f(﹣2)最小,∴f(2)﹣f(﹣2)=16=6﹣4t,解得:t=﹣;③﹣2<t<时,在区间[t,2]上,f(2)最大,f(t)最小,∴f(2)﹣f(t)=﹣t2﹣4t+12=6﹣4t,即t2=6,解得:t=或t=﹣,故此时不存在常数t满足题意,综上,存在常数t满足题意,t=﹣4﹣3或t=﹣.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,集合思想,是一道综合题.。