极坐标系练习题
极坐标方程大题练习题
极坐标方程大题练习题一、基本概念与性质1. 将直角坐标系下的点 (3, 4) 转换为极坐标系下的坐标。
2. 已知极坐标方程ρ = 4sinθ,求对应的直角坐标方程。
3. 判断下列极坐标方程是否表示圆:(1) ρ = 6cosθ(2) ρ = 3 + 2sinθ4. 已知极坐标方程ρ = 2cosθ,求极点与极轴之间的夹角。
二、极坐标方程的求解5. 求极坐标方程ρ = 4cosθ 与ρ = 2sinθ 的交点坐标。
6. 已知极坐标方程ρ = 3sinθ,求当θ =π/3 时的点坐标。
7. 解极坐标方程ρ = 5 3cosθ,求出所有可能的ρ 值。
8. 已知极坐标方程ρ = 4 2sinθ,求该曲线与极轴的交点坐标。
三、极坐标方程的应用9. 在极坐标系中,求直线ρcosθ = 3 与圆ρ = 4sinθ 的交点坐标。
10. 已知点 A 在极坐标方程ρ = 6sinθ 上,点 B 在极坐标方程ρ = 4cosθ 上,求线段 AB 的长度。
11. 在极坐标系中,求曲线ρ = 2 + 3sinθ 与极轴围成的面积。
12. 已知极坐标方程ρ = 5cosθ,求该曲线所围成的图形的面积。
四、综合题13. 在极坐标系中,求曲线ρ = 4sinθ 与直线θ = π/4 所围成的图形的面积。
14. 已知极坐标方程ρ = 2cosθ,求该曲线关于极轴的对称曲线方程。
15. 在极坐标系中,求曲线ρ = 3 + 2sinθ 与极轴之间的夹角。
16. 已知极坐标方程ρ = 4cosθ,求该曲线关于原点的对称曲线方程。
17. 在极坐标系中,求曲线ρ = 6sinθ 与直线ρcosθ = 3的交点坐标,并判断这些交点是否在第一象限。
18. 已知极坐标方程ρ = 5 4sinθ,求该曲线与极轴的交点坐标,并计算这些交点与极点之间的距离。
五、极坐标方程的变换与简化19. 将极坐标方程ρ = 8cosθ 转换为直角坐标系下的方程,并简化。
《极坐标系》经典练习题
《极坐标系》经典练习题极坐标系经典练题极坐标系是一种用极径和极角来确定平面上点位置的坐标系。
它在数学和物理学中得到广泛应用。
下面是一些经典的练题,帮助你巩固对极坐标系的理解和运用。
1. 极坐标与直角坐标的转换给定一个点的极坐标形式为 $(r, \theta)$,将其转换为直角坐标形式。
- 练题1:$(5, \pi/4)$- 练题2:$(2, 3\pi/2)$- 练题3:$(3, 7\pi/6)$2. 点的极坐标表示给定一个点的直角坐标形式$(x, y)$,将其转换为极坐标形式。
- 练题1:$(3, 4)$- 练题2:$(0, -2)$- 练题3:$(-1, 1)$3. 极坐标系下的点间距离计算两个点在极坐标系下的距离。
- 练题1:点A的极坐标形式为 $(3, 2\pi/3)$,点B的极坐标形式为 $(7, 7\pi/6)$,计算AB之间的距离。
- 练题2:点C的极坐标形式为 $(2, \pi/4)$,点D的极坐标形式为 $(5, 3\pi/2)$,计算CD之间的距离。
4. 极坐标系下的点旋转将给定点绕坐标原点逆时针旋转一定角度。
- 练题1:点P的极坐标形式为 $(2, \pi/3)$,将点P绕坐标原点逆时针旋转 $-\pi/6$ 弧度,求旋转后点的极坐标形式。
- 练题2:点Q的极坐标形式为 $(4, -2\pi/3)$,将点Q绕坐标原点逆时针旋转 $\pi/4$ 弧度,求旋转后点的极坐标形式。
以上是极坐标系的经典练习题,通过解答这些题目,你可以加深对极坐标系的理解,并提升对极坐标转换、点距离和点旋转的运算能力。
祝你成功!。
极坐标系训练
极坐标系训练一、选择题(每小题5分,共30分)1.极坐标⎝ ⎛⎭⎪⎪⎫1,2π3对应的点在以极点为坐标原点,极轴为横轴的直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知点A ,B 的极坐标分别为⎝⎛⎭⎪⎪⎫3,π3和⎝⎛⎭⎪⎪⎫23,π6,则A 和B 之间的距离为( )A. 3 B .2 3 C .3 D .13.点P ⎝⎛⎭⎪⎪⎫1,π4关于极点O 对称的点的一个极坐标是( )A.⎝ ⎛⎭⎪⎪⎫1,3π4B.⎝ ⎛⎭⎪⎪⎫1,5π4C.⎝ ⎛⎭⎪⎪⎫1,7π4D.⎝⎛⎭⎪⎪⎫1,-7π4 4.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( )A .关于极轴所在直线对称B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合 5.已知点M 的极坐标是⎝⎛⎭⎪⎪⎫-2,-π6,它关于直线θ=π2的对称点坐标是( )A.⎝ ⎛⎭⎪⎪⎫2,11π6B.⎝ ⎛⎭⎪⎪⎫-2,7π6C.⎝ ⎛⎭⎪⎪⎫2,-π6D.⎝ ⎛⎭⎪⎪⎫-2,-11π6 6.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D的极坐标为⎝⎛⎭⎪⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42) 二、填空题(每小题5分,共15分)7.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________. 8.已知极坐标系中,极点为O,0≤θ<2π,M ⎝⎛⎭⎪⎪⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.9.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________. 三、解答题(每小题满分10分,共30分) 10.在极轴上求与点A ⎝⎛⎭⎪⎪⎫42,π4的距离为5的点M 的坐标.11.(1)已知点的极坐标分别为A ⎝ ⎛⎭⎪⎪⎫5,π3,B ⎝⎛⎭⎪⎪⎫1,2π3, C ⎝ ⎛⎭⎪⎪⎫2,-3π4,D ⎝⎛⎭⎪⎪⎫4,11π6,求它们的直角坐标; (2)已知点的直角坐标分别为A(3,3),B ⎝⎛⎭⎪⎪⎫0,-53,C(-1,-3),求它们的极坐标(ρ≥0,0≤θ<2π).12.△ABC 的顶点的极坐标为A ⎝ ⎛⎭⎪⎪⎫4,4π3、B ⎝ ⎛⎭⎪⎪⎫6,5π6、C ⎝⎛⎭⎪⎪⎫8,7π6. (1)判断△ABC 的形状; (2)求△ABC 的面积.。
2020年高中数学理科选修4-4极坐标系习题(附答案)
高中数学理科选修4-4极坐标系习题(附答案)一、单项选择及填空1、在直角坐标系xOy 中,点A (﹣2,2).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为( )A . B.(2) C . D . 2、在极坐标系中,圆心坐标是),(πa (0>a ),半径为a 的圆的极坐标方程是( )A.θρcos 2a -=(232πθπ<≤) B.θρcos a =(πθ<≤0) C.θρsin 2a -=(232πθπ<≤) D.θρsin a =(πθ<≤0) 3、极坐标系中,圆上的点1=ρ到直线2sin cos =+θρθρ的距离最大值为 ( ) A.2 B. 12+ C. 12- D. 224、在极坐标系中,点)3,4(πM 到曲线2)3cos(=-πθρ上的点的距离的最小值为( )A.2B.4C.6D.85、欲将曲线22143x y +=变换成曲线221x y ''+=,需经过的伸缩变换ϕ为( ) A .2x x y '=⎧⎪⎨'=⎪⎩ B.12x x y ⎧'=⎪⎪⎨⎪'⎪⎩ C.43x x y y '=⎧⎨'=⎩ D.1413x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩6、在极坐标系中,直线02)sin (cos =+-θθρ被曲线C :2=ρ所截得弦的中点的极坐标为 .7、在极坐标系中,以2,3π⎛⎫ ⎪⎝⎭为圆心,2为半径的圆的极坐标方程为 . 8、在极坐标系中,点32,2P π⎛⎫ ⎪⎝⎭到直线:3cos 4sin 3l ρθρθ-=的距离为 .三、解答题.9、在极坐标系中,极点为O,已知曲线C1:ρ=2与曲线C2:,交于不同的两点A,B.(1)求|AB|的值;(2)求过点C(1,0)且与直线AB平行的直线l的极坐标方程.10、已知曲线C的极坐标方程为πsin()33ρθ+=,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,求曲线C的直角坐标方程参考答案一、单项选择1、【答案】B2、【答案】A3、【答案】B4、【答案】A5、【答案】B6、【答案】)43,2(π 7、【答案】4cos 3πρθ⎛⎫=- ⎪⎝⎭8、【答案】1 三、解答题9、【答案】(1)把曲线C 1和曲线C 2 的方程化为直角坐标方程,他们分别表示一个圆和一条直线.利用点到直线的距离公式求得圆心到直线的距离为d 的值,再利用弦长公式求得弦长|AB|的值.(2)用待定系数法求得直线l 的方程为直线l 的方程,再根据极坐标方程与直角坐标方程的互化公式求得l 的极坐标方程解:(1)曲线C 1:ρ=2,即x 2+y 2=4,表示以原点O (0,0)为圆心,半径等于2的圆.曲线C 2:,即 x ﹣y+2=0,表示一条直线. 圆心到直线的距离为d==,故弦长|AB|=2=2.(2)设过点C (1,0)且与直线AB 平行的直线l 的方程为 x ﹣y+m=0,把点C 的坐标代入求得m=﹣1,故直线l 的方程为 x ﹣y ﹣1=0,即 ρcos θ﹣ρsin θ﹣1=0,即ρsin (θ﹣)=1.10、60y +-=试题分析:根据cos x ρθ=,sin y ρθ=,将极坐标方程1sin cos 32ρθθ+=化为直角坐标方程60y +-=试题解析:由πsin()33ρθ+=得1sin cos 32ρθθ+=,5分又cos x ρθ=,sin y ρθ=,所以曲线C 60y +-=.10分考点:极坐标方程化为直角坐标方程。
最新数学理科选修4-4《极坐标》完整版-经典习题及详细答案
数学理科选修4-4第一讲《极坐标》习题一.选择题1.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( ) A .⎪⎭⎫ ⎝⎛-3,5π B .⎪⎭⎫ ⎝⎛34,5π C .⎪⎭⎫ ⎝⎛-32,5π D .⎪⎭⎫ ⎝⎛--35,5π2.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫ ⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫ ⎝⎛-34,2π3.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆4.圆)sin (cos 2θθρ+=的圆心坐标是( )A .⎪⎭⎫ ⎝⎛4,1π B .⎪⎭⎫ ⎝⎛4,21π C .⎪⎭⎫ ⎝⎛4,2π D .⎪⎭⎫⎝⎛4,2π5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为( ) A .2sin =θρ B .2cos =θρ C .4cos =θρ D .4cos -=θρ6、 已知点()0,0,43,2,2,2O B A ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为( ) A 、正三角形 B 、直角三角形 C 、锐角等腰三角形 D 、直角等腰三角形 7、)0(4≤=ρπθ表示的图形是( )A .一条射线B .一条直线C .一条线段D .圆8、直线αθ=与1)cos(=-αθρ的位置关系是( )A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定9.两圆θρcos 2=,θρsin 2=的公共部分面积是( ) A.214-πB.2-πC.12-πD.2π10.已知点1P 的球坐标是)4,,32(1πϕP ,2P 的柱坐标是)1,,5(2θP ,求21P P .A .2B .3C .22D .22二.填空题11.极坐标方程52sin 42=θρ化为直角坐标方程是12.圆心为⎪⎭⎫⎝⎛6,3πC ,半径为3的圆的极坐标方程为 13.已知直线的极坐标方程为22)4sin(=+πθρ,则极点到直线的距离是 14、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
极坐标练习题
一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线 3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=144.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( ) A.ρ=1 B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 27.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆 9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.13.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x【解析】 由伸缩变换,得x =x ′2,y =y ′3. 代入y =sin 2x ,有y ′3=sin x ′,即y ′=3sin x ′. ∴变换后的曲线方程为y =3sin x . 【答案】 A2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线【解析】 ∵sin θ=12,所以θ=π6(ρ≥0)和θ=56π(ρ≥0),故其表示两条射线. 【答案】 B3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=14 【解析】 由ρ=cos θ,得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.故选D.【答案】 D4.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)【解析】 设P (x ,y ),则k P A =y x +1(x ≠-1),k PB =yx -1(x ≠1). 又k P A +k PB =-1,即y x +1+y x -1=-1,得 x 2+2xy =1(x ≠±1),故选B. 【答案】 B5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( )A.ρ=1B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ【解析】 由题图可知ρcos(π-θ)=1, 即ρ=-1cos θ,故选C. 【答案】 C6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 2【解析】 圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2, 在Rt △COD 中, ∠ODC =π2,∠COD =π4, ∴|CD |= 2.即圆ρ=4cos θ的圆心到直线tan θ=1的距离为 2. 【答案】 B7.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 【解析】 点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝ ⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R ),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标,即⎝ ⎛⎭⎪⎫1,4π3.【答案】 A8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆【解析】 方程ρcos θ=2sin 2θ可化为ρcos θ=4sin θcos θ,即cos θ=0或ρ=4sin θ,方程cos θ=0即θ=k π+π2,表示y 轴,方程ρ=4sin θ即x 2+y 2=4y ,表示圆,故选C.【答案】 C9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 【解析】 圆ρ=r 的直角坐标方程为 x 2+y 2=r 2,① 圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4=-2r ⎝ ⎛⎭⎪⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ). ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .【答案】 D10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 【解析】 法一:根据对称规律,把⎩⎪⎨⎪⎧θ′=-θ,ρ′=ρ代入原方程,可得原方程表示的曲线关于极轴对称的曲线方程.∴ρ=2a sin θ关于极轴对称的曲线方程为ρ′=2a sin (-θ),即ρ=-2a sin θ. 法二:因为圆ρ=2a sin θ的圆心是⎝ ⎛⎭⎪⎫a ,π2,半径为a ,该圆关于极轴对称的圆的圆心应为⎝ ⎛⎭⎪⎫a ,3π2,半径仍为a , 其方程应为:ρ=2a cos ⎝ ⎛⎭⎪⎫θ-3π2,即ρ=-2a sin θ. 【答案】 C11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合【解析】 直线θ=α化为直角坐标方程为y =x tan α,ρsin (θ-α)=1化为ρsin θcos α-ρcos θsin α=1,即y =x tan α+1cos α.所以两直线平行. 【答案】 B 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.【解析】 点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1,32y -12x =1,12x -32y +1=0,点(3,1)到直线12x -32y +1=0的距离为⎪⎪⎪⎪⎪⎪12×3-32×1+1⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322=1.【答案】 113.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.【解析】 依题意,点B 的极坐标为⎝ ⎛⎭⎪⎫4,5π12,∵cos 5π12=cos ⎝ ⎛⎭⎪⎫π4+π6=cos π4cos π6-sin π4sin π6=22·32-22·12=6-24, sin 5π12=sin ⎝ ⎛⎭⎪⎫π4+π6=sin π4cos π6+cos π4sin π6=22·32+22·12=6+24,∴x =ρcos θ=4×6-24=6-2,∴y =ρsin θ=4×6+24=6+2, ∴点B 的直角坐标为(6-2,6+2). 【答案】 (6-2,6+2) 三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状. 【解】 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1,得(2x -5)2+(2y +6)2=1, 即⎝ ⎛⎭⎪⎫x -522+(y +3)2=14, 故曲线C 是以⎝ ⎛⎭⎪⎫52,-3为圆心,半径为12的圆.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.【解】 ⊙C 的直角坐标方程是x 2+y 2-x -y =0, 即⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=12.又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝ ⎛⎭⎪⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪⎪⎪12+22cos θ-⎝ ⎛⎭⎪⎫12+22sin θ-42=4-cos ⎝ ⎛⎭⎪⎫θ+π42,当θ=7π4时,d min =32=322.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程. 【解】 (1)设M (ρ,θ)为圆上任意一点,如图,圆C 过极点O ,∠COM =θ-1,作CK ⊥OM 于K , 则|OM |=2|OK |=2cos(θ-1), 故圆C 的极坐标为ρ=2cos(θ-1).(2)将圆C :ρ=2cos(θ-1)按逆时针旋转π2得到圆D :ρ=2cos ⎝ ⎛⎭⎪⎫θ-1-π2,即ρ=-2sin(1-θ),故ρ=2sin(θ-1)为所求.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 【解】 (1)法一:∵ρ=2,∴x 2+y 2=4. 又∵ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,∴y =x +2. ∴|AB |=2r 2-d 2=24-⎝ ⎛⎭⎪⎫222=2 2. 法二:设A (ρ,θ1),B (ρ,θ2),θ1,θ2∈[0,2π), 则sin ⎝ ⎛⎭⎪⎫θ1-π4=22,sin ⎝ ⎛⎭⎪⎫θ2-π4=22.∵θ1,θ2∈[0,2π),∴|θ1-θ2|=π2,即∠AOB =π2, 又|OA |=|OB |=2, ∴|AB |=2 2.(2)法一:∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y =x -1,∴直线l 的极坐标为ρsin θ=ρcos θ-1, 即ρcos ⎝ ⎛⎭⎪⎫θ+π4=22.法二:设点P (ρ,θ)为直线l 上任一点,因为直线AB 与极轴成π4的角, 则∠PCO =3π4或∠PCO =π4, 当∠PCO =3π4时,在△POC 中,|OP |=ρ,|OC |=1,∠POC =θ,∠PCO =3π4,∠OPC =π4-θ, 由正弦定理可知:1sin ⎝ ⎛⎭⎪⎫π4-θ=ρsin 34π, 即ρsin ⎝ ⎛⎭⎪⎫π4-θ=22, 即直线l 的极坐标方程为:ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.同理,当∠PCO =π4时,极坐标方程也为 ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.当P 为点C 时显然满足ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.综上,所求直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.。
极坐标系练习题
极坐标系练习题1、极坐标方程8cos ρθ=表示的图形的面积为________.2、在极坐标系下,直线cos ρθ=与圆ρ________. 3、已知曲线1C 和2C 的极坐标方程分别为cos 3ρθ=和4cos ρθ=(0,0)2πρθ≥≤<,则曲线1C 和2C 交点的极坐标为_________. 4、在极坐标系中,和极轴垂直且相交的直线l 与圆4ρ=相交于A 、B 两点,若4AB =,则直线l 的极坐标方程为________.5、在极坐标系中,过点(4,)2A π-作圆4sin ρθ=的切线,切点为B ,则AB =________.6、在极坐标系中,将点(4,)6A π绕极点逆时针旋转23π得到点B ,且OA OB =,则点B 的直角坐标为_________. 7、在极坐标系中,点(2,0)P 与点Q 关于直线()3R πθρ=∈对称,则PQ =________.8、在极坐标系中,经过点(0,0)O 、(6,)2A π、9)4B π的圆的极坐标方程为________. 9、在极坐标系中,抛物线28cos sin θρθ=上有一点M ,它的极径等于点M 到准线的距离,则M 点的极径为________.10、在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为________.11.将点的直角坐标(-2,23)化成极坐标得( ).A .(4,32π)B .(-4,32π)C .(-4,3π)D .(4,3π) 12.极坐标方程 ρ cos θ=sin2θ( ρ≥0)表示的曲线是( ).A .一个圆B .两条射线或一个圆C .两条直线D .一条射线或一个圆13.极坐标方程θρcos +12= 化为普通方程是( ). A .y 2=4(x -1)B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )14.点P 在曲线 ρ cos θ +2ρ sin θ =3上,其中0≤θ ≤4π,ρ>0,则点P 的轨迹是( ). A .直线x +2y -3=0B .以(3,0)为端点的射线C . 圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段 15.设点P 在曲线 ρ sin θ =2上,点Q 在曲线 ρ=-2cos θ上,则|PQ |的最小值为( ). A .2 B .1 C .3 D .016.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 ρ=3截得的弦长为( ). A .22 B .2 C .52 D .3217.ρ=2(cos θ -sin θ )(ρ>0)的圆心极坐标为( ).A .(-1,4π3)B .(1,4π7) C .(2,4π) D .(1,4π5) 18.极坐标方程为lg ρ=1+lg cos θ,则曲线上的点(ρ,θ)的轨迹是( ). A .以点(5,0)为圆心,5为半径的圆B .以点(5,0)为圆心,5为半径的圆,除去极点C .以点(5,0)为圆心,5为半径的上半圆D .以点(5,0)为圆心,5为半径的右半圆19.方程θθρsin + cos 11= -表示的曲线是( ). A . 圆B .椭圆C . 双曲线D . 抛物线 二、填空题20.在极坐标系中,以(a ,2π)为圆心,以a 为半径的圆的极坐标方程为 . 21.极坐标方程 ρ2cos θ-ρ=0表示的图形是 .22.过点(2,4π)且与极轴平行的直线的极坐标方程是 . 23.曲线 ρ=8sin θ 和 ρ=-8cos θ(ρ>0)的交点的极坐标是 .24.已知曲线C 1,C 2的极坐标方程分别为ρ cos θ =3,ρ=4cos θ (其中0≤θ<2π),则C 1,C 2交点的极坐标为 .三、解答题25.求以点A (2,0)为圆心,且经过点B (3,3π)的圆的极坐标方程.26.已知直线l 的极坐标方程为)(4π+ cos 24θρ=,点P 的直角坐标为(3cos θ,sin θ),求点P 到直线l 距离的最大值及最小值.。
极坐标练习题
极坐标练习题极坐标是一种描述平面上点位置的坐标系统,它使用极径和极角来表示点的位置。
在极坐标系统中,每个点由一个非负的极径和一个以极轴正向为起点的极角唯一确定。
极坐标与直角坐标之间的转换关系可以用以下公式表示:x = r * cosθy = r * sinθ其中,(x, y)为点的直角坐标,r为点到极轴的距离(极径),θ为点与极轴的夹角(极角)。
为了加深对极坐标的理解,下面给出一些极坐标的练习题,供读者练习和思考。
练习题一:给定极坐标(r, θ) = (3, π/6),请将其转换为直角坐标。
解析:根据转换公式可得,x = 3 * cos(π/6)y = 3 * sin(π/6)计算得出,x ≈ 2.598y ≈ 1.5所以,极坐标(3, π/6) 对应的直角坐标为 (2.598, 1.5)。
练习题二:给定直角坐标 (x, y) = (4, -2),请将其转换为极坐标。
解析:根据转换公式可得,r = √(x^2 + y^2)θ = arctan(y/x)计算得出,r ≈ √(4^2 + (-2)^2) ≈ √20 ≈ 4.472θ = arctan((-2)/4) ≈ -0.464所以,直角坐标 (4, -2) 对应的极坐标为 (4.472, -0.464)。
练习题三:给定一点在极坐标系下的表示为(5, 3π/4),请将该点表示在极坐标系中。
解析:该点的极径为 5,极角为3π/4。
在极坐标系中,从极轴正向开始逆时针旋转3π/4 的角度,然后向外延伸 5 的距离,即可标示出该点。
练习题四:给定一点在直角坐标系下的表示为 (-1, -1),请将该点表示在极坐标系中。
解析:该点的直角坐标为 (-1, -1)。
首先,计算出该点到原点的距离:r = √((-1)^2 + (-1)^2) ≈ √2 ≈ 1.414然后,计算出该点与极轴的夹角:θ = arctan((-1)/(-1)) = arctan(1) ≈ 0.785所以,直角坐标 (-1, -1) 对应的极坐标为 (1.414, 0.785)。
极坐标练习题
日测极坐标1.曲线cos 10ρθ+=的直角坐标方程为( )A .1x = B. 1x =- C. 1y = D. 1y =- 2.若M 点的极坐标为(2,)6π--,则M 点的直角坐标是( )A .(B .(1)-C .1)-D . 3.曲线的极坐标方程θρsin 4=化成直角坐标方程为( ) A.4)2(22=++y xB.4)2(22=-+y xC.4)2(22=+-yx D.4)2(22=++yx4.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 ( )(A )2sin =ρθ (B )2sin =-ρθ (C )2cos =ρθ ( D )2cos =-ρθ5.极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线 6.在极坐标方程中,曲线C 的方程是ρ=4sinθ,过点(4,6π)作曲线C 的切线,则切线长为( ) A . C . D .7.在极坐标系中,圆θρcos 2=的垂直于极轴的两条切线方程分别为( )(A )2cos R 0=∈=θρρθ)和((B )2cos R 2=∈=θρρπθ)和( (C )1cos R 2=∈=θρρπθ)和( (D )1cos R 0=∈=θρρθ)和(8.极坐标方程0))(1(=--πθρ)0(≥ρ表示的图形是( )A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线 9.(极坐标)以直角坐标系的原点为极点,x 轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,点M 的极坐标是)32,4(π,则点M 直角坐标是 A .)3,2( B .)3,2(- C .)2,3( D .)2,3(- 10.极坐标方程cos 2sin 2ρθθ=表示的曲线为A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 11.下列结论中不正确的是( ) A .(2,)6π与(2,)6π-是关于极轴对称 B .(2,)6π与7(2,)6π是关于极点对称C .(2,)6π与5(2,)6π-是关于极轴对称 D .(2,)6π与5(2,)6π--是关于极点对称 12.极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( ) A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-= C. )(θπρ-3sin 18= D. )(θπρ-3cos 9=13.圆5cos ρθθ=-的圆心坐标是( ) A.4(5,)3π--B.(5,)3π-C.(5,)3πD.5(5,)3π- 14.在极坐标系中,与圆相切的一条直线方程为( ) A . B . C . D . 15.极坐标方程cos 2ρθ=0 表示的曲线为( )A 、极点B 、极轴C 、一条直线D 、两条相交直线 16.在极坐标系中,曲线cos sin 2ρθρθ+=(0θ≤﹤2π)与4πθ=的交点的极坐标为( )(A)(1,1) (B)(1,)4π(C))4π (D)()4π17.直线45395x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与圆2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的位置关系是A .相离B .相切 C.过圆心 D .相交不过圆心 18.已知圆22:4C x y +=,直线:2l x y +=,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上且满足2|OQ ||OP ||OR |⋅=,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.19.在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆,已知曲线1C 上的点)23,1(M 对应的参数3πϕ=,射线3πθ=与曲线2C 交于点)3,1(πD(1)求曲线1C ,2C 的方程; (2)若点),(1θρA ,)2,(2πθρ+B 在曲线1C 上,求222111ρρ+的值20.已知曲线C 的极坐标方程为θθρ2sin cos 4=,直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x ( t为参数,0≤α<π).(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.参考答案1.B【解析】考点:极坐标方程【解析】A 。
极坐标练习试题(含详细答案)
1.在同一平面直角坐标系中,经过伸缩变换错误!后,曲线C变为曲线x′2+y′2=1,则曲线C的方程为( )A.25x2+9y2=1 B.9x2+25y2=1 C.25x+9y=1 D。
错误!+错误!=12.极坐标方程ρ=cosθ化为直角坐标方程为( )A.(x+错误!)2+y2=错误!B.x2+(y+错误!)2=错误!C.x2+(y-错误!)2=错误!D.(x-错误!)2+y2=错误!答案 D解析由ρ=cosθ,得ρ2=ρcosθ,∴x2+y2=x.选D。
3.极坐标方程ρcosθ=2sin2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆答案 C4.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是()A.(1,错误!)B.(1,-错误!)C.(1,0) D.(1,π)答案 B解析由ρ=-2sinθ,得ρ2=-2ρsinθ,化为普通方程x2+(y+1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-错误!),故应选B。
5.设点M的直角坐标为(-1,-错误!,3),则它的柱坐标为( )A.(2,错误!,3)B.(2,错误!,3)C.(2,错误!,3) D.(2,错误!,3)答案 C6.(2013·安徽)在极坐标系中,圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2B.θ=错误!(ρ∈R)和ρcosθ=2C.θ=π2(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=1答案 B解析由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1。
所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=错误!(ρ∈R)和ρcosθ=2,故选B.7.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是()A.ρ=cosθB.ρ=sinθC.ρcosθ=1 D.ρsinθ=1答案 C解析过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x=1,所以其极坐标方程为ρcosθ=1,故选C。
极坐标(一)有答案
极坐标(一)班级: 姓名:一、填空题:1.极坐标系中,直线sin 24πρθ(+)=被圆4ρ=截得的弦长为 。
答案:2.极坐标方程分别为2cos ρθ=和sin ρθ=的两个圆的圆心距为 。
答案:23.在直角坐标方系中圆C 的参数方程为2cos (22sin x y θθθ=⎧⎨=+⎩为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为 。
答案:4sin ρθ=4.设平面上的伸缩变换的坐标表达式为123x x y y ⎧'=⎪⎨⎪'=⎩,则在这一坐标变换下正弦曲线sin y x =的方程变为 。
答案:3sin 2y x ''=5.极坐标系中,点(1,0)到直线(cos sin )2ρθθ+=的距离为 。
答案:26.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:cos()13πρθ-=,M 、N 分别为曲线x 轴、y 轴的交点,则MN 的中点P 在平面直角坐标系中的坐标为 .答案:37.已知直线的极坐标方程为sin()42πρθ+=,则极点到这条直线的距离是 .答案:28.在极坐标系中,圆4ρ=上的点到直线(cos )6ρθθ+=的距离的最大值是 . 答案:79.在极坐标系中,设圆32ρ=上的点到直线sin sin )θθθ-=的距离为d ,则d 的最大值为 。
答案:2二、解答题:10.求极坐标方程cos(4πρθ=-)所表示的曲线。
答案:以44(,)为圆心,12为半径的圆11.已知圆1O 和圆2O 的极坐标方程分别为2ρ=,2cos()24πρθ--=. (1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.答案:(1)222220x y x y +---=;(2)sin()42πρθ+=.12.在极坐标系下,已知圆:cos sin O ρθθ=+和直线:sin()42l πρθ-=.(1)求圆O 和直线l 的直角坐标方程;(2)当(0,)θπ∈时,求直线l 与圆O 公共点的一个极坐标。
最新经典高三极坐标练习题
师道教育高三极坐标练习题一.解答题(共30小题)1.在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.2.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.3.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.4.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.5.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.6.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.7.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.8.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.9.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.10.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.11.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.13.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.14.(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)15.选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.16.选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.17.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.18.在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.19.在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.20.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.21.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.24.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.25.选修4﹣4:坐标系与参数方程已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)写出直线l与曲线C的直角坐标系下的方程;(Ⅱ)设曲线C经过伸缩变换得到曲线C′设曲线C′上任一点为M(x,y),求的取值范围.26.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.27.已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为(t为参数).(Ⅰ)写出曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围.28.已知直线l的参数方程:(t为参数),曲线C的参数方程:(α为参数),且直线交曲线C于A,B两点.(Ⅰ)将曲线C的参数方程化为普通方程,并求θ=时,|AB|的长度;(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA|•|PB|的范围.29.在平面直角坐标系中,曲线C1的参数方程为(ϕ为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点.(1)求曲线C1,C2的普通方程;(2)是曲线C1上的两点,求的值.30.己知圆C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ﹣).(Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;(Ⅱ)圆C1,C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.20161105高三极坐标练习题参考答案与试题解析一.解答题(共30小题)1.(2016•江西校级二模)在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.【分析】(I)利用同角三角函数的关系消参数得出曲线C的普通方程,将M点坐标代入曲线C的方程即可判断点M与曲线C的位置关系;(II)由|AB|=2|MB|,可知M为AB的中点,将直线l的参数方程代入曲线的方程则方程有两个互为相反数的实根,根据根与系数的关系求出l的斜率,得出l方程.【解答】解:(I)由(α为参数)消α得:,将化成直角坐标得M(﹣1,1),∵,故点M在曲线C内.(Ⅱ)设直线l的参数方程为(t为参数,α为l的倾斜角).代入得:(3+sin2α)t2+(8sinα﹣6cosα)t﹣5=0.∵|AB|=2|MB|,∴M为AB的中点,即t1+t2=0.∴8sinα﹣6cosα=0,∴tanα=.∴l的方程为:,即3x﹣4y+7=0.2.(2016•鹰潭一模)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.3.(2016•洛阳二模)已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【分析】(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.【解答】解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=|t1t2|,∴m2﹣2m=±1,解得,1.又满足△>0.∴实数m=1,1.4.(2016•汕头模拟)已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.【分析】(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x﹣1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值.【解答】解:(1)直线l的参数方程为为参数).由上式化简成t=2(x﹣1)代入下式得根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)(2)∵代入C得∴(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为﹣4.(10分)5.(2016•邯郸二模)已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.【分析】(1)利用公式x=ρcosθ,y=ρsinθ即可把曲线C的极坐标方程化为普通方程;消去参数t即可得到直线l的方程;(2)利用弦长|PQ|=2和圆的内接矩形,得对角线是圆的直径即可求出圆的内接矩形的面积.【解答】解:(1)对于C:由ρ=4cosθ,得ρ2=4ρcosθ,进而x2+y2=4x;对于l:由(t为参数),得,即.(5分)(2)由(1)可知C为圆,且圆心为(2,0),半径为2,则弦心距,弦长,因此以PQ为边的圆C的内接矩形面积.(10分)6.(2016•太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.7.(2016•漳州二模)极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.【分析】(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C 的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.【解答】解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)8.(2016•梅州二模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得:cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.9.(2016•开封四模)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【分析】(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.【解答】解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),可化为ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0);(2分)直线l的参数方程为(t为参数),消去参数t,化为普通方程是y=x﹣2;(4分)(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)∵|PA|•|PB|=|AB|2,∴t1•t2=,∴=+4t1•t2=5t1•t2,(9分)即;解得:a=2或a=﹣8(不合题意,应舍去);∴a的值为2.(12分)10.(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,【分析】即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.11.(2014•新课标I)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.12.(2014•新课标II)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C 的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).13.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.14.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).15.(2013•福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.【分析】(Ⅰ)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.【解答】解:(Ⅰ)点A在直线l上,得,∴a=,故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;(Ⅱ)消去参数α,得圆C的普通方程为(x﹣1)2+y2=1圆心C到直线l的距离d=<1,所以直线l和⊙C相交.16.(2013•新课标Ⅱ)选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(I)根据题意写出P,Q两点的坐标:P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d==,再验证当α=π时,d=0,故M的轨迹过坐标原点.【解答】解:(I)根据题意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),∵M为PQ的中点,故M(cosα+cos2α,sin2α+sinα),∴求M的轨迹的参数方程为:(α为参数,0<α<2π).(II)M到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.17.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.18.(2011•辽宁)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.【分析】(I)有曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),消去参数的C1是圆,C2是椭圆,并利用.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合,求出a及b.(II)利用C1,C2的普通方程,当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,利用面积公式求出面积.【解答】解:(Ⅰ)C1是圆,C2是椭圆.当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3当时,射线l与C1,C2交点的直角坐标分别为(0,1)(0,b),因为这两点重合所以b=1.(Ⅱ)C1,C2的普通方程为x2+y2=1和.当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为.当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为.19.(2016•离石区二模)在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.【分析】(Ⅰ)把参数方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.(Ⅱ)由(Ⅰ)求得(﹣1,)到直线x﹣y+1=0 的距离d,再利用弦长公式求得弦长.【解答】解:(Ⅰ)由C1的参数方程消去参数t得普通方程为x﹣y+1=0,圆C2的直角坐标方程(x+1)2+=4,所以圆心的直角坐标为(﹣1,),所以圆心的一个极坐标为(2,).(Ⅱ)由(Ⅰ)知(﹣1,)到直线x﹣y+1=0 的距离d==,所以AB=2=.20.(2016•焦作一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.21.(2016•衡水校级一模)已知曲线C1:(t为参数),C2:(θ为参数).。
极坐标习题精练及答案
坐标系一、选择题1.将点的直角坐标(-2,23)化成极坐标得( ). A .(4,32π) B .(-4,32π) C .(-4,3π) D .(4,3π) 2.极坐标方程 ρ cos θ=sin2θ( ρ≥0)表示的曲线是( ). A .一个圆B .两条射线或一个圆C .两条直线D .一条射线或一个圆3.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1)B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )4.点P 在曲线 ρ cos θ +2ρ sin θ =3上,其中0≤θ ≤4π,ρ>0,则点P 的轨迹是( ). A .直线x +2y -3=0B .以(3,0)为端点的射线C . 圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段5.设点P 在曲线 ρ sin θ =2上,点Q 在曲线 ρ=-2cos θ上,则|PQ |的最小值为 ( ).A .2B .1C .3D .06.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线B .椭圆C . 双曲线D . 圆7.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 ρ=3截得的弦长为( ).A .22B .2C .52D .328.ρ=2(cos θ -sin θ )(ρ>0)的圆心极坐标为( ). A .(-1,4π3) B .(1,4π7) C .(2,4π) D .(1,4π5) 9.极坐标方程为lg ρ=1+lg cos θ,则曲线上的点(ρ,θ)的轨迹是( ).A .以点(5,0)为圆心,5为半径的圆B .以点(5,0)为圆心,5为半径的圆,除去极点C .以点(5,0)为圆心,5为半径的上半圆D .以点(5,0)为圆心,5为半径的右半圆10.方程θθρsin + cos 11= -表示的曲线是( ).A . 圆B .椭圆C . 双曲线D . 抛物线二、填空题11.在极坐标系中,以(a ,2π)为圆心,以a 为半径的圆的极坐标方程为 . 12.极坐标方程 ρ2cos θ-ρ=0表示的图形是 . 13.过点(2,4π)且与极轴平行的直线的极坐标方程是 . 14.曲线 ρ=8sin θ 和 ρ=-8cos θ(ρ>0)的交点的极坐标是 . 15.已知曲线C 1,C 2的极坐标方程分别为ρ cos θ =3,ρ=4cos θ (其中0≤θ<2π),则C 1,C 2交点的极坐标为 .16.P 是圆 ρ=2R cos θ上的动点,延长OP 到Q ,使|PQ |=2|OP |,则Q 点的轨迹方程是 .三、解答题17.求以点A (2,0)为圆心,且经过点B (3,3π)的圆的极坐标方程.18.先求出半径为a ,圆心为(ρ0,θ0)的圆的极坐标方程.再求出 (1)极点在圆周上时圆的方程;(2)极点在周上且圆心在极轴上时圆的方程.19.已知直线l 的极坐标方程为)(4π+ cos 24θρ=,点P 的直角坐标为(3cos θ,sin θ),求点P 到直线l 距离的最大值及最小值.20.A ,B 为椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)上的两点,O 为原点,且AO ⊥BO . 求证:(1)221+1OBOA为定值,并求此定值;(2)△AOB 面积的最大值为ab 21,最小值为2222 + b a b a .参考答案一、选择题 1.A解析:ρ=4,tan θ=3=232--,θ=3π2.故选A . 2.D解析:∵ ρ cos θ=2sin θ cos θ,∴cos θ=0或 ρ=2sin θ,ρ=0时,曲线是原点;ρ>0时,cos θ=0为一条射线,ρ=2sin θ 时为圆.故选D .3.B解析:原方程化为2cos =+θρρ,即x -y x2 = +22,即y 2=4(1-x ).故选B . 4.D解析:∵x +2y =3,即x +2y -3=0,又∵ 0≤θ ≤4π,ρ>0,故选D . 5. B解析:两曲线化为普通方程为y =2和(x +1)2+y 2=1,作图知选B . 6.D解析:曲线化为普通方程后为13422=+y x ,变换后为圆. 7.C解析: 直线可化为x +y =22,圆方程可化为x 2+y 2=9.圆心到直线距离d =2, ∴弦长=22223-=52.故选C. 8.B解析: 圆为:x 2+y 2-y x 2 + 2=0,圆心为⎪⎪⎭⎫ ⎝⎛2222-,,即) ,(4π71,故选B . 9.B解析: 原方程化为ρ=10cos θ,cos θ>0.∴0≤θ <2π和23π<θ<2π,故选B .10.C解析:∵1=ρ-ρcos θ+ρsin θ,∴ρ=ρcos θ-ρsin θ+1,∴x 2+y 2=(x -y +1)2,∴2x -2y -2xy +1=0,即xy -x +y =21,即(x +1)(y -1)=-21,是双曲线xy =-21的平移,故选C.二、填空题 11.ρ=2a sin θ.解析:圆的直径为2a ,在圆上任取一点P (ρ,θ), 则∠AOP =2π-θ 或θ-2π, ∵ρ=2a cos ∠AOP , 即2cos 2 = πθρ-a =2a sin θ.12.极点或垂直于极轴的直线.解析:∵ ρ·(ρ cos θ -1)=0,∴ρ=0为极点,ρ cos θ -1=0为垂直于极轴的直线. 13.ρ sin θ =1.解析:2= sin θρ×1 = 4πsin .14.(42,4π3).O (第11题)(第12题)解析:由8sin θ=-8cos θ 得tan θ=-1.ρ>0得⎩⎨⎧θθ cos sin ∴θ=4π3; 又由 ρ=8sin4π3得 ρ=42. 15.⎪⎭⎫ ⎝⎛6π32 ,. 解析:由 ρ cos θ=3有 ρ=θ cos 3,θcos 3=4cos θ,cos 2θ =43,θ =6π;消去θ 得 ρ2=12,ρ=23. 16.ρ=6R cos θ.解析:设Q 点的坐标为(ρ,θ),则P 点的坐标为⎪⎭⎫⎝⎛θρ ,31,代回到圆方程中得31ρ=2R cos θ,ρ=6R cos θ. 三、解答题17.解析:在满足互化条件下,先求出圆的普通方程,然后再化成极坐标方程. ∵A (2,0),由余弦定理得AB 2=22+32-2×2×3×cos 3π=7, ∴圆方程为(x -2)2+y 2=7,由⎩⎨⎧θρθρsin= cos =y x 得圆的极坐标方程为(ρcos θ-2)2+(ρsin θ)2=7,即 ρ2-4ρ cos θ -3=0.18.(1)解析:记极点为O ,圆心为C ,圆周上的动点为P (ρ,θ), 则有CP 2=OP 2+OC 2-2OP ·OC ·cos ∠COP ,即a 2=ρ2+20ρ-2 ρ·ρ0·cos (θ-θ 0).当极点在圆周上时,ρ0=a ,方程为 ρ=2a cos (θ-θ 0);(2)当极点在圆周上,圆心在极轴上时,ρ0=a ,θ 0=0,方程为 ρ=2a cos θ. 19.解析:直线l 的方程为42=ρ(22cos θ -22sin θ),即x -y =8. ∴点P (3cos θ ,sin θ )到直线x -y =8的距离为28sin cos 3=--d θθ>0, <0.286π+ cos 2=-)(θ,∴最大值为25,最小值为23. 20.解析:(1)将方程化为极坐标方程得θθρ2222222+ = sin cos a b b a , 设A (ρ1,θ1),B ⎪⎭⎫ ⎝⎛2π+ 12θρ ,,则221+1OBOA22211+1=ρρ+sin +cos =22122122b a a b θθ221221222π+sin +2π+cos b a a b ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛θθ 2222+=b a b a ,为定值.(2) S △AOB =21ρ1ρ2=12212222+21θθsin a cos b b a 12212222+θθcos a sin b b a221222222+2sin 4121=b a b -a b a θ)(,当4π = 1θ时,S △AOB 最小值为2222+ba b a , 当θ 1=0时,S △AOB 最大值为ab 21.。
极坐标(含答案 )
极坐标x cos sin y ρθρθ=⎧⎨=⎩ 222x y ρ+= 考点一。
直角坐标化极坐标(1)点M 的直角坐标是(1-,则点M 的极坐标为______. 解:点M 极坐标为:2(2,2),()3k k Z ππ+∈. (2)求直线3x-2y+1=0的极坐标方程。
解:极坐标方程为01sin 2cos 3=+-θρθρ。
(3)在极坐标系中,圆心在π)且过极点的圆的极坐标方程为______.解:圆心:)02(,-,22(2x y +=。
圆的极坐标方程为ρθ。
考点二。
极坐标化直角坐标(1)求普通方程)3R ∈=ρπθ(。
解:y=kx,且k=33tan=π,则直线方程为x 3y =。
(2)将曲线的极坐标方程ρ=4sin θ化 成直角坐标方程。
解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.(3)求过圆4cos =ρθ的圆心,且垂直于极轴的直线极坐标方程.解:由θρcos 4=得θρρcos 42=.所以x y x 422=+,22(2)4x y -+=圆心坐标(2,0)直线方程为2=x .直线的极坐标方程为2cos =θρ。
(4)将极坐标方程4sin 2θ=3化为普通方程。
解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3. (5)化极坐标方程24sin 52θρ⋅=为普通方程。
解:21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,即25x =,化简22554y x =+.表示抛物线.(6)求点 (,)π23到圆2cos ρθ= 的圆心的距离。
解:)3,2(π化为)3,1(,圆θρcos 2=化为0222=-+x y x ,圆心的坐标是)0,1(,故距离为3。
(7)求点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离.(8)已知21,C C 极坐标方程分别为θρθρcos 4,3cos ==(20,0θρ<≤≥),求曲线1C 与2C 交点极坐标.解:21,C C 分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π。
极坐标系高考荟萃
极坐标系高考荟萃1在极坐标系中,点 (,)π23 到圆2cos ρθ= 的圆心的距离为( )(A )2 (B)(2.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是( ) (A) (1,)2π (B) (1,)2π- (C) (1,0) (D)(1,π) 3.在直角坐标系xOy 中,直线l 的方程为x-y+4=0,已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系; 4.若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线的直角坐标方程为 .5.把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1cos 4122-=θρ,则它的直角坐标方程是___________.6.极坐标方程4sin 2θ=3表示的曲线是(A)二条射线 (B)二条相交直线 (C) 圆 (D) 抛物线7.极坐标方程ρ=sin θ+2cos θ所表示的曲线是(A)直线 (B)圆 (C)双曲线 (D) 抛物线8.极坐标方程ρ2cos2θ=1所表示的曲线是(A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线9.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A)圆 (B)椭圆 (C)抛物线 (D)双曲线10.极坐标方程ρ=cos(4π-θ)所表示的曲线是 (A) 双曲线 (B)椭圆 (C)抛物线 (D)圆11.极坐标方程ρ=2sin(θ+4π)的图形是(A)12.极坐标方程θρcos =与θρcos =21的图形是2 21(A) (B) (C) (D)13.在极坐标系中,圆心在(),2π且过极点的圆的方程为(A) θρcos 22= (B)θρcos 22-= (C)θρsin 22= (D)θρsin 22-=14.直线θ=α和直线ρsin(θ-α)=1的位置关系(A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合15.在极坐标系中,如果一个圆的方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是(A) ρsin θ=3 (B) ρsin θ = –3 (C) ρcos θ =2 (D) ρcos θ = –216.在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是(A) ρsin θ=2 (B)ρcos θ=2 (C)ρcos θ= 4 (D) ρcos θ=- 417.在极坐标方程中,过点M(2,2π)且平行于极轴的直线的极坐标方程是_______. 18.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程为(A)ρ=1 (B)ρ=cos θ (C)ρ=θcos 1- (D)ρ=θcos 1 19.以极坐标系中点(1,1)为圆心,1为半径的圆的方程是(A)ρ=2cos(θ-4π) (B)ρ=2sin(θ-4π) (C)ρ=2cos(θ-1) (D)ρ=2sin(θ-1) 20.在极坐标系中,直线 的方程为ρsin θ=3,则点(2,6π)到直线 的距离为___________.21.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是(A) 2 (B) 2 (C) 1 (D) 22 22.已知直线的极坐标方程为ρsin(θ+4π)=22,则极点到该直线的距离是_________.23.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ= 4cos θ于A 、B 两点,则|AB|=______.24.在极坐标系中,点M(4,3π)到直线 :4)sin cos 2(=+θθρ的距离d=__________________.25.曲线的极坐标方程ρ=4sin θ化成直角坐标方程为(A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4(C) (x-2)2+y 2=4 (D) (x+2)2+y 2=426.⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=.(I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.。
01坐标系训练题(含经典例题+答案)
坐标系训练题一.选择题(共15小题)1.在极坐标方程中,曲线C的方程是ρ=4sinθ,过点(4,)作曲线C的切线,则切线长为()A.4 B.C.2D.22.在极坐标系中,点(2,﹣)到圆ρ=﹣2cosθ的圆心的距离为()A.2 B.C.D.3.在极坐标系中,圆ρ=2被直线ρsinθ=1截得的弦长为()A.B.2 C.2D.34.在极坐标系中,圆ρ=2cosθ的半径为()A.B.1 C.2 D.45.在极坐标系中,曲线C:ρ=2sinθ上的两点A,B对应的极角分别为,则弦长|AB|等于()A.1 B.C.D.26.在极坐标系中,曲线ρ2﹣6ρcosθ﹣2ρsinθ+6=0与极轴交于A,B两点,则A,B两点间的距离等于()A.B. C.D.47.在极坐标系中,曲线ρ=2cosθ是()A.过极点的直线 B.半径为2 的圆C.关于极点对称的图形D.关于极轴对称的图形8.过点(2,)且平行于极轴的直线的坐标方程为()A.ρsinθ=B.ρcosθ=C.ρsinθ=2 D.ρcosθ=29.在极坐标方程中,曲线C的方程是ρ=4sinθ,过点(4,)作曲线C的切线,切线长为()A.4 B.7 C.2D.3 210.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()A.1 B.C.D.211.已知点P的极坐标是,则过点P且垂直于极轴的直线的极坐标方程是()A.ρ=1 B.ρ=cosθC. D.12.在极坐标系中,关于曲线C:ρ=4sin(θ﹣),下列判断中正确的是()A.曲线C关于直线θ=对称B.曲线C关于直线θ=对称C.曲线C关于点(2,)对称D.曲线C关于点(0,0)对称13.在极坐标系中,直线l的方程为,则点到直线l的距离为()A.B.C.D.14.已知点M的极坐标为,那么将点M的极坐标化成直角坐标为()A.B.C.D.15.极坐标方程ρcosθ=2sin2θ表示的曲线为()A.一条射线和一个圆 B.一条直线和一个圆C.两条直线D.一个圆二.解答题(共15小题)16.(2015•河北)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.17.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.18.(2015•新课标II)在直角坐标系xOy中,曲线C1:(t为参数,t≠0,0≤α<π)在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2co sθ.(1)求C2与C3交点的直角坐标(2)若C2与C1相交于点A,C1与C3相交于点B,求|AB|的最大值.19.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.20.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.21.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.22.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=.(Ⅰ)写出曲线C1与直线l的直角坐标方程;(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.23.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若直线的极坐标方程为ρsin ()=3.(1)把直线的极坐标方程化为直角坐标系方程;(2)已知P为椭圆C:上一点,求P到直线的距离的最大值.24.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,圆C的极坐标方程为(Ⅰ)将圆C的极坐标方程化为直角坐标方程;(Ⅱ)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.25.在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|•|OM|=4,记点P的轨迹为C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)求曲线C2上的点到直线ρcos(θ+)=距离的最大值.26.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:p2﹣4pcosθ+2=0(1)将极坐标方程化为普通方程(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.27.在直角坐标平面内,直线l过点P(1,1),且倾斜角α=以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设直线l与圆C 交于A、B两点,求|PA|•|PB|的值.28.在极坐标系中,设圆C1:ρ=4cosθ 与直线l:θ=(ρ∈R)交于A,B两点.(Ⅰ)求以AB为直径的圆C2的极坐标方程;(Ⅱ)在圆C1任取一点M,在圆C2上任取一点N,求|MN|的最大值.29.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.30.在平面直角坐标xOy中,已知圆,圆.(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1,C2的极坐标方程及这两个圆的交点的极坐标;(2)求圆C1与C2的公共弦的参数方程.一.选择题(共15小题)1.C;2.D;3.C;4.B;5.C;6.B;7.D;8.A;9.C;10.A; 11.D;12.A; 13.B; 14.D; 15.B;二.解答题(共15小题)16.解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.17.解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.18.解:(1)曲线C2:ρ=2sinθ化为ρ2=2ρsinθ,∴x2+y2=2y.曲线C3:ρ=2cosθ化为ρ2=2ρcosθ,x2+y2=2x.联立,解得或.∴C2与C3交点的直角坐标为(0,0)和(,);(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sinα,α),B的极坐标为(2cosα,α),所以|AB|=|2sin cosα|=4|sin(α﹣)|,当α=时,|AB|取得最大值,最大值为4.19.解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).20.解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.21.解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,,∴.∴|PM|+|PN|的取值范围是.22.(Ⅰ)以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=,根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,则C1的直角坐标方程为x2+2y2=2,直线l的直角坐标方程为.(Ⅱ)设Q,则点Q到直线l的距离为=,当且仅当,即(k∈Z)时取等号.∴Q点到直线l距离的最小值为.23.解:(1)把直线的极坐标方程为ρsin()=3展开得,化为ρsinθ﹣ρcosθ=6,得到直角坐标方程x﹣y+6=0.(2)∵P为椭圆C:上一点,∴可设P(4cosα,3sinα),利用点到直线的距离公式得d===.当且仅当sin(α﹣φ)=﹣1时取等号.∴P到直线的距离的最大值是.24.解:(Ⅰ)由x,可得ρ=4cosθ﹣4sinθ,∴ρ2=4ρcosθ﹣4ρsinθ,∴x2+y2=4x﹣4y,即(x﹣2)2+(y+2)2=8;(Ⅱ)过点P(2,0)作斜率为1直线l的参数方程为代入(x﹣2)2+(y+2)2=8得t2+2t﹣4=0,A,B对应的参数为t1、t2,则t1+t2=﹣2,t1t2=﹣4,由t的意义可得=+==.25.解:(Ⅰ)设P(ρ1,θ),M(ρ2,θ),由|OP|•|OM|=4,得ρ1ρ2=4,即.∵M是C1上任意一点,∴ρ2sinθ=2,即,ρ1=2sinθ.∴曲线C2的极坐标方程为ρ=2sinθ;(Ⅱ)由ρ=2sinθ,得ρ2=2ρsinθ,即x2+y2﹣2y=0.化为标准方程x2+(y﹣1)2=1.则圆心坐标为(0,1),半径为1.由直线ρcos(θ+)=,得:.即:x﹣y=2.圆心(0,1)到直线x﹣y=2的距离为d=.∴曲线C2上的点到直线ρcos (θ+)=距离的最大值为.26.解:(1)ρ2﹣4ρcosθ+2=0,化为直角直角坐标方程:x2+y2﹣4x+2=0;(2)由x2+y2﹣4x+2=0化为(x﹣2)2+y2=2,令x﹣2=cosα,y=sinα,α∈[0,2π).则x+y=+2+=2+2,∵∈[﹣1,1],∴(x+y)∈[0,4].其最大值、最小值分别为4,0.27.解:(Ⅰ)由圆C的极坐标ρ=4sinθ,即ρ2=4ρsinθ,可得直角坐标方程为x2+(y﹣2)2=4,表示以(0,2)为圆心、半径等于2的圆.(Ⅱ)由直线l过点P(1,1),且倾斜角α=,可得直线的方程为.把直线方程代入曲线方程化简可得+﹣4(1+t),解得t1=,t2=﹣,∴|PA|•|PB|=|t1|•|t2|=2.28.解:(Ⅰ)以极点为坐标原点,极轴为x轴的正半轴,建立直角坐标系,则由题意得圆C1:ρ=4cosθ 化为ρ2=4ρcosθ,∴圆C1的直角坐标方程x2+y2﹣4x=0.直线l的直角坐标方程y=x.由,解得或.∴A(0,0),B(2,2).从而圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2,即x2+y2=2x+2y.将其化为极坐标方程为:ρ2=2ρcosθ+2ρsinθ.(Ⅱ)∵,∴|MN|max=|C1C2|+r1+r2=+2+=2+2.29.解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos (θ+),当θ=﹣时,|OA|+|OB|取得最大值2.30.解:(1)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程为ρ=4cosθ,由得,故圆C1,C2交点坐标为圆.(2)由(1)得,圆C1,C2交点直角坐标为,故圆C1与C2的公共弦的参数方程为。
极坐标系练习题【范本模板】
第二节极坐标系一、选择题1.点P的直角坐标为(-错误!,错误!),那么它的极坐标可表示为().A.错误!B。
错误!C。
错误!D。
错误!解析直接利用极坐标与直角坐标的互化公式.答案 B2.已知A,B的极坐标分别是错误!和错误!,则A和B之间的距离等于().A。
错误! B.错误!C.错误!D.错误!解析极坐标系中两点A(ρ1,θ1),B(ρ2,θ2)的距离|AB|=错误!。
答案 C3.在极坐标系中,已知点P错误!,若P的极角满足-π<θ<π,ρ∈R,则下列点中与点P重合的是().A.错误!,错误!,错误!B。
错误!,错误!,错误!C.错误!,错误!,错误!D。
错误!答案 D4.已知点M的极坐标是错误!,它关于直线θ=错误!的对称点坐标是().A。
错误!B。
错误!C。
错误!D。
错误!解析当ρ<0时,我们找它的极角应按反向延长线上去找.描点错误!时,先找到角-错误!的终边.又因为ρ=-2<0,所以再沿反向延长线上找到离极点2个单位的点即是点错误!.直线θ=错误!,就是由极角为错误!的那些点的集合.故M错误!关于直线θ=错误!的对称点为M′错误!,但是选择支没有这样的坐标.又因为M′错误!的坐标还可以写成M′错误!,故选B.答案 B二、填空题5.在极坐标系中,已知点A错误!,B错误!,则A、B两点间的距离为________.解析利用极坐标系中两点间距离公式.答案 56.已知点M的直角坐标为(-3,-3错误!),若ρ〉0,0≤θ<2π,则点M的极坐标是________.答案错误!7.在极坐标系中,已知点P错误!,则点P在-2π≤θ<2π,ρ∈R时的另外三种极坐标形式为__________.答案错误!,错误!,错误!8.(极坐标意义的考查)极坐标系中,点A的极坐标是错误!,则(1)点A关于极轴对称的点是________;(2)点A关于极点对称的点的极坐标是________;(3)点A关于直线θ=π2的对称点的极坐标是________.(规定ρ>0,θ∈[0,2π))解析如图所示,在对称的过程中极径的长度始终没有变化,主要在于极角的变化.另外,我们要注意:极角是以x轴正向为始边,按照逆时针方向得到的.答案(1)错误!(2)错误!(3)错误!三、解答题9.(1)把点M的极坐标错误!化成直角坐标;(2)把点N的直角坐标(-错误!,-1)化成极坐标.解(1)x=-5cos 错误!=-错误!错误!,y=-5sin 错误!=-错误!.∴点M的直角坐标是错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 极坐标系
一、选择题
1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为 ( ).
A.⎝ ⎛⎭⎪⎫2,π4
B.⎝
⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4 D.⎝
⎛⎭⎪⎫2,7π4 解析 直接利用极坐标与直角坐标的互化公式.
答案 B
2.已知A ,B 的极坐标分别是⎝
⎛⎭⎪⎫3,π4和⎝ ⎛⎭⎪⎫-3,π12,则A 和B 之间的距离等于 ( ). A.32+62 B.32-62
C.36+322
D.36-322
解析 极坐标系中两点A (ρ1,θ1),B (ρ2,θ2)的距离|AB |=
ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).
答案 C
3.在极坐标系中,已知点P ⎝ ⎛⎭
⎪⎫2,23π,若P 的极角满足-π<θ<π,ρ∈R ,则下列点中与点P 重合的是 ( ).
A.⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,43π,⎝ ⎛⎭⎪⎫-2,53π
B.⎝ ⎛⎭⎪⎫2,83π,⎝ ⎛⎭⎪⎫2,43π,⎝ ⎛⎭
⎪⎫-2,53π C.⎝ ⎛⎭⎪⎫-2,43π,⎝ ⎛⎭⎪⎫-2,53π,⎝ ⎛⎭
⎪⎫2,-43π D.⎝
⎛⎭⎪⎫-2,-π3
答案 D
4.已知点M 的极坐标是⎝
⎛⎭⎪⎫-2,-π6,它关于直线θ=π2的对称点坐标是 ( ). A.⎝ ⎛⎭⎪⎫2,11π6 B.⎝
⎛⎭⎪⎫-2,7π6 C.⎝ ⎛⎭⎪⎫2,-π6 D.⎝
⎛⎭⎪⎫-2,-11π6 解析 当ρ<0时,我们找它的极角应按反向延长
线上去找.描点⎝
⎛⎭⎪⎫-2,-π6时,先找到角-π6的 终边.又因为ρ=-2<0,所以再沿反向延长线上
找到离极点2个单位的点即是点⎝
⎛⎭⎪⎫-2,-π6. 直线θ=π2,就是由极角为π2的那些点的集合.
故M ⎝ ⎛⎭⎪⎫-2,-π6关于直线θ=π2的对称点为M ′⎝
⎛⎭⎪⎫2,π6,但是选择支没有这 样的坐标.
又因为M ′⎝ ⎛⎭⎪⎫2,π6的坐标还可以写成M ′⎝
⎛⎭⎪⎫-2,7π6,故选B. 答案 B
二、填空题
5.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫1,34π,B ⎝ ⎛⎭
⎪⎫2,π4,则A 、B 两点间的距离为________. 解析 利用极坐标系中两点间距离公式.
答案 5
6.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标
是________.
答案 ⎝ ⎛⎭
⎪⎫6,43π 7.在极坐标系中,已知点P ⎝
⎛⎭⎪⎫3,π3,则点P 在-2π≤θ<2π,ρ∈R 时的另外三种极坐标形式为__________.
答案 ⎝ ⎛⎭⎪⎫3,-53π,⎝ ⎛⎭⎪⎫-3,43π,⎝ ⎛⎭
⎪⎫-3,-23π 8.(极坐标意义的考查)极坐标系中,点A 的极坐标是⎝
⎛⎭⎪⎫3,π6,则 (1)点A 关于极轴对称的点是________;
(2)点A 关于极点对称的点的极坐标是________;
(3)点A 关于直线θ=π2的对称点的极坐标是________.(规定ρ>0,θ∈[0,2
π))
解析 如图所示,在对称的过程中极径的长度始终没有变化,主要在于极角 的变化.另外,我们要注意:极角是以x 轴正向为始边,按照逆时针方向得 到的.
答案 (1)⎝ ⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝
⎛⎭⎪⎫3,5π6 三、解答题
9.(1)把点M 的极坐标⎝
⎛⎭⎪⎫-5,π6化成直角坐标; (2)把点N 的直角坐标(-3,-1)化成极坐标.
解 (1)x =-5cos π6=-523,y =-5sin π6=-52.
∴点M 的直角坐标是⎝ ⎛⎭
⎪⎫-523,-52. (2)ρ=(-3)2+(-1)2
=2,tan θ=-1-3=33. 又∵点N 在第三象限,ρ>0.∴最小正角θ=76π.
故点N 的极坐标是⎝ ⎛⎭
⎪⎫2,76π. 10.(极坐标的应用)已知A 、B 两点的极坐标分别是⎝
⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫4,5π6,求A 、B
两点间的距离和△AOB 的面积.
解 求两点间的距离可用如下公式:
|AB |= 4+16-2×2×4×cos ⎝ ⎛⎭
⎪⎫5π6-π3=20=2 5. S △AOB =12|ρ1ρ2sin(θ1-θ2)|=12⎪⎪⎪⎪⎪⎪2×4×sin ⎝ ⎛⎭⎪⎫5π6
-π3=12×2×4=4.
11.已知点Q (ρ,θ),分别按下列条件求出点P 的极坐标.
(1)点P 是点Q 关于极点O 的对称点;
(2)点P 是点Q 关于直线θ=π2的对称点.
解 (1)由于P 、Q 关于极点对称,得它们的极径|OP |=|OQ |,极角相差(2k +
1)π(k ∈Z ).所以,点P 的极坐标为(ρ,(2k +1)π+θ)或(-ρ,2k π+θ)(k ∈Z ).
(2)由P 、Q 关于直线θ=π2对称,得它们的极径|OP |=|OQ |,点P 的极角θ′
满足θ′=π-θ+2k π(k ∈Z ),
所以点P 的坐标为(ρ,(2k +1)π-θ)或(-ρ,2k π-θ)(k ∈Z ).。