平面直角坐标系经典练习题50894
七年级数学《平面直角坐标系》练习题及答案
七年级数学《【2 】平面直角坐标系》演习题A卷•基本常识班级姓名得分一、选择题(4分×6=24分)1.点A(4,3-)地点象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点B(0,3-)在()上A. 在x轴的正半轴上B. 在x轴的负半轴上C. 在y轴的正半轴上D. 在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A .(3,2) B. (3,2--)C. (2,3-) D.(2,3-)4.若点P(x,y)的坐标知足xy=0,则点P 的地位是()A. 在x轴上B. 在y轴上C. 是坐标原点 D .在x轴上或在y轴上5.某同窗的座位号为(4,2),那么该同窗的所座地位是()A. 第2排第4列B.第4排第2列C.第2列第4排D. 不好肯定6.线段AB两头点坐标分离为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1.B1的坐标分离为()A. A1(0,5-),B1(3,8--) B . A1(7,3), B1(0,5)C. A 1(4,5-) B 1(-8,1)D. A 1(4,3) B 1(1,0)二、填空题( 1分×50=50分 ) 7.分离写出数轴上点的坐标:8.在数轴上分离画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9.点A 在第象限,点在第象限 点)4,3(-C 在第象限,点)3,2(D 在第象限 点)0,2(-E 在第象限,点)3,0(F 在第象限10.在平面直角坐标系上,原点O 的坐标是(),x 轴上的点的坐标的特色是坐标为0;y 轴上的点的坐标的特色是坐标为0. 11.如图,写出表示下列各点的有序数对: A (,); B (,); C (,); D (,);E (,);F (,);G (,);H (,);I (,)-1-113.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标(,);将点)5,2(--向左平移3个单位长度可得到对应点(,);将点)5,2(+向上平移3单位长度可得对应点(,);将点)5,2(-向下平移3单位长度可得对应点(,)..14.在平面内两条互相且的数轴,就组成了平面直角坐标系.程度的数轴称为轴或轴,取向的偏向为正偏向;竖直的数轴称为轴, 又称轴, 取向的偏向为正偏向;两坐标轴的交点为平面直角坐标系的 三、解下列各题(8分+8分+10分共26分)15.如图,写出个中标有字母的各点的坐标,并指出它们的横坐标和纵坐标:你发明这些点有什么地位关系?你能再找出相似的点吗?(再写出三点即可)B 卷•才能练习一、选择题(4×6=24)1.坐标平面内下列各点中,在x 轴上的点是 ( ) A.(0,3) B.)0,3(- C.)2,1(- D.)3,2(--2.假如y x<0,),(y x Q 那么在( )象限 ( )A. 第四B. 第二C. 第一.三D. 第二.四 3.已知3)2(2=++-b a ,则),(b a P --的坐标为 ( )A. )3,2(B. )3,2(-C. )3,2(-D. )3,2(--4.若点),(n m P 在第三象限,则点),(n m Q --在 ( ) A.第一象限 B.第二象限 C.第三象限5. 如图:正方形ABCD 中点A 和点C 的坐标分离为)3,2(-和)2,3(-,则点B 和点D 的坐标分离为( A.)2,2(和)3,3( B.)2,2(--和)3,3( C. )2,2(--和)3,3(-- D. )2,2(和)3,3(--6.已知平面直角坐标系内点),(y x 的纵.横坐标知足2x y =,则点),(y x 位于( )A. x 轴上方(含x 轴)B. x 轴下方(含x 轴)C . y 轴的右方(含y 轴) D. y 轴的左方(含y 轴) 二、填空(2分×28=56分)7.有了平面直角坐标系,平面内的点就可以用一个来表示了.点)4,3(-的横坐标是,纵坐标是.8.若)4,2(表示教室里第2列第4排的地位,则)2,4(表示教室里第列第排的地位.9.设点P 在坐标平面内的坐标为),(y x P ,则当P 在第一象限时x 0 y 0, 当点P 在第四象限时,x 0,y 0.10.到x 轴距离为2,到y 轴距离为3的坐标为 11.按照下列前提肯定点),(y x P 地位:⑴ 若x=0,y ≥0,则点P 在 ⑵ 若xy=0,则点P 在⑶ 若022=+y x ,则点P 在 ⑷ 若3-=x ,则点P 在 ⑸ 若y x =,则P 在12.温度的变化是人们经常谈论的话题.请你依据右图,评论辩论某地某天温度变化的情形:⑵这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的,⑶这一天最低温度是℃,从最低温度到最高温度经由了小时;⑷温度上升的时光规模为,温度降低的时光规模为⑸图中A点表示的是,B点表示的是⑹你猜测次日清晨1时的温度是.三、解下列各题13.(10分)在平面直角坐标系中,描出下列各点,并将各点用线段依次衔接起来:(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)后响应5点的坐标.(10分)15.树立恰当的直角坐标系,表示边长为3的正方形各极点的坐标.(8分)16.(10分)如图:阁下两幅图案关于轴对称,左图案中阁下眼睛的坐标分离是(- ,)1,4(-(-,嘴角阁下端点的坐标分离是)1,2)3,2(-,)3,4⑴试肯定右图案的阁下眼睛和嘴角阁下端点的坐标17.(10分)如图:三角形DEF离写出A与点D,点B与点E,点(三角形ABC中任一点M的坐标18.附加题:(20分)在如图所示的直角坐标系中,(0,0),B(2,5),C(9你是如何做的?A 卷:略;9四.三.二.一.x轴.y轴;10(3,1),D(12,5),E(12,9),F(略;13(5,-5)(-5,-5),(2,8),(-2,2);14 垂直公共原点横轴.x轴,右,.纵.y.上.原点;15 A (0,6),B(-4,2),C(-2,-2) D(-2,-6) E(2,-6) F(2,2) G(4,2) 16略 17 图略 A1(0,1) B1(-3,-5) C1(5,0)附加题:这些点在统一向线上,在二四象限的角等分线上,举例略.B卷:1 B 2D 3B 4A 5 B 6A 7.坐标(或有序数对),3,-4; 8. 4,2;9. >.>.>.<;10. (3,2)(3,-2)(-3,2)(-3,-2) 11.⑴y轴的正半轴上⑵在x轴或y轴上⑶原点⑷y轴的左侧,距离y轴3单位且平行y轴的直线上,⑸在第一.三象限的角等分线上;12. ⑴27 31 ⑵37 15 23 3 ⑶37~23,12⑷3时到15时,0时至3时及15时刻24日,⑸21时温度为31度,0时温度为26度⑹24度阁下.13. 图略,图形象斗室子 14 . 图略平移后五个极点的响应坐标分离为(0,-1)(4,-1)(5,-0.5),(4,0)(0,0) 15. 略 16. 右图案的阁下眼睛的坐标分离是(2,3)(4,3),嘴角阁下端点的坐标分离是(2,1)(4,1)将左图案向右平移6个单位长度得到右图案或画左图案关于y 轴的对称图案得到右图案等. 17 .A(4,3) D(-4,-4);B(3,1) E(-3,-1);C(1,2) F(-1,-2) N (-x,-y)18.附加题面积为9+10.5+35+12=66.5 用朋分法。
平面直角坐标系(习题及答案)
平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果a b=0,那么点P的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若a b>0,那么点P的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在。
;点(b,0)在.6.若点A(n-3,m-1)在x轴上,点B(2n+1,m+4)在y轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y轴平行,且A B=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y轴的直线上,点A 到y轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x轴的距离为,到y轴的距离为,到原点的距离为.11.点M在y轴的左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为.12.点P(3,-2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y轴上,则点P关于x轴的对称点的坐标为.14.若点P 先向左平移 2 个单位,再向上平移 1 个单位得到P′(-1,3),则点P的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a个单位后的坐标为;点(x,y)向下平移b个单位后的坐标为;点(x,y)先向上平移a个单位,再向右平移b个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1.B2.D3.C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( 2 ,2),(2, 2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)#。
平面直角坐标系典型例题含答案
平面直角坐标系典型例题含答案平面直角坐标系是数学中非常重要的概念之一。
在平面直角坐标系中,有序数对是有顺序的两个数a与b组成的数对,记作(a,b)。
需要注意的是,a与b的先后顺序对位置有影响。
平面直角坐标系的定义是在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
平面直角坐标系中点的坐标通常表示为有序实数对(a,b),其中a叫横坐标,b叫做纵坐标。
如果在平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,那么点A的坐标就是(a,b)。
各象限内的点与坐标轴上的点的坐标特征如下:点P(x,y)在第一象限时,x和y均为正数;在第二象限时,x为负数,y为正数;在第三象限时,x和y均为负数;在第四象限时,x为正数,y为负数。
坐标轴上点P(x,y)的坐标特点也很简单,如果P在X轴上,那么它的纵坐标为0;如果P在Y轴上,那么它的横坐标为0;如果P在原点上,那么它的坐标为(0,0)。
特殊位置点的特殊坐标也需要掌握。
如果连线平行于坐标轴的点,那么平行于X轴的点纵坐标相同,横坐标不同,平行于Y轴的点横坐标相同,纵坐标不同。
如果点在象限角平分线上,那么在第一和第三象限,纵横坐标相同;在第二和第四象限,纵横坐标互为相反数。
对称点的坐标特征也需要掌握。
平面内任一点P(m,n)的关于X轴的对称点坐标为(m,-n),关于Y轴的对称点坐标为(-m,n),关于原点的对称点坐标为(-m,-n)。
点到坐标轴的距离也是重要的知识点之一。
点P(x,y)到X 轴距离为y,到Y轴的距离为x。
最后,点的平移坐标变化规律可以简单记为“左减右加,上加下减”。
在解题时,需要注意点的坐标与象限的关系。
例如,如果点P(-2,3)在第二象限,那么它的横坐标为负数,纵坐标为正数。
如果点P(a,a-2)在第四象限,那么a的取值范围为a<0.如果点P(-2,x^2+1)在第三象限,那么它的横坐标为负数,纵坐标为负数。
平面直角坐标系练习题及答案
平面直角坐标系练习题及答案问题1给定平面直角坐标系中两个点A(-3, 2)和B(5, -4),求点A和点B之间的距离。
答案1我们可以使用两点间距离的公式来计算点A和点B之间的距离。
公式为:$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$其中,$(x_1, y_1)$表示点A的坐标,$(x_2, y_2)$表示点B的坐标。
代入点A和点B的坐标:$$d = \sqrt{(5 - (-3))^2 + (-4 - 2)^2} \\\quad = \sqrt{(8)^2 + (-6)^2} \\\quad = \sqrt{64 + 36} \\\quad = \sqrt{100} \\\quad = 10$$因此,点A和点B之间的距离为10。
问题2已知平面直角坐标系中一直线的斜率为2,经过点(3, -1),求该直线的方程。
答案2我们可以使用点斜式来确定直线的方程。
点斜式的公式为:$$y - y_1 = m(x - x_1)$$其中,$(x_1, y_1)$表示经过的点的坐标,$m$表示斜率。
代入点(3, -1)和斜率2:$$y - (-1) = 2(x - 3) \\\quad y + 1 = 2x - 6 \\\quad y = 2x - 7$$因此,该直线的方程为$y = 2x - 7$。
问题3已知平面直角坐标系中一直线的方程为$y = 3x + 2$,求该直线与x轴和y轴的交点坐标。
答案3当直线与x轴相交时,y坐标为0。
将其代入直线方程,得到:$$0 = 3x + 2 \\\Rightarrow x = -\frac{2}{3}$$因此,直线与x轴的交点坐标为$(-\frac{2}{3}, 0)$。
当直线与y轴相交时,x坐标为0。
将其代入直线方程,得到:$$y = 3(0) + 2 \\\Rightarrow y = 2$$因此,直线与y轴的交点坐标为$(0, 2)$。
平面直角坐标系练习题精选
平面直角坐标系练习题精选(两套)平面直角坐标系练习题精选一(考试时间:100分钟 满分:100分)一、选择题(每小题3分,共30分)1、点A (3-,3)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限参考答案:B .考核的知识点:象限内点坐标的特征2、点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴四个单位长,点P 的坐标是( )A .(3,4-)B .(3-,4)C .(4,3-)D .(4-,3) 参考答案:B .考核的知识点:点坐标到坐标轴的距离与坐标之间的关系3、若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上参考答案:D .考核的知识点:坐标轴上点的特征4、坐标平面内下列各点中,在x 轴上的点是( )A .(0,3)B .(3-,0)C .(1-,2)D .(2-,3-)参考答案:B .考核的知识点:坐标轴上点的特征5、如果yx <0,),(y x Q 那么在( )象限 A .第四 B .第二 C .第一、三 D .第二、四参考答案:C .考核的知识点:象限内点坐标的特征6、若点P (m ,n )在第三象限,则点Q (m -,n -)在( )A .第一象限B .第二象限C .第三象限D .第四象限参考答案:A .考核的知识点:象限内点坐标的特征7、线段AB 两端点坐标分别为A (1-,4),B (4-,1),现将它向左平移4个单位长度,得到线段11B A ,则11B A ,的坐标分别为( )A .1A (5-,0),1B (8-,3-) B . 1A (3,7),1B (0,5)C .1A (5-,4),1B (8-,1)D . 1A (3,4),1B (0,1)参考答案:C .考核的知识点:平移的性质8、如图:正方形ABCD 中点A 和点C 的坐标分别为(2-,3)和(3,2-),则点B 和点D 的坐标分别为( )A .(2,2)和(3,3)B .(2-,2-)和(3,3)C .(2-,2-)和(3-,3-)D .(2,2)和(3-,3-)参考答案:B .考核的知识点:关于坐标轴对称的点坐标的特征9、已知平面直角坐标系内点(x ,y )的纵、横坐标满足2x y =,则点(x ,y )位于( )A .x 轴上方(含x 轴)B .x 轴下方(含x 轴)C .y 轴的右方(含y 轴)D .y 轴的左方(含y 轴)参考答案:A .考核的知识点:函数图像上点坐标的特征10、已知03)2(2=++-b a ,则P (a -,b -)的坐标为( )A .(2,3)B .(2,3-)C .(2-,3)D .(2-,3-)参考答案:C .考核的知识点:通过计算确定点的坐标二、填空题(每小题4分,共24分)11、有了平面直角坐标系,平面内的点就可以用一个 来表示了.点)4,3(- 的横坐标是 ,纵坐标是 .参考答案:坐标(或有序数对);3;4-.考核的知识点:平面直角坐标系的概念12、设点P 在坐标平面内的坐标为P (x ,y ),则当P 在第一象限时x ____0 ,y ____0;当点P 在第四象限时,x ___0,y ____0.参考答案:>,>;>,<.考核的知识点:象限内点坐标的特征13、到x轴距离为2,到y轴距离为3的坐标为 .参考答案:(3,2)、(3,2-).-)、(3-,2-,2)、(3考核的知识点:平面直角坐标系中的点到坐标轴的距离14、在平面直角坐标系中,将点(2,5-)向右平移3个单位长度,可以得到对应点坐标( _____, ______);将点(2-,5-)向左平移3个单位长度可得到对应点( _____, ______);将点(2,5)向上平移3单位长度可得对应点( _____,_____ );将点(2-,5)向下平移3单位长度可得对应点( _____ , _____).参考答案:(5,5-,2).-);(2,8);(2-);(5-,5考核的知识点:平面直角坐标系中点坐标平移的特征三、解答题(共5小题,计46分,解答应写出过程)15、(本题7分)在平面直角坐标系中,依次描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)参考答案:如图所示:考核的知识点:平面直角坐标系中点的坐标16、(本题8分)将下图方格中的图案作下列变换,请画出相应的图案:(1)沿y轴正向平移4个单位;(2)关于y轴轴对称.参考答案:如图所示:考核的知识点:坐标平面内图形的平移17、(本题10分)下图中标明了小英家附近的一些地方.以小英家为坐标原点,建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,1-,2-)的路-),(1-),(0,1-),(3-,1线转了一下,又回到家里,写出路上她经过的地方.参考答案:(1)汽车站(1,1),消防站(2,2-);(2)小英路上经过的地方:游乐场,公园,姥姥家,宠物店,邮局.考核的知识点:平面直角坐标系在生活中的应用18、(本题10分)在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0)确定这个四边形的面积.你是怎样做的?参考答案:面积为5++35+12=.用分割法:可将四边形分成三个直角三角形和一个矩形来进行计算.考核的知识点:点的坐标与四边形面积的综合题19、(本题11分)y=为用围棋棋子可以在棋盘中摆出许多有趣的图案.如图(1),•在棋盘上建立平面直角坐标系,以直线x 对称轴,我们可以摆出一个轴对称图案(其中A与A′是对称点),你看它像不像一只美丽的鱼.y=为对称轴的对称图案,并在所作的图形(1)请你在图(2)中,也用10枚以上..的棋子摆出一个以直线x中找出两组对称点,分别标为B、B′、C、C′(•注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B、B′、C、C′的坐标分别是:B______,B′______,C_______,C′_______;根据以上对称点坐标的规律,写出点P(a,b)关于对称轴xy=的对称点P′的坐标是________.(1)(2)参考答案:(1)如图所示:(2)(3,10);(10,3);(7,10);(10,7);(b,a)考核的知识点:坐标平面内对称点的性质平面直角坐标系练习题精选二一、填空题1.点(-3,2)在第______象限;点(2,-3)在第______象限.2.点(p,q)既在x轴上,又在y轴上,则p=______;q=_________.3.点(p,q)到x轴距离是________;到y轴距离是________.4.点P(a,-a)是在______象限的角平分线上;或在________.5.若P1(x1,y1)、P2(x2,y2)两点关于原点对称,则x1与x2关系为_______,y1与y2•的关系为_______.6.如图1为某地区A、B、C、D四座城市,附近要建一所核电站E,向四座城市供电,试建立适当的直角坐标系,写出各点的坐标__________________________________________________________________________.二、选择题7.已知P(-4,3),与P关于x轴对称的点的坐标是()A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,-3)8.已知x轴上一点A(6,0),y轴上一点B(0,b),且AB=10,则b的值为()A.8 B.-8 C.±8 D.以上答案都不对9.一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)、(1,2),则第四个顶点的坐标为()A.(-1,2) B.(1,-2) C.(3,2)D.(1,-2)或(-1,2)或(3,2)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)11.直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为()A.(-3,-7) B.(-7,3) C.(3,-7) D.(7,-3)三、解答题12.边长为4的等边三角形ABC,以B点为原点,以BC边所在的直线为x•轴建立直角坐标系写出A、B、C各点的坐标.13.求以点(0,3)为圆心,5为半径的圆与x轴、y轴的四个交点的坐标.参考答案1.二四 2.0 0 3.│q││p│ 4.二、四原点 5.x1+x2=0 y1+y2=0 6.答案不唯一7.B 8.C 9.D 10.A 11.B),B1(0,0),C1(5,0);12.A(,2),B2(0,0),C2(5,0);A2(,-2A3),B3(0,0),C3(-5,0);A4(,),B4(0,0),C4(-5,0);13.(4,0),(-4,0),(0,-2),(0,8)14.略。
平面直角坐标系50题含解析.pdf
一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于()A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)5.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序非负实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A .1B .2C .3D .46.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A .(﹣1,1)B .(﹣2,﹣1)C .(﹣3,1)D .(1,﹣2)7.点M (﹣3,4)离原点的距离是多少单位长度()A .3B .4C .5D .78.如图,点M (﹣3,4)到原点的距离是()A.3B.4C.5D.79.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.1210.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.211.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.312.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S△ABC=()A.1B.2C.3D.413.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=024.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,﹣1)D.(3,1)28.在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个B.2个C.4个D.6个29.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1B.1C.﹣1或3D.330.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)31.我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x1=1,y1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A.401B.402C.2009D.201032.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为()A.(5,2009)B.(6,2010)C.(3,401)D.(4,402)33.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E 的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)二.填空题34.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.35.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.36.如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.37.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是.38.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.39.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿OB折叠,使点A落在Aʹ的位置上.若OB=,,求点Aʹ的坐标为.40.点A(﹣6,8)到x轴的距离为,到y轴的距离为,到原点的距离为.41.在某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,长度单位为100km.地震监测部门预报该地区将有一次地震发生,震中位置为(﹣1,2),影响范围的半径为300km,则下列主干线沿线的6个城市在地震影响范围内有个.主干线沿线的6个城市为:A(0,﹣1),B(0,2.5),C(1.24,0),D(﹣0.5,0),E(1.2,0),F(﹣3.22,0)参考数据:.42.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).43.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.44.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.45.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.46.如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.47.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.48.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.49.如图,已知A1(0,1),,,A4(0,2),,,A7(0,3),A8(,﹣),…则点A2010的坐标是.三.解答题50.已知如图,在平面直角坐标系中有四点,坐标分别为A(﹣4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标.(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围.一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点M (﹣2,1)在第二象限.故选:B .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)考点:点的坐标.分析:根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度,解答即可.解答:解:∵点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的横坐标为2或﹣2,纵坐标是1或﹣1,∴点M 的坐标为(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D .点评:本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)考点:坐标与图形性质.分析:由点M 和M ʹ在同一条平行于x 轴的直线上,可得点M ʹ的纵坐标;由“M ʹ到y 轴的距离等于4”可得,M ʹ的横坐标为4或﹣4,即可确定M ʹ的坐标.解答:解:∵M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,∴M ʹ的纵坐标y=﹣2,∵“M ʹ到y 轴的距离等于4”,∴M ʹ的横坐标为4或﹣4.所以点M ʹ的坐标为(4,﹣2)或(﹣4,﹣2),故选B .点评:本题考查了点的坐标的确定,注意:由于没具体说出M ʹ所在的象限,所以其坐标有两解,注意不要漏解.4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)考点:点的坐标.专题:压轴题;新定义.分析:由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.解答:解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了什么.5.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4考点:点的坐标.专题:压轴题;新定义.分析:若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据定义,“距离坐标”是(1,2)的点,说明M到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.解答:解:因为平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个.故选D.点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)考点:坐标确定位置.专题:压轴题.分析:根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.解答:解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.7.点M(﹣3,4)离原点的距离是多少单位长度()A.3B.4C.5D.7考点:两点间的距离公式.专题:计算题.分析:根据两点间的距离公式即可直接求解.解答:解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.8.如图,点M(﹣3,4)到原点的距离是()A.3B.4C.5D.7考点:两点间的距离公式.分析:根据点在平面直角坐标系中的坐标的几何意义,及两点间的距离公式便可解答.解答:解:∵点M的坐标为(﹣3,4),∴点M离原点的距离是=5.故选C.点评:本题主要考查了坐标到原点的距离与横纵坐标之间的关系及两点间的距离公式.9.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.12考点:两点间的距离公式.分析:点的横纵坐标的绝对值和这点到原点的距离组成一个直角三角形,利用勾股定理求解即可.解答:解:点P(6,8)到原点的距离为:=10,故选A.点评:本题考查了两点间的距离公式,用到的知识点为:点到原点的距离是此点的横纵坐标的绝对值为两直角边的直角三角形的斜边.10.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.2考点:两点间的距离公式.分析:点到原点的距离为点横坐标与纵坐标的平方和的平方根.解答:解:∵()2+(﹣1)2=4∴点P到原点的距离为=2.故选D.点评:本题考查点的特征,关键是牢记点到原点距离的计算公式.11.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.3考点:两点间的距离公式.专题:压轴题;新定义.分析:对于①若点C在线段AB上,设C点坐标为(x0,y0)然后代入验证显然|AC|+|CB|=|AB|成立.成立故正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,用坐标表示|AC|+|CB|然后根据绝对值不等式可得到大于|AB|不成立,故可得到答案.解答:解:对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:|AB|=|x2﹣x1|+|y2﹣y1|.对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|=|x2﹣x1|+|y2﹣y1|=|AB|成立,故①正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|≥|(x0﹣x1)+(x2﹣x0)|+|(y0﹣y1)+(y2﹣y0)|=|x2﹣x1|+|y2﹣y1|=|AB|.③不一定成立∴命题①成立,故选:B.点评:此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.本题的易错点在于不等式:|a|+|b|≥|a+b|忘记等号也可以成立.12.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,=()则S△ABCA.1B.2C.3D.4考点:坐标与图形性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.专题:压轴题;数形结合.分析:本题可先根据直线的方程求出A、B两点的坐标,再根据角相等可得出三角形相似,的大小.最后通过相似比即可得出S△ABC解答:解:∵直线y=﹣2x+4与x轴,y轴分别相交于A,B两点∴OA=2,OB=4又∵∠1=∠2∴∠BAO=∠OCA∴△OAC∽△OAB则OC:OA=OA:OB=1:2∴OC=1,BC=3,=×2×3=3∴S△ABC故选C.点评:主要考查了一次函数图象上点的特征和点的坐标的意义以及与相似三角形相结合的具体运用.要把点的坐标有机地和图形结合起来求解.13.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)考点:坐标与图形性质;垂线段最短;等腰直角三角形.专题:计算题.分析:线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.解答:解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.点评:动手操作很关键.本题用到的知识点为:垂线段最短.14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化考点:坐标与图形性质;反比例函数系数k的几何意义;关于原点对称的点的坐标.分析:设P的坐标为(m,n),因为点P关于原点的对称点为Pʹ,Pʹ的坐标为(﹣m,﹣n);因为P与A关于x轴对称,故A的坐标为(m,﹣n);而mn=4,则△PAPʹ的面积为•PA•PʹA=2mn=8.解答:解:设P的坐标为(m,n),∵P是函数在第一象限的图象上任意一点,∴n=,∴m•n=4.∵点P关于原点的对称点为Pʹ,∴P'的坐标为(﹣m,﹣n);∵P与A关于x轴对称,∴A的坐标为(m,﹣n);∴△PAP'的面积=•PA•PʹA=2mn=8.故选C.点评:本题结合反比例函数的性质考查了关于原点对称的点的坐标变化规律和关于x、y轴对称的点的性质,要注意二者的区别.15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断考点:坐标与图形性质;圆的认识.专题:动点型.分析:计算△DEA的面积,关键是确定底和高,在△DEA中,EA是半径,EA=|b|,点D在半圆EF上运动,点D与AE的距离最大值是|b|,故S△DEA的最大值为:×|b|×|b|=.解答:解:∵在△DEA中,当D运动于DA⊥AE时,此时DA作为高是最大的,DA=|b|∵EA=|b|,∴S△DEA的最大值为:×|b|×|b|=.故选A点评:本题考查了三角形面积的求法,要合理地确定底和高,底一定时,高最大,面积就最大.16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或考点:坐标与图形性质;待定系数法求一次函数解析式.专题:计算题.分析:求出直线解析式后再求与坐标轴交点坐标,进一步求解.解答:解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选C.点评:主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.考点:坐标与图形性质;解直角三角形.分析:本题本题可先根据三角函数求出AC和BC的值,由此即可得出B点的坐标.解答:解:∵∠BAC=60°,∠BCA=90°,AB=a,则AC=AB×cos60°=a,BC=AB×sin60°=a,∴点B的横坐标为a﹣2,纵坐标为a.故选D.点评:本题主要考查了三角函数的应用.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标确定位置.分析:因为m2>0,m﹣n>0,所以根据平面坐标系中点的坐标特点即可确定点在第一象限.解答:解:∵mn<0,m>0,∴n<0,∵m2>0,m﹣n>0,∴点P位于第一象限,故选A.点评:此题考查了坐标系中各象限中点的坐标特点,准确记忆是关键.19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)考点:坐标确定位置.专题:压轴题.分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)考点:坐标确定位置.分析:由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.解答:解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.点评:由已知条件正确确定坐标轴的位置是解决本题的关键.21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排考点:坐标确定位置.分析:根据题目信息,有序数对的第一个数表示排数,第二个数表示号数,以及电影院的座位排列规则解答.解答:解:∵座位按“×排×号”编排,∴小明在8排6号,小菲在8排12号,∴小明与小菲都在第8排,是同一排,中间有8号、10号间隔两人.故选A.点评:本题考查了坐标位置的确定,明确有序数对的实际意义是解题的关键,另外,还要了解电影院的座位,同一排的偶数号与偶数号相邻,奇数号与奇数号相邻.22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个考点:坐标确定位置.分析:根据图形明确所建的平面直角坐标系,然后判断各点的位置.解答:解:①实验楼的坐标是(3,3),原描述错误;②实验楼的坐标是(3,3),正确;③实验楼的坐标为(4,4),坐标位置错误;④实验楼在校门的东北方向上,距校门200米,正确.有两个说法正确,故选B.点评:本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=0考点:坐标与图形性质.分析:根据角平分线上的点到角的两边的距离相等可得第二四象限角平分线上的点的横坐标与纵坐标互为相反数,再根据相反数的定义解答.解答:解:∵点P(a,b)在第二、四象限的角平分线上,∴a、b互为相反数,∴a+b=0.故选D.点评:本题考查了坐标与图形性质,熟记平面直角坐标系的特征是解题的关键.24.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)考点:坐标与图形性质;勾股定理;正方形的性质;翻折变换(折叠问题).专题:压轴题.分析:过点Bʹ作BʹD⊥OC,因为∠CPB=60°,CBʹ=OC=OA=4,所以∠BʹCD=30°,BʹD=2,根据勾股定理得DC=2,故OD=4﹣2,即Bʹ点的坐标为(2,).解答:解:过点Bʹ作BʹD⊥OC∵∠CPB=60°,CBʹ=OC=OA=4∴∠BʹCD=30°,BʹD=2根据勾股定理得DC=2∴OD=4﹣2,即Bʹ点的坐标为(2,)故选C.点评:主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)考点:坐标与图形性质.分析:先写出点A的坐标为(﹣4,6),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.解答:解:点A变化前的坐标为(﹣4,6),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(﹣4,3).故选A.点评:本题考查了坐标与图形性质的知识,属于基础题,比较简单.26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()。
中考数学平面直角坐标系训练题库(含答案)(102页)
中考数学平面直角坐标系训练题库(含答案)(102页)一、选择题1. 在平面直角坐标系中,点P(2, 3)位于()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 已知点A(3, 4)和点B(2, 1),则线段AB的中点坐标为()。
A. (1/2, 3/2)B. (1/2, 7/2)C. (1/2, 3/2)D. (1/2, 3/2)答案:B3. 在平面直角坐标系中,点(3, 3)关于原点对称的点的坐标是()。
A. (3, 3)B. (3, 3)C. (3, 3)D. (3, 3)答案:C4. 已知点A(2, 3)和点B(2, 3),则线段AB的长度为()。
A. 4B. 6C. 8D. 10答案:A5. 在平面直角坐标系中,点(4, 5)关于x轴对称的点的坐标是()。
A. (4, 5)B. (4, 5)C. (4, 5)D. (4, 5)答案:A二、填空题6. 在平面直角坐标系中,点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是______。
答案:(3, 4)7. 已知点A(0, 2)和点B(4, 0),则线段AB的斜率为______。
答案:1/28. 在平面直角坐标系中,点(5, 0)关于原点对称的点的坐标是______。
答案:(5, 0)9. 已知点A(2, 1)和点B(4, 3),则线段AB的中点坐标为______。
答案:(1, 2)10. 在平面直角坐标系中,点(0, 3)关于y轴对称的点的坐标是______。
答案:(0, 3)(后续题目及答案请见完整题库)三、解答题11. 在平面直角坐标系中,有一矩形ABCD,顶点A的坐标为(1, 2),顶点C的坐标为(3, 1)。
求矩形对角线AC的长度。
解:我们可以通过坐标计算出对角线AC的长度。
设点B的坐标为(x, y),则点D的坐标为(3, y)。
由于ABCD是矩形,所以AB和CD平行且等长,AD和BC平行且等长。
平面直角坐标系-基础练习(含答案).doc
D. mW — 2 A.第一象限 B.第二象限 C.第三象限 D.第四象限)C .点CD .点。
平面直角坐标系练习一、选择题1. 点F(m, 1)在第二象限内,则点Q(-m, 0)在( )A. x 轴正半轴上B.工轴负半轴上C. _y 轴正半轴上D. y 轴负半轴上2. 点P(2m-1,3)在第二象限,则仞的取值范围是()A. m > —B. m —C. m < — 22 2 3.对任意实数x,点P(x, x 2 - 2x)-定不在( ) • •4. 如图,小明从点。
出发,先|可西走40米,再向南走30米到达点如果点M 的位置用(-40, -30)表示,那么(10, 20)表示的位置是(A .点AB .点B5. 在平面直角坐标系中,将点A(l, 2)的横坐标乘以一1,纵坐标不变,得到点则点A 与点/T 的关系是()A.关于x 轴对称B.关于),轴对称C.关于原点对称D.将点A 向x 轴负方向平移一个单位得点A'6. 如图,。
为矩形ABCD 的中心,将直角三角板的直角顶点与。
点重合,转动三角板使两直角边始终与BC 、相交,交点分别为M 、N.如果AB=4, AD=6,。
M= x , ON= y 则y 与x 的关系是 A 2 口 6 厂c 3 A.y = —x B. y = — C. y = x D. y = —x 3 x 2二、填空题7. 若初为整数,且点(12—4用,14一3梢在第二象限,则m 2 +2009 =8. 在直角坐标系尤。
〉中,点P (4, y)在第一象限内,且。
户与尤轴正半轴的夹角为60",则y 的值是:9.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.10.在平面直角坐标系中,有A(0, 1), 5(-1, 0), C(l, 0)三点坐标.若点。
与A, B, C三点构成平行四边形,请写出所有符合条件的点。
平面直角坐标系测试题习题附答案
平面直角坐标系测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 ( )A .(2,5)B .(5,2)C .(﹣5,2)D .(﹣5,2)或(5,2)【答案】D【分析】根据平行于x 轴的直线上的点纵坐标相同,再根据到y 轴的距离为5,即可判断坐标.【详解】解:∵点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,∴点N 的纵坐标为2,∵点N 到y 轴的距离为5,∴点N 的横坐标为±5,则点N 的坐标为(﹣5,2)或(5,2);故选:D .【点睛】本题考查了平面直角坐标系中点的坐标特征,解题关键是明确平行于x 轴的直线上的点纵坐标相同,到y 轴的距离是横坐标的绝对值.2.如果点P (a ,b )在x 轴上,那么点Q (ab ,﹣1)在( )A .y 轴的正半轴上B .y 轴的负半轴上C .x 轴的正半轴上D .x 轴的负半轴上【答案】B【分析】根据在x 轴上的点的特点可知0b =,即可求得0ab =,进而确定Q 点的坐标.【详解】点P (a ,b )在x 轴上,∴0b =,∴0ab =,∴点Q (ab ,﹣1)在y 轴的负半轴上故选B【点睛】本题考查了坐标轴上的点的特点,掌握坐标轴上的点的特征是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x 轴正半轴上的点:横坐标>0,纵坐标=0;②x 轴负半轴上的点:横坐标<0,纵坐标=0;③y 轴正半轴上的点:横坐标=0,纵坐标>0;④y 轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0. 3.点A (-3,1)到y 轴的距离是( )个单位长度.A .-3B .1C .-1D .3【答案】D【分析】由点到y 轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知(3,1)A -到y 轴的距离为33-=∴(3,1)A -到y 轴的距离是3个单位长度 故选D .【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点(,)A a b 到y 轴的距离=a ;到x 轴的距离=b .4.在平面直角坐标系中,点A (2,﹣4),点B (﹣3,1)分别在( )象限 A .第一象限,第三象限B .第二象限,第四象限C .第三象限,第二象限D .第四象限,第二象限【答案】D【分析】应先判断出点A ,B 的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵20,40,30,10>-<-<>∴点A (2,﹣4)在第四象限,点B (﹣3,1)在第二象限故选:D【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)【答案】D【分析】 根据题意可得,从A →B →C →D →A 一圈的长度为2(AB +BC )=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A 点坐标为(1,1),B 点坐标为(﹣1,1),C 点坐标为(﹣1,﹣2), ∴AB =1﹣(﹣1)=2,BC =2﹣(﹣1)=3,∴从A →B →C →D →A 一圈的长度为2(AB +BC )=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D .【点睛】本题考查了坐标规律探索,找到规律是解题的关键.6.若点A (a ,b ﹣2)在第二象限,则点B (﹣a ,b +1)在第( )象限.A .一B .二C .三D .四【答案】A【分析】先根据第二象限内点坐标符号可得0,20a b <->,再判断出,1a b -+的符号即可得.解:点(,2)A a b -在第二象限,0,20a b ∴<->,即0,2a b <>,0,130a b ∴->+>>,则点,(1)B a b -+在第一象限,故选:A .【点睛】本题考查了判断点所在象限,熟练掌握各象限内的点坐标符号规律是解题关键. 7.根据下列表述,能确定位置的是( )A .某电影院2排B .宜昌市夷陵路C .北偏东30D .东经118︒,北纬40︒【答案】D【分析】根据有序数对表示点的位置解答.【详解】解:A 选项:第二排有很多座位,不能确定是哪一个,故A 错误;B 选项:宜昌市夷陵路有很多点,不能确定是哪一个,故B 错误;C 选项:北偏东30,这一个方位很广,不能确定是哪个位置,故C 错误;D 选项:东经118︒,北纬40︒,经线和纬线相交为一个点,故D 正确.故选:D .【点睛】此题考查有序数对,正确掌握利用有序数对表示一个点的坐标是解题的关键. 8.如图,在平面直角坐标系中,若三角形ABC 的三个顶点分别为A (2,3),B (3,1),C (﹣2,﹣2),则三角形ABC 的面积为( )A .6.5B .13C .5.5D .11【分析】利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:∵A(2,3),B(3,1),C(﹣2,﹣2),∴1115545531225107.51 6.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=.故选:A.【点睛】本题考查了坐标与图形,熟练掌握平面直角坐标系中的坐标特点及三角形的面积的求法是解题的关键.二、填空题9.已知ABC的面积为3,且A、B两点的坐标分别为(1,0)、(2,0)-,若点C到y轴距离是1,则点C的坐标为____________.【答案】(1,2)或(-1,2)或(-1,-2)或(1,-2)【分析】以AB=3为底,根据△ABC面积求出其高,进而得到C点的纵坐标的绝对值为2,进而得到C点的纵坐标为2或-2,再由C到y轴距离是1得到其横坐标为1或-1,由此即可求出C点的坐标.【详解】解:∵A、B两点的坐标分别为(1,0)、(2,0)-,∴AB=3,设C点纵坐标为y,且ABC的面积为3,∴1||2ABCS AB y∆=⋅,代入数据,得到:||2y=,∴2y=±,又点C到y轴距离是1,∴C点的横坐标为±1,∴点C的坐标为(1,2)或(-1,2)或(-1,-2)或(1,-2),如下图所示:故答案为:(1,2)或(-1,2)或(-1,-2)或(1,-2) .【点睛】本题考查三角形的面积,平面直角坐标系中点的坐标特点等;本题的关键是通过三角形面积求出点的纵坐标的绝对值,进而确定的点坐标.10.如图,点A、B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为________.【答案】(3,2)【分析】利用DB=1,B(3,0),得出△AOB沿x轴向右平移了2个单位长度,再利用平移中点的变化规律求解即可.【详解】∵点A. B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,DB=1,∴OB=3,∴OD=2,∴△AOB沿x轴向右平移了2个单位长度,∴点C的坐标为:(3,2).故答案为:(3,2).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点.11.已知P(1﹣m,m+2)在x轴上,则点P的坐标是______________.【答案】(3,0)【分析】根据x 轴上点的纵坐标为零,可得m 的值,进而可得答案.【详解】解:(1,2)P m m -+在x 轴上,20m ∴+=,解得2m =-,13m ∴-=,∴点P 的坐标是(3,0).故答案为:(3,0).【点睛】本题考查了点的坐标,利用x 轴上点的纵坐标为零得出m 的值是解题关键. 12.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.【答案】(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2020=4×504+4,∴点A 2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”.13.已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.【答案】(3,2)【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.已知点(34,47)A a a -+在第一、三象限的角平分线上,则a 的值为________.若A 在第二、四象限的角平分线上,则a 的值是_________.【答案】11- 37- 【分析】第一、三象限的角平分线上点的横坐标与纵坐标相等,第二、四象限的角平分线上的点的横坐标与纵坐标互为相反数,根据点的坐标特点列方程,解方程即可得到答案.【详解】 解: 点(34,47)A a a -+在第一、三象限的角平分线上,3447,a a ∴-=+11,a ∴=-(34,47)A a a -+在第二、四象限的角平分线上,34470,a a ∴-++=3.7a ∴=- 故答案为:311,.7-- 【点睛】本题考查的是四个象限的角平分线上点的坐标特点,掌握其坐标特点是解题的关键.三、解答题15.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.【答案】(1)见解析;(2)14【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积. 【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.16.如图,A ,B 两点的坐标分别是()2,1-,()2,1,你能确定()3,3的位置吗?【答案】()3,3的位置是点C .【分析】先根据A 点坐标确定x 轴与y 轴位置,两轴交点为坐标原点O ,然后建立平面直角坐标系,根据点的坐标(3,3)找到点C 即可.【详解】解:点A 向左平移2个单位,是y 轴坐在位置,点A 向上平移一个单位为x 轴坐在位置,两轴相交位置为坐标原点O ,以O 为坐标原点建立平面直角坐标系,如图,从点O 向右平移3个单位,再向上平移3个单位是(3,3)用C 表示.【点睛】本题考查已知点坐标建立平面直角坐标系,根据坐标找点,掌握点的横坐标绝对值是点到y 轴的距离,点的纵坐标绝对值是点到x 轴的距离是解题关键.17.如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系.三角形ABC 内任意一点M 的坐标为(,)x y ,点M 经过这种变换后得到点N ,点N 的坐标是什么?【答案】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【分析】根据点在直角坐标系中所在的象限及位置直接可以确定点的坐标,各组点的横纵坐标都是互为相反数,由此得到点M 的对应点N 的坐标.【详解】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【点睛】此题考查直角坐标系中点的坐标,正确确定各点的坐标及发现规律解决问题是解题的关键.18.如图1,在平面直角坐标系中,正方形OABC 的面积等于4,长方形OADE 的面积等于8,其中点C 、E 在x 轴上,点A 在y 轴上.(1)请直接写出点A ,点B ,点D 的坐标;(2)如图2,将正方形OABC 沿x 轴向右平移,移动后得到正方形O A B C '''',设移动后的正方形O A B C ''''长方形OADE 重叠部分(图中阴影部分)的面积为S ;①当1AA '=时,S =______;当3AA '=时,S =______;当5AA '=时,S =______; ②当1S =时,请直接写出AA '的值.【答案】(1)()0,2A ,()2,2B -,()4,2D ;(2)①2,4,2;②12AA '=或112AA '=. 【分析】(1)由正方形面积求出边长再求出A 、B 点坐标,又由长方形面积求出长再求出D 点坐标.(2)①AA ′=1 时,面积为图2阴影部分;AA ′=3 时,面积为正方形面积;AA ′=5时正方形一半在长方形内,一半在长方形外.②S =1时注意有两种情况:正方形刚进入长方形的时候和正方形快要走出长方形的时候.【详解】解:(1)正方形面积为4∴AB =AO = 2∴()0,2A ,∴()2,2B -,长方形面积为8,AO =2∴AD =8÷2=4∴()4,2D(2)①AA ′=1 时,面积为图2阴影部分,S =AA ′×AO =1×2=2 AA ′=3 时,面积如下图,S =AB′×AO=2×2=4AA ′=5时,面积如下图,S =B'D×BC=1×2=2②正方形刚进入长方形时,可参照图2,阴影部分是AA'O'O ,该部分面积=AA '×AO =AA '×2=1∴AA '=1÷2=12正方形快要走出长方形时,可参照下图,阴影部分是B'DEC ,该部分面积=B'D ×B'C =B'D ×2=1∴B'D=1÷2=12∴A'D=2-12=32∴AA'=4+32=112故答案为AA′=12或AA′=112【点睛】本题考查图形的平移和坐标的知识,准确识图,结合图形灵活运用相关知识是解题的关键.19.图中标明了李明家附近的一些地方.(1)写出书店和邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿(100,200)-,(100,0),(200,100),(200,200)-,(100,200)--,(0,100)-的路线转了一下,又回到家里,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?【答案】(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图见解析,得到箭头符号.(1)根据坐标的概念结合图形即可得;(2)由图形及其坐标得出具体的位置;(3)连线可得答案.【详解】解:(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图,得到箭头符号.【点睛】本题主要考查坐标确定位置,各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0. 20.已知点(2,28)P a a -+分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;【答案】(1)()6,0-;(2)()1,14 【分析】 (1)根据点在数轴上的特点,令280a +=,即可求得a ,进而求得P 的坐标; (2)根据平行与y 轴的直线的特点,令21a -=,即可求得a ,进而求得P 的坐标; 【详解】 (1)点P 在x 轴上, ∴280a +=,2426a ∴-=--=-∴点P 的坐标()6,0-(2)点Q 的坐标为(1,5),直线PQ ∥y 轴,∴21a -=解得3a =286814a ∴+=+=∴点P 的坐标()1,14 【点睛】 本题考查了平面直角坐标系中坐标轴上的点的坐标特点,掌握以上知识是解题的关键. 21.如图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(﹣1,3),点C 的坐标为(1,﹣1).(1)请在图中画出平面直角坐标系;(2)把三角形ABC 向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的三角形A 1B 1C 1,并写出平移后各顶点的坐标.【答案】(1)见解析;(2)见解析; A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【分析】(1)根据已知两点的坐标,即可判断横轴和纵轴的位置,从而画出平面直角坐标系; (2)分别将三角形的三个点向下平移2个单位长度,再向右平移3个单位长度,然后将平移后的对应点顺次连接即可.【详解】解:(1)平面直角坐标系如图所示;(2)如图所示:三角形A 1B 1C 1即为所求,A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【点睛】本题考查平面直角坐标系内的平移作图,以及知道点的坐标确定平面直角坐标系的位置,牢记相关的知识点并能准确应用是解题关键.22.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.类似地,你能用坐标表示你自己学校各主要建筑物的位置吗?【答案】图见解析,校门、国旗杆、教学楼、实验楼、图书馆的位置分别是()0,0,()3,0,()6,0,()6,3-,()5,3.【分析】得出原点位置进而建立坐标系得出各点坐标.【详解】解:如图所示:以校门为原点,正东方向为x 轴正方向,正北方向为y 轴正方向建立平面直角坐标系,规定一个单位长度代表1m ,则校门、国旗杆、教学楼、实验楼、图书馆的位置分别是:()0,0,()3,0,()6,0,()6,3-,()5,3.【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.23.在直角坐标系中,写出下列各点的坐标:(1)点A 在x 轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B 在y 轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C 在y 轴的左侧,在x 轴的上侧,距离每个坐标轴都是4个单位长度.【答案】(1)()4,0A -;(2)()0,4B ;(3)()4,4C -.【分析】(1)根据x 轴上的点的纵坐标等于0得出答案;(2)利用在y 轴上点的坐标性质得出即可;(3)利用点的位置进而得出C 点坐标.【详解】(1)∵点A 在x 轴上,∴点A 的纵坐标为0,∵点A 位于原点左侧,距离原点4个单位长度,∴点A 的横坐标为-4,∴点A 的纵坐标为(-4,0);(2)∵点B 在y 轴上,∴点B 的横坐标为0,∵点B 位于原点的上侧,距离坐标原点4个单位长度∴点B的纵坐标为4∴点B的纵坐标为(0,4);(3)∵点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.∴C的纵坐标为(-4,4).【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.24.已知点P(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【答案】(1)点P的坐标为(-11,-8);(2)P点坐标为(-1,-3).【分析】(1)建立方程a-1=2a+3+3,解方程确定a值,代入计算即可;(2)根据平行x轴的点的纵坐标相等建立方程求解即可.【详解】(1)∵点P(2a+3,a-1),且点P的纵坐标比横坐标大3,∴a-1=2a+3+3,解得a=-7,∴点P(-11,-8);(2)∵点P在过A(2,-3)点,且与x轴平行的直线上,∴a-1=-3,解得a=-2,∴点P(-1,-3).【点睛】本题考查了坐标之间的关系,坐标与平行线的关系,熟练建立方程并灵活解方程是解题的关键.。
平面直角坐标系练习题训练
平面直角坐标系练习题训练1. 在平面直角坐标系中,点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 若点P在第二象限,则点Q在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 点P关于轴的对称点的坐标是A.2,3B.C.D.4. 点P关于原点对称的点的坐标是A. B. C. D.5. 点P关于原点对称的点的坐标是A. B. C.3,4 D .6. 若点A在第二象限,则点B在A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若点Pm,2与点Q3,n关于原点对称,则的值分别是A. B. C. D.8. 已知点P坐标为,且点P到两坐标轴的距离相等,则点P的坐标是A.3,3B.3,C. 6,D.3,3或6,9. 点P不可能在A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 点M在第二象限,且,,则点M的坐标是A. B. C. D.二. 填空题每小题2分,共24分1. 在平面直角坐标系中,若点在轴上,则 ;2. 如果点M在第二象限,那么点N在第象限;3. 在平面直角坐标系内,已知点在第四象限,且为偶数,那么的值为;4. 点M关于轴对称的点的坐标是 ;5. 在直角坐标系中,已知点P,则点P关于轴对称点的坐标为 ;6. 直角坐标系中,第四象限内点M到横轴的距离为28,到纵轴的距离为6,则M点坐标为 ;7. 如图,在矩形ABCD中,A,B0,1,C0,3,则D点坐标是8. 已知,那么点关于轴的对称点P在第象限;9. 已知点P在轴上,那么 ;10. 点P1,2关于轴对称的点的坐标是 ,点P1,2关于原点对称的点的坐标是 ;11. 若点M在第二象限,则点N在第象限;12. 已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是1、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位2、三角形A’B’C’是由三角形ABC平移得到的,点A-1,-4的对应点为A’1,-1,则点B1,1的对应点B’、点C-1,4的对应点C’的坐标分别为A、2,23,4B、3,41,7C、-2,21,7D、3,42,-23、一个长方形在平面直角坐标系中三个顶点的坐标为– 1,– 1、– 1,2、3,– 1,则第四个顶点的坐标为A、2,2B、3,2C、3,3D、2,34、如图,下列说法正确的是A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同5.点Ea,b到x轴的距离是4,到y轴距离是3,则有A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±36.已知点Pa,b,a b>0,a+b<0,则点P在A.第一象限B.第二象限C.第三象限D.第四象限7、点Pm+3, m+1在直角坐标系得x轴上,则点P坐标为A.0,-2B. 2,0C. 4,0D.0,-48. 已知点Px , x ,则点P 一定A .在第一象限B .在第一或第四象限C .在x 轴上方D .不在x 轴下方 9. 点A0,-3,以A 为圆心,5为半径画圆交y 轴负半轴的坐标是 A .8,0 B . 0,-8 C .0,8 D .-8,010. 若4,5==b a ,且点Ma,b 在第三象限,则点M 的坐标是A 、5,4B 、-5,C 、-5,-4D 、5,-411.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位12. 已知点A ()2,2-,如果点A 关于x 轴的对称点是B,点B 关于原点的对称点是C,那么C 点的坐标是A 、()2,2B 、()2,2-C 、()1,1--D 、()2,2-- 二、填空题1. 已知点Aa,0和点B 0,5两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________2.如果用7,8表示七年级八班,那么八年级七班可表示成 .3.将点P-3,y 向下平移3个单位,向左平移2个单位后得到点Qx,-1,则xy=___________.4. 如果pa+b,ab 在第二象限,那么点Q a,-b 在第 象限.5、已知线段 MN=4,MN ∥y 轴,若点M 坐标为-1,2,则N 点坐标为 . 6. 点A -3,5在第_____象限,到x 轴的距离为______,到y 轴的距离为_______; 7、已知x 轴上点P 到y 轴的距离是3,则点P 坐标是_________;8. 将点P -3,2向下平移3个单位,向左平移2个单位后得到点Qx,y ,则xy =___________ 9. 、如果点Ma,b 第二象限,那么点Nb,a 在第 象限;10、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则x + y = ; 11、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为 ;12、若点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 三、解下列各题1. 如图,四边形ABCD 各个顶点的坐标分别为-2,8,-11,6,-14,0,0,0. 1确定这个四边形的面积,你是怎么做的2如果把原来ABCD 各个顶点纵坐标保持不变,横、纵坐标都增加2,所得的四边形面积又是多少2. 已知四边形ABCD 各顶点的坐标分别是A0,0,B3,6,C14,8,xD16,01请建立平面直角坐标系,并画出四边形ABCD; 2求四边形ABCD 的面积;3.图中标明了李明同学家附近的一些地方;1根据图中所建立的平面直角坐标系,写出学校,邮局的坐标;2某星期日早晨,李明同学从家里出发,沿着-2, -1、-1,-2、1,-2、2,-1、1,-1、1,3、-1,0、0,-1的路线转了一下,写出他路上经过的地方; 3连接他在2中经过的地点,你能得到什么图形4.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示;可是她忘记了在图中标出原点和x 轴、y 轴; 只知道游乐园D 的坐标为2,-2,你能帮她求出 其他各景点的坐标A。
中考数学总复习《平面直角坐标系》专题训练(附带答案)
中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。
七年级数学平面直角坐标系达标测试题及答案参考5篇
七年级数学平面直角坐标系达标测试题及答案参考5篇第一篇:七年级数学平面直角坐标系达标测试题及答案参考以下是为您推荐的七年级数学平面直角坐标系达标测试题及答案,希望本篇文章对您学习有所帮助。
基础巩固1.我们常用_________表示平面内某点的位置.在地理上,常用___________表示地理位置.解析:平面内点的位置常用有序数对表示,地理位置常用经纬度表示.答案:有序数对经纬度2.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置不同C.(3,+2)与(+2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置解析:由有序数对的意义不难作出选择.答案:C3.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km处,乙车位于雕像北方7km处.若甲、乙两车以相同的速度向雕像方向同时驶去,当甲车到雕像西方1km处时,乙车在()A.雕像北方1km处B.雕像北方3km处C.雕像南方1km处D.雕像北方3km处解析:根据题目画出方位图(如图),可知,甲车到雕像西方1km 时,走了6km,甲、乙两车速度相同,所以甲车也应走了6km,7km-6km=1km.答案:A4.P(x,y)满足xy=0,则点P在_____________-.解析:由xy=0可得x=0或y=0.当x=0时,点P在y轴上;当y=0时,点P在x轴上.答案:坐标轴上5.在平面直角坐标系中,顺次连接A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点,所组成的图形是____.解析:根据点的坐标描出各点,用平滑的曲线依次连结各点不难得出结论.答案:等腰梯形[来源:中.考.资.源.网]6.若线段AB平行于x轴,AB长为5,若A的坐标为(4,5),则B的坐标为_________.解析:AB平行于x轴说明A、B两点到x轴距离相等,又A、B在同一条直线上,不难得出A、B两点的纵坐标相同(都是5).由于AB平行于x轴,则AB两点间的距离(即线段AB的长)等于A、B 两点横坐标差的绝对值.故本题有两种可能,即A、B在y轴的同侧和两侧.答案:(-1,5)或(9,5).综合应用7.如图6-1-10所示,点A表示2街与5大道的十字路口,点B表示4街与3大道的十字路口,点C表示5街与4大道的十字路口.图6-1-10如果用(4,3)→(5,3)→(5,4)表示由B到C的一条路径,那么,你能用同样的方式写出由A经B到C的路径吗?解析:由A经B到C的路径很多,要注意有序数对的顺序一致.答案:仅举一例:(2,5)→(3,5)→(4,5)→(4,4)→(4,3)→(5,3)→(5,4).8.“怪兽吃豆豆”是一种计算机游戏,图6-1-11中标志表示“怪兽”先后经过的几个位置,如果用(1,2)表示“兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式来表示出图中“怪兽”经过的其他几个位置吗?图6-1-11解析:解决本题的关键是正确建立平面直角坐标系.答案:其他几个位置依次是:(0,0),(1,0),(3,2),(3,4),(5,4),(5,6),(7,6),(7,8).9.如图6-1-12,长方形ABCD的长和宽分别是6和4.以C为坐标原点,分别以CD、CB所在的直线为x轴、y轴建立直角坐系标,则长方形各顶点坐标分别是多少?[图6-1-12解析:P(x,y)到x轴的距离是|y|,到y轴的距离是|x|.答案:(1)A(6,4)B(0,4)C(0,0)D(6,0)10.在直角坐标系中描出一系列点(-5,2),(-4.5,-2),(-1,-3),(0,0),(2,),(3.5,1),(6,0),并将所得的点用线段顺次连结起来.观察所得的图形,你觉得它像什么?如果这是一个星座的美丽图案,请指出它的名称.解析:按照描点的方法依次描出各点,并顺次连接.答案:如图.图形像勺子,北斗七星.[来源:学,科,网][来源:中.考.资.源.网]11.(江苏淮安金湖实验区)已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:第1行1第2行-23第3行-45-6第4行7-89-10第5行11-1213-1415……按照上述规律排下去,那么第10行从左边数第5个数等于____________.解析:由题目中数的排列发现排列的规律:每一行数字的个数与行数相等,且正数、负数交错出现,奇数为正,偶数为负,这样到第九行的最后一个数的绝对值等于1+2+3+4+5+6+7+8+9=×9=45,所以第10行从左边数第5个数的绝对值等于50,偶数为负,所以应是-50.答案:-5012.若点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上解析:P在第二象限,故m<0,所以-m>0.答案:A[13.(2010山东菏泽模拟)如图6-1-13,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x轴与边AB平行,y轴与边BC平行),则“卒”的坐标为_____________.图6-1-13 解析:本题的关键是平面直角坐标系的确立,由题意可知,坐标系的原点应在E点处,∴“卒”的坐标可判断.答案:(3,2)第二篇:七年级数学平面直角坐标系检测试题分享一,选择1,下列说法正确的个数是()①因为∠1与∠2是对顶角,所以∠1=∠2②因为∠1与∠2是邻补角,所以∠1+∠2=1800③因为∠1与∠2不是对顶角。
平面直角坐标系经典训练题(含答案)
平面直角坐标系1.下列各点中,在第三象限的点是( )A .()1,4--B .()1,4-C .()1,4-D .()1,4 2.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 3.在平面直角坐标系中,点(-2,-3)到x 轴的距离是( ) A .-2 B .-3 C .2 D .3 4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)- 5.如图,半径为1的圆,在x 轴上从原点O 开始向右滚动一周后,落定点M 的坐标为( )A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 6.如图,在平面直角坐标系中,以原点O 为圆心作弧,分别与x 轴和y 轴的正半轴交于点A 和点B ,再分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点P (m ﹣1,2n ),则实数m 与n 之间的关系是( )A .m ﹣2n =1B .m +2n =1C .2n ﹣m =1D .n ﹣2m =17.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.8.在平面直角坐标系中,点A (x ﹣1,2﹣x )关于y 轴对称的对称点在第一象限,则实数x 的取值范围是_____.9.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为________10.已知,AB ∥x 轴,点A 的坐标是(3,2),并且AB=5,则点B 的坐标为________. 11.若点M(a ﹣3,a+1)在y 轴上,则M 点的坐标为______.12.如图,点A 、B 、C 的坐标分别是(0,2)、(2,2)、(0,-1),那么以点A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标是:________.13.已知点(,)P x y 的坐标满足||3x =2=,且0xy <,则点P 的坐标是__________ 14.如图,若在象棋棋盘上建立平面直角坐标系,使棋子“将”的位置的坐标为(0,0),棋子“象”的位置的坐标为(2,0),则“炮”的位置的坐标为_______.答案第1页,总1页 参考答案1.A2.A3.D4.D5.B6.A7.(3,1)8.x <19.(2,0)10.(8,2)或(-2,2) 11.()0,412.(2,-1)或(-2,-1)或(2,5) 13.()3,4-14.( 3 3 )-,。
平面直角坐标系练习题
平面直角坐标系练习一、选择题1.在平面直角坐标系中,点P的坐标为(4,5),则点P在().A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,1) B.(3,2) C.(2,2) D.(-2,2)3.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A 点在第二象限,则A点坐标为( )A.(-9,3)B.(-3,1)C.(-3,9)D.(-1,3)4.若|a|=5,|b|=4,且点M(a,b)在第四象限,则点M的坐标是( )A.(5,4)B.(-5,4)C.(-5,-4)D.(5,-4)5.已知M(1,-2),N(-3,-2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直6.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.下列选项中,平面直角坐标系的画法正确的是( )A B C D8.(2013山东烟台)如图,将四边形ABCD先向右平移3个单位,再向上平移2个单位,那么点A对应的点A′的坐标是( )A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)9.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)10.在一次“寻宝”游戏中,“寻宝”人找到了如图所示标志点A(3,3),B(5,1),则“宝藏”所在地点C的坐标为( )A.(6,4)B.(3,3)C.(6,5)D.(3,4)二、填空题1.如图,正方形ABCD在平面直角坐标系中,其中三个顶点的坐标分别为A(-2,3),B(-2,-2),C(3,-2),则第四个顶点D的坐标为.2.若点A(-2,n)在x轴上,则点B(1-nn)位于第象限.,1+3.在平面直角坐标系中,点P(-3,4)到x轴的距离为________.4.在平面直角坐标系中,若点P(x,y)在第三象限,且P到x轴,y轴的距离分别是3,7,则点P 的坐标是________.5.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.6.点(2,4)关于y轴的对称点的坐标是.7.若点P的坐标为(x+1,y-1),其关于原点对称的点P′的坐标为(-3,-5),则(x,y)为.8.已知,点A(-2,3)、B(4,3)、C(-1,-3).(1)求A、B两点之间的距离.(2)求点C到x轴的距离.(3)求△ABC的面积.(4)观察线段AB与x轴的关系,若点D是线段AB上一点,则点D的纵坐标有什么特点?平面直角坐标系提高训练1. 在平面直角坐标系中,点()一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 若点P()在第一象限,则点Q()在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 点P()关于x轴的对称点的坐标是()A.(2,3)B.()C.()D.()4. 点P()关于原点对称的点的坐标是()A.()B.()C.()D.()5. 点P()关于y轴对称的点的坐标是()A. B. C.(3,4) D .6. 若点A()在第二象限,则点B()在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若点P(m,2)与点Q(3,n)关于原点对称,则的值分别是()A. B. C. D.8. 已知点P坐标为(),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,)C. (6,)D.(3,3)或(6,)9. 点P()不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 点M()在第二象限,且,,则点M的坐标是()A. B. C. D.二. 填空题(每小题2分,共24分)1. 在平面直角坐标系中,若点()在轴上,则。
平面直角坐标系习题练习
《平面直角坐标系》测试题一、选择题:1. 按照竖列,横排的编号,甲同学的位置是(4, 3),乙同学在第四列,第三排。
则甲,乙两同学( )A.在同一列B.在同一排C .不在一列或排 D.无法确定2..已知 A (1,-1), B(2,0.5),C(-2,3),D (-1,-3),其中在第四象限的点有( )个。
左侧,到x 轴,y 轴的距离分别是3和5,则点M 的坐标( )A.(-5,3)B 。
(-5, -3)C . (5, 3)或(-5, 3)D 。
(-5, 3)或(-5, -3)4.过点P 分别向坐标轴作垂线,且与坐标轴围成正方形的面积为 4,则这样的点P 有( )•A.4个B.3个C.2个 D1个 5•点M (-3, -5)向上平移7个单位到点M '的坐标为()A.(-3,2)B.(-2,-12)C.(4,-5 )D.(-10,-5)6•已知M (1,-2), N(-3,-2)则直线MN 与x 轴,y 轴的位置关系分别为() A.相交,相交 B.平行,平行C.垂直相交,平行D.平行,垂直相交7. 已知M(-3,-4),则点M 到y 轴的距离是( )A.3B.4C.-3D.-48. 如图:已知<OEF=90o ,且点E 的纵坐标为-5点F 的纵坐标为-7 ,贝懺段OE 长的取值范围( )A.3<OE<5B.4<OE<5C.5<OE<7D.7<OE<129. 在x 轴上的点P 到y 轴的距离为3,则点P 的坐标为()(A ) (3, 0) (B ) (0, 3) (C ) (3, 0)或(-3 , 0)( D ) (0, 3)或(0, -3)二. 填空:1. 若电影院中的5排2号记为(5, 2),则3排5号记为 _____________2. M(a,b)且a<0,ab<0,则点M 在第 ___________ 象限。
3. P (-2, -4)关于原点对称的点为 ,P (3, -5)关于y 轴对称的点为4. 在x 轴上的任一点的纵坐标是 ,y 轴上的任一点的横坐标为5. 点A 与点B (a,-b )关于y 轴对称,则点A 关于原点的对称点C 的坐标为6. 已知正方形 ABCD 的三个顶点 A (-4, 0) B(0, 0)C(0, 4),则第四个顶点 D 的坐标为7. 点A (-2, 3)到x 轴的距离为 ,到y 轴的距离是到原点的距离是8. 线段AB 中,A (-2, 3) ,B (1, 3)现把线段AB 平移到A'B '使A ' (0, 2), B (3,2),则直线AB 、A ' B '间的距离为9. 点H 坐标为(4,-3),把点H 向左平移5个单位到点H '则点H '的坐标为三. 解答题:A.1B.2C.3D.43..点M 在y 轴的1.各写出5个满足下列条件的点,并分别在直角坐标系中描出这5个点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》章节复习
考点1:考点的坐标与象限的关系
知识解析:各个象限的点的坐标符号特征如下:
(特别值得注意的是,坐标轴上的点不属于任何象限.)
1、在平面直角坐标中,点M (-2,3)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )
A .x 轴正半轴上
B .x 轴负半轴上
C .y 轴正半轴上
D .y 轴负半轴上
4、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
5、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 .
6、对任意实数x ,点2(2)P x x x -,一定不在..
( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
7、如果a -b <0,且ab <0,那么点(a ,b)在( )
A 、第一象限
B 、第二象限
C 、第三象限,
D 、第四象限.
考点2:点在坐标轴上的特点
x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)
1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4)
2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标
知识解析:
1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。
2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。
3、关于原点对称: A (a ,b )关于原点对称的点的坐标为(-a ,-b )。
1、点M (2-,1)关于x 轴对称的点的坐标是( ).
A . (2-,1-)
B . (2,1)
C .(2,1-)
D . (1,2-)
2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( ).
A . (-3,2)
B . (3,-2)
C . (-2,3)
D . (2,3)
3、若点A (2,a )关于x 轴的对称点是B (b ,-3)则ab 的值是 .
4、 在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a ,2),则a = .
5、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b =______.
6、如果点(45)P -,和点()Q a b ,关于y 轴对称,则a 的值为 .
考点4:考平移后点的坐标
知识解析:
1、将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));
2、将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )).
1、 在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.
2、将点P (-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P /,则点P /的坐标为 。
3.在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点A '的坐标为 (-2 , 2 ) ,则点 B '的坐标为( )
A . ( -5 , 4 )
B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)
4、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,
则a b +的值为( )
A .2
B .3
C .4
D .5 5、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .
考点5:点到直线的距离
点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,
1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.
2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( )
A .(-3,5)
B .(5,-3)
C .(3,-5)
D .(-5,3)
)b x
3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。
4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .
考点6:平行于X 轴、Y 轴的直线的特点
平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同
1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.
2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________.
3、如果点A (),3a -,点B ()2,b 且AB x ()2,m (),6n -y 6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________. 考点7:角平分线的理解
第一、三象限角平分线的点横纵坐标相同(y=x );
第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)
1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( )
A .(2,2)
B .(-2,-2)
C .(2,2)或(-2,-2)
D .(2,-2)或(-2,2)
2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。
3、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.
4、如图,如果 所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为 .
5、如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( ).
A.(-1,1)
B.(-2,-1)
C.(-3,1)
D.
(1,-2) 考点8:面积的求法(割补法) 1、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________. 士 相 炮 炮
士 帅 相 1234567-1o
1
2
3
4
5
6
-1
-2x
y
C D A B
2、如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积。
3、在直角坐标系中,已知点A (-5,0),点B (3,0),△ABC 的面积为12,试确定点C 的坐标特点.
考点10:考有规律的点的坐标
1、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , );
(2)写出点A 4n 的坐标(n 是正整数);
(3)指出蚂蚁从点A 100到点A 101的移动方向. O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10
A 11 A 12 x y。