《平面直角坐标系》同步练习题及答案

合集下载

苏科版八年级数学上册《5.2 平面直角坐标系》同步练习题-含答案

苏科版八年级数学上册《5.2 平面直角坐标系》同步练习题-含答案

苏科版八年级数学上册《5.2 平面直角坐标系》同步练习题-含答案一、单选题1.在平面直角坐标系中,点P (2,-9)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,将线段AB 平移后得到线段A B '',点2(2)A ,的对应点A '的坐标为()22--,.则点()11B -,的对应点B '的坐标为( )A .()53,B .()11-,C .()53--,D .()45-,3.已知点(2,26)A a a -+在第二象限,则a 的取值范围是( )A .3a <-或2a >B .32a -<<C .2a <D .3a >-4.在平面直角坐标系中,下列各点在第二象限的是( )A .(5,1)-B .(5,1)-C .(5,1)--D .(5,1)5.一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴、y 轴垂直的方向来回运动,且每分钟移动1个单位长度. 在第2021分钟时,这个粒子所在位置的坐标是( )A .(44,3)B .(45,3)C .(44,4)D .(4,45)6.如图,平面直角坐标系中,点A 是y 轴上一点,B (6,0),C 是线段AB 中点,且OC =5,则点A 的坐标是( )A .()0,8B .()8,0C .()0,10D .()10,07.若点P (a ,﹣b )在第三象限,则M (ab ,-a )应在( )A .第一象限B .第二象限C .第三象限D .第四象限8.坐标平面内第二象限内有一点()A x y ,,且点A 到x 轴的距离为3,到y 轴的距离恰为到x 轴距离的2倍,则点A 的坐标为( )A .(6,-3)B .(-6,3)C .(3,-6)或(-3,6)D .(6,-3)或(-6,3)9.已知点()2,5P m m --在第三象限,则m 的整数值是( )A .3,4B .2,3C .4,5D .2,3,4,510.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小丽家在小明家的( )A .东偏南方向B .东偏北方向C .西偏南方向D .西偏北方向二、填空题11.若点()4,2M m m --在y 轴上,则m = .12.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是 .13.如图(2,0)A -,(0,3)B 以B 点为直角顶点在第二象限作等腰直角ABC ,则C 点的坐标为 .14.若点M (a ﹣9,4﹣a )在y 轴上,则a 的平方根是 .15.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为Pn ,则点P 2021的坐标为 .三、解答题16.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜.如图是两人玩的一盘棋,若白①的位置是()1,5-,黑①的位置是()2,4-,画出平面直角坐标系,现轮到黑棋走,你认为黑棋放在图中什么位置就获得胜利了?17.在平面直角坐标系中,给出如下定义:点P 到x 轴、y 轴的距离的较大值称为点P 的“长距”,点Q 到x 轴、y 轴的距离相等时,称点Q 为“龙沙点”.(1)点()1,4A -的“长距”为______;(2)若点()41,2B a --是“龙沙点”,求a 的值:(3)若点()3,32C b --的长距为4,且点C 在第二象限内,点D 的坐标为()92,5b --,试说明:点D 是“龙沙点” 18.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为(3,5)A -,(5,3)B -和(2,1)C -.(1)将ABC 向右平移4个单位长度,再向下平移3个单位长度,得到111A B C △,请画出111A B C △;(2)定义:在平面直角坐标系中,横坐标与纵坐标都是整数的点叫做整点,请直接写出111A B C △内部所有整点的坐标;19.如图,平面直角坐标系中90ABC ∠=︒,点A 在第一象限内,点B 在x 轴正半轴上,点C 在x 轴负半轴上,且OB a =,点C 坐标为(),0b ,且,a b 260a b -+=,请解答下列问题:(1)求点B 和点C 的坐标;(2)若连接AC 交y 轴于点D ,且2OD OB =,3BCD ABD S S =△△求点A 的坐标;(3)在(2)的条件下25BD =E ,使BDE 是以BD 为腰的等腰三角形?若存在,请写出点E 的个数,并直接写出其中3个点E 的坐标;若不存在,请说明理由.20.在数学活动课中,小刚在平面直角坐标系中设计了如图所示的图案,该图案由3种等腰直角三角形构成,设最小的等腰直角三角形的斜边长为1,最大的等腰直角三角形的顶点位于x 轴上,依次为123,,,,n A A A A .(1)3A 的坐标为 ,4A 的坐标为 ,n A 的坐标为 .(2)若用此图案装修学校的围墙(只装一层),制作如图所示的3种等腰直角三角形墙砖,最小的等腰直角三角形的斜边长为1m ,围墙总长为2026m 按照图中的排列方式,则3种墙砖各需要多少块?参考答案1.D2.C3.B4.A5.A6.A7.B8.B9.A10.C11.412.()3,1-13.(-3,5)14.3±15.(4,3)16.略;放在()2,0或()7,5-17.(1)4 (2)34a =或14a =- (3)略18.(1)略(2)(0,0) (1,1) (1,0) (1,1)-19.(1)()2,0B ()6,0C -; (2)162,3A ⎛⎫⎪⎝⎭;(3)存在,点E 共有6个()10,254E + (20,425E - ()32,0E - ()4225,0E + ()5225,0E - ()60,4E -.20.(1)()8,0 ()11,0 ()31,0n -(2)大号墙砖需要675块,中号墙砖需要1350块,小号墙砖需要2704块。

7.1 平面直角坐标系 同步课堂练习(含答案)

7.1 平面直角坐标系 同步课堂练习(含答案)

7.1.1有序数对基础题知识点1有序数对1.一个有序数对可以()A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置2.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置知识点2有序数对的应用3.某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排4.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为()A.(4,5) B.(5,4) C.(4,2) D.(4,3)5.若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.中档题6.小敏家在学校正南方向150 m,正东方向200 m处.若以学校所在位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为()A.(-200,-150) B.(200,150) C.(200,-150) D.(-200,150)7.(教材P65练习变式)如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A.(2,2)→(2,5)→(6,5) B.(2,2)→(2,5)→(5,6)C.(2,2)→(6,2)→(6,5) D.(2,2)→(2,3)→(6,3)→(6,5)8.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋❶的位置可记为(C,4),白棋②的位置可记为(E,3),则黑棋❾的位置应记为.9.如图,点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,请帮兔子选一条路,使它吃到的食物最多.7.1.2平面直角坐标系基础题知识点1认识平面直角坐标系1.下列说法错误的是()A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条坐标轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限2.下列选项中,平面直角坐标系的画法正确的是()知识点2平面直角坐标系中点的坐标3.(2019·株洲)在平面直角坐标系中,点A(2,-3)位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点A(-2,1)到y轴的距离为()A.-2 B.1 C.2 D. 55.已知点A(1,2),AC⊥x轴于点C,则点C的坐标为( )A.(2,0) B.(1,0) C.(0,2) D.(0,1)6.在平面直角坐标系中,点(0,-10)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上7.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则且.8.(教材P68练习T1变式)写出图中点A,B,C,D,E,F,O的坐标.9.(教材P 68练习T 2变式)在平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).知识点3 建立平面直角坐标系表示点的坐标10.(2019·白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点.11.(教材P 68探究变式)将边长为1的正方形ABCD 放在平面直角坐标系中,使点C 的坐标为(12,12).请建立平面直角坐标系,并写出其余各顶点的坐标.易错点 对平面直角坐标系内点的坐标的符号理解不清 12.若点P (a ,b )在第二象限,则点M (b -a ,a -b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 中档题13.【易错】在平面直角坐标系中,点P (2,x 2)在( )A .第一象限B .第四象限C .第一或第四象限D .以上说法都不对 14.(2019·甘肃)已知点P (m +2,2m -4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)15.如图,长方形ABCD 的边CD 在y 轴上,点O 为CD 的中点,已知AB =4,AB 交x 轴于点E (-5,0),则点B 的坐标为( )A .(-5,2)B .(2,5)C .(5,-2)D .(-5,-2) 16.(教材P 69习题T 4变式)(2018·扬州改编)已知点M 到x 轴的距离为3,到y 轴的距离为4. (1)若M 点位于第一象限,则其坐标为 ; (2)若M 点位于x 轴的上方,则其坐标为 ; (3)若M 点位于y 轴的右侧,则其坐标为.17.(教材P 70习题T 8变式)已知A (-3,m ),B (n ,4),若AB ∥x 轴,且AB =8,则m = ,n =.18.如图是某台阶的一部分,每级台阶的高度相同,宽度也相同.已知点A 的坐标为(0,0),点B 的坐标为(1,1). (1)请建立适当的平面直角坐标系,并写出点C ,D ,E ,F 的坐标; (2)如果该台阶有10级,你能得到该台阶的高度吗?19.在平面直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.综合题20.(教材P71习题T14变式)已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.参考答案基础题知识点1有序数对1.一个有序数对可以(A)A.确定一个点的位置B.确定两个点的位置C.确定一个或两个点的位置D.不能确定点的位置2.下列关于有序数对的说法正确的是(C)A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置知识点2有序数对的应用3.某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是(C)A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排4.如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)5.若将7门6楼简记为(7,6),则6门7楼可简记为(6,7),(8,5)表示的意义是8门5楼.中档题6.小敏家在学校正南方向150 m,正东方向200 m处.若以学校所在位置为原点,以正北、正东为正方向,则小敏家用有序数对(规定:东西方向在前,南北方向在后)表示为(C)A.(-200,-150) B.(200,150)C.(200,-150) D.(-200,150)7.(教材P65练习变式)如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)(B)A.(2,2)→(2,5)→(6,5)B.(2,2)→(2,5)→(5,6)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)8.如图所示,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋❶的位置可记为(C,4),白棋②的位置可记为(E,3),则黑棋❾的位置应记为(D,6).9.如图,点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,请帮兔子选一条路,使它吃到的食物最多.解:(1)C(2,1)表示放置2个胡萝卜、1棵青菜;D(2,2)表示放置2个胡萝卜、2棵青菜;E(3,3)表示放置3个胡萝卜、3棵青菜;F(3,2)表示放置3个胡萝卜、2棵青菜.(2)走①有9个胡萝卜、7棵青菜;走②有10个胡萝卜、8棵青菜;走③有11个胡萝卜、9棵青菜.故兔子选择路线③吃到的胡萝卜、青菜都最多.7.1.2平面直角坐标系基础题知识点1认识平面直角坐标系1.下列说法错误的是(A)A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条坐标轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限2.下列选项中,平面直角坐标系的画法正确的是(B)知识点2平面直角坐标系中点的坐标3.(2019·株洲)在平面直角坐标系中,点A(2,-3)位于哪个象限(D)A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 55.已知点A(1,2),AC⊥x轴于点C,则点C的坐标为(B)A.(2,0) B.(1,0)C.(0,2) D.(0,1)6.在平面直角坐标系中,点(0,-10)在(D)A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上7.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则x=0且y=0.8.(教材P68练习T1变式)写出图中点A,B,C,D,E,F,O的坐标.解:观察图,得A (2,3), B (3,2),C (-2,1), D (-1,-2),E (2.5,0), F (0,-2),O (0,0).9.(教材P 68练习T 2变式)在平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).解:如图.知识点3 建立平面直角坐标系表示点的坐标10.(2019·白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点(-1,1).11.(教材P 68探究变式)将边长为1的正方形ABCD 放在平面直角坐标系中,使点C 的坐标为(12,12).请建立平面直角坐标系,并写出其余各顶点的坐标.解:如图,A (-12,-12),B (12,-12),D (-12,12).易错点对平面直角坐标系内点的坐标的符号理解不清12.若点P(a,b)在第二象限,则点M(b-a,a-b)在(D)A.第一象限B.第二象限C.第三象限D.第四象限中档题13.【易错】在平面直角坐标系中,点P(2,x2)在(D)A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对14.(2019·甘肃)已知点P(m+2,2m-4)在x轴上,则点P的坐标是(A)A.(4,0) B.(0,4)C.(-4,0) D.(0,-4)15.如图,长方形ABCD的边CD在y轴上,点O为CD的中点,已知AB=4,AB交x轴于点E(-5,0),则点B 的坐标为(D)A.(-5,2)B.(2,5)C.(5,-2)D.(-5,-2)16.(教材P69习题T4变式)(2018·扬州改编)已知点M到x轴的距离为3,到y轴的距离为4.(1)若M点位于第一象限,则其坐标为(4,3);(2)若M点位于x轴的上方,则其坐标为(4,3)或(-4,3);(3)若M点位于y轴的右侧,则其坐标为(4,3)或(4,-3).17.(教材P70习题T8变式)已知A(-3,m),B(n,4),若AB∥x轴,且AB=8,则m=4,n=5或-11.18.如图是某台阶的一部分,每级台阶的高度相同,宽度也相同.已知点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以点C ,D ,E ,F 的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5).(2)因为每级台阶的高度为1,所以10级台阶的高度是10.19.在平面直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.解:如图所示,该图形像宝塔松.图形的面积为12×1×1+12×4×2+12×2×1=12+4+1=112.综合题20.(教材P 71习题T 14变式)已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置;(2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离;(4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.解:(1)如图所示.(2)AB =6.(3)点C 到x 轴的距离为3,到AB 的距离为6.(4)S 三角形ABC =12×6×6=18.(5)设P (0,y ).当点P 在AB 的上方时,12×6×(y -3)=18,解得y =9;当点P 在AB 的下方时,12×6×(3-y )=18, 解得y =-3.∴点P 的坐标的(0,9)或(0,-3).。

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
故选C.
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;

平面直角坐标系同步练习(含答案)

平面直角坐标系同步练习(含答案)

标为6.1.2平面直角坐标系(1)班级 姓名 座号 月 日主要内容:平面直角坐标系的有关概念 ,探索点与坐标之间的关系一、课堂练习:1. 写出图中点A,B,C,D,E,F 的坐标.答:A(亠)_ B( ), _____________ C( _,丄 D( ), _________________ E( ______ ), F( —, _L2. 在上图中描出下列各点:L(-5, ^3),M(4,0), N(-6,2), P(5,-3.5),Q(0,5), R(6,2)3. 已知三角形 ABC 的三个顶点 A B 、C 的坐标分别是 (0,2),(-5,0),(2,-2),在右图平面直角坐标系中表示出来;下列各点中,在三角形ABC 的内部的是(B ) A. (2,0) B. (-2,1) C. (-2,-1)D.(0,-2)4. 坐标平面内有一点 A(-2,3),那么它到x 轴的距离为 _, 到y 轴的距离为 _.5. 平面直角坐标系内有一点 P(x, y),1rB;^5 4E3 n厶-6」 )-4 -3 - 2 - 1 O 23 i 4- 6「A-2-C J —第1题它到x轴的距离为2,到y轴的距离为3,那么点P的坐标为二、课后作业:6.如图,写出图中标有字母的各点的坐标7.在平面直角坐标系中,标出下列各点:点A在y轴上,位于原点上方,距离原点2个单位长度;点B在x轴上,位于原点右侧,距离原点1个单位长度;点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;点D在x轴上,位于原点右侧,距离原点3个单位长度;点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到的图形是 _______________ .8.如图,在所给的坐标系中描出下列各点的位置:A(M,_4),B(-2,-2),C(3,3),D(5,5),E(-3,-3),F(0,0)y“54--6 4 n4 3 -[2 -r1 O请写出两个类似的点:9.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来⑴(』,0),( _4,3),( J3,0),( 23),( _1,0);⑵(2,1),(6,1),(6,3),(7,3),(4,6),(1 ,3),(2,3),(2,1)观察得到的图形,你觉得它们像什么?65432112 - 10 2 >345 6~=1三、新课预习:10.点A( -1,4)在第________ 象限,B( -1, -4)在第________ 象限,点C(1,4)在第________D(1,4)在第 _______ 限,点E(-2,0)在 ________ 轴上,点F (0, —2)在________ 轴上11•点P( £,2)在第 _______ 象限,它到x轴的距离是______ ,到y轴的距离是______ .象限,点y*⑵x2. 在上图中描出下列各点:L(-5, -^),M(4,0), N(-6,2), P(5,-3.5),Q(0,5), R(6,2)3. 已知三角形 ABC 的三个顶点 A B 、C 的坐标分别是 (0,2),(-5,0),(2,-2),在右图平面直角坐标系中表示出来;下列各点中,在三角形ABC 的内部的是(B ) A. (2,0) B. (-2,1) C. (-2,-1) D.(0,-2)4.坐标平面内有一点 A(-2,3),那么它到x轴的距离为 5.平面直角坐标系内有一点 P(x, y),它到x 轴的距离为2,到y 轴的距离为 3,那么点P 的坐、课堂练习1. 写出图中点A,B,C,D,E,F 的坐标. 参考答案答:A( -2 ,-2 ) B( -5 , 4 ) C( 5 ,-4 ), D( 0 ,-3 )E( 2 ,5 ), F( -3,0 ).B ;L 5 4 EL32r-6」)-4 - 3 - 2 - 1 O2 3 i 4■ 6[IA-2^=3 D3 ,至卩y 轴的距离为 2 .第1题y *标为(3,2)或(-3,2)或(-3,-2)或(3,-2)、课后作业6. 如图,写出图中标有字母的各点的坐标解:A(_5,4), B(A,2), C(3,4), D(2,1)E(5, A),F(_1,d),G(_5, -3),H ( -4, -1)依次连接这些点,你能得到的图形是英文字母W8.如图,在所给的坐标系中描出下列各点的位置A(M, _4),B(-2,-2),C(3,3),D(5,5), E(-3,-3),F(0,0)这些点的位置有何关系:答:横坐标与纵坐标相等,并且它们在一条直线上.请写出两个类似的点:答:如(-i,-i),(i,i).离y轴4个单位长度.4 Cy*第8题⑴(』,0),( _4,3),( J3,0),( 23),( _1,0);⑵(2,1),(6,1),(6,3),(7,3),(4,6),(1 ,3),(2,3),(2,1)解:(1)如图,依次连接(1)中各点,得到的图形像字母 M 或两座小山;(2)如图,依次连接(2)中各点,得到的图形像一座小房子或一个箭头 .三、新课预习: 10.点A( -1,4)在第二 象限,B( -1,/)在第 三 象限,点C(1,—4)在第 四 象限, 点D (1,4)在第 一象限,点E(_2,0)在 x 轴上,点F(0,_2)在 y 轴上•11•点 P(:,2)在第二象限,它到x 轴的距离是 2,到y 轴的距离是 3.观察得到的图形,你觉得它们像什么?。

平面直角坐标系(习题及答案)

平面直角坐标系(习题及答案)

平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果ab=0,那么点P 的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若ab>0,那么点P 的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在;点(b,0)在.6.若点A(n-3,m-1)在x 轴上,点B(2n+1,m+4)在y 轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y 轴平行,且AB=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y 轴的直线上,点A 到y 轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x 轴的距离为,到y 轴的距离为,到原点的距离为.11.点M 在y 轴的左侧,距离x 轴4 个单位长度,距离y 轴3 个单位长度,则点M 的坐标为.12.点P(3,-2)关于x 轴的对称点的坐标是,关于y 轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y 轴上,则点P 关于x 轴的对称点的坐标为.14.若点P 先向左平移2 个单位,再向上平移1 个单位得到P′(-1,3),则点P 的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a 个单位后的坐标为;点(x,y)向下平移b 个单位后的坐标为;点(x,y)先向上平移a 个单位,再向右平移b 个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1. B2.D3. C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( -2 ,2 ),(2,-2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)27.5。

平面直角坐标系答题及答案

平面直角坐标系答题及答案

平面直角坐标系答题及答案一、选择题(共5题,每题4分,共20分)1.直线y = 3x + 2与y轴的交点的坐标为: A. (0, 3) B. (3, 0) C. (0, 2) D. (-2, 0)答案:C. (0, 2)2.已知点A(2, 3)和B(7, 8),则直线AB的斜率为: A. 2 B. 3 C. 5/2 D.1/2答案:C. 5/23.在平面直角坐标系中,点P(4, -3)关于x轴的对称点为: A. (4, 3) B. (-4, 3) C. (-4, -3) D. (-4, -6)答案:C. (-4, -3)4.已知线段AB的中点坐标为(2, 5),且点A(-1, 3),则点B的坐标为:A. (5, 2)B. (3, 7)C. (-2, 5)D. (2, 7)答案:B. (3, 7)5.线段PQ的中点坐标为(1, -2),且点P(3, 1),则点Q的坐标为: A. (2, -5) B. (1, -4) C. (-1, -5) D. (2, -1)答案:C. (-1, -5)二、填空题(共3题,每题4分,共12分)1.直线y = -4x + 3与x轴的交点的坐标为(,)。

答案:(3/4, 0)2.在平面直角坐标系中,点A(5, -2)关于y轴的对称点为(,)。

答案:(-5, -2)3.已知点P(4, -3)和点Q(7, 1),则线段PQ的中点坐标为(,)。

答案:(5.5, -1)三、解答题(共2题,每题20分,共40分)1.根据平面直角坐标系,解答以下问题:(a)坐标轴上的点有哪些?答案:坐标轴上的点有无数个,如(0, 0)、(1, 0)、(0, 2)等。

(b)如何计算两点之间的距离?答案:计算两点之间的距离可以使用勾股定理,即距离等于两点间横坐标差的平方与纵坐标差的平方的和再开根号。

(c)如何判断两条直线的关系?答案:两条直线的关系可以通过斜率来判断。

如果斜率相等,且截距也相等,则两条直线重合;如果斜率相等,但截距不相等,则两条直线平行;如果斜率不相等,则两条直线相交。

平面直角坐标系练习题(含答案)

平面直角坐标系练习题(含答案)

《平面直角坐标系》练习题班别:___________姓名:_______________一、选择题1. 若m<0,则点P(3,2m)所在的象限是 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 点 M(3,-4)关于x轴的对称点的坐标是 ( )A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)3.P(a,b) 是第二象限内一点,则Q(b,a) 位于 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法:①坐标轴上的点不属于任何象限;②y轴上点的横坐标为0;③平面直角坐标系中,(1,2) 和 (2,1) 表示两个不同的点;④点(3,0) 在x轴上,其中你认为正确的有 ( )A. 1个B. 2个C. 3个D. 4个5. 若点A(3−m,n+2)关于原点的对称点B的坐标是(−3,2),则m,n的值为 ( )A. m=−6,n=−4B. m=0,n=−4C. m=6,n=4D. m=6,n=−46. 已知点A(−3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是 ( )A. (−3,3)B. (3,−3)C. (−3,3)或(−3,−3)D. (−3,3)或(3,−3)7. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是 ( )A. 2B. 1C. 4D. 38. 若点P(a,b)在第四象限,则点Q(b,−a)所在的象限为 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,⋯,这样依次得到点A1,A2,A3,⋯,A n,⋯.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),⋯;若点A1的坐标为(a,b),则点A2015的坐标为 ( )A. (−b+1,a+1)B. (−a,−b+2)C. (b−1,−a+1)D. (a,b)10. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180∘,所得到的对应点Pʹ的坐标为 ( )A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)11. 在平面直角坐标系中,点A(−2,1)与点B关于原点对称,则点B的坐标为 ( )A. (−2,1)B. (2,−1)C. (2,1)D. (−2,−1)12. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是A. (13,13)B. (−13,−13)C. (14,14)D. (−14,−14)二、填空题13. 平面直角坐标系中,点(−3,4)关于y轴对称的点的坐标是.14. 点P在第二象限内,P 到x 轴的距离是1,到y轴的距离是2,那么点P的坐标为.15. 在平面直角坐标系中,已知A(−1,0),B(3,0),点C在y轴上,△ABC的面积是4,则点C的坐标是.16. 点P(3−a,a−1)在y轴上,则点Q(2−a,a−6)在第象限.17. 如图,长方形ABCD中,A(−4,1),B(0,1),C(0,3),则D点坐标是,长方形的面积为.18. 如图所示,在平面直角坐标系中,横坐标、纵坐标都为整数的点为整点,观察图形中的每一个正方形(实线)四条边上的整点的个数,请你猜想由里向外第100个正方形(实线)四条边上的整点共有个.三、解答题19. 将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(12,12 ).请建立直角坐标系,并求其余各点的坐标.20. 已知点M(3a−8,a−1).(1) 若点M在第二、四象限角平分线上,则点M的坐标为.(2) 若点M在第二象限;并且a为整数,则点M的坐标为.(3) 若N点坐标为(3,−6),并且直线MN∥x轴;则点M的坐标为.21. 已知点P(a−3,2a+1),且点P到两坐标轴的距离相等,求点P的坐标.22. 四边形ABCD各顶点的位置如图所示,求四边形ABCD的面积.23. 如图,△AOB的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1) 求△AOB的面积;(2) 若O,A两点的位置不变,且P点在y轴正半轴,若S△OAP=2S△OAB,求P点的坐标;(3) 若B,O两点的位置不变,M点在x轴上,M点在什么位置时,S△OBM=2S△OAB第17题答案第一部分1. D2. A3. D4. D5. B6. C7. C8. C9. B 10. D 11. B 12. C第二部分13. (3,4)14. (−2,1)15. (0,2)或(0,−2)16. 三17. (−4,3);818. 400第三部分19. 如图,A(−12,−12),B(12,−12),D(−12,12).20. (1) (−54,54) (2) (−2,1) (3) (−23,−6)21.因为点P(a−3,2a+1)到两坐标轴的距离相等,所以a−3=2a+1或a−3=−(2a+1),所以a=−4或a=23,故P(−7,−7)或P(−73,73).22. (1) 过D分别作DE⊥OC,DF⊥OA.S四边形ABCD =S△ABO+S△AFD+S△DEC+S正方形OEDF=12×1×4+12×1×3+12×2×3+3×3 =15.5.即四边形ABCD的面积为15.5.23. (1) S△AOB=12×5×4=10.(2) S△OAP=12×5×y p=20,所以y p=8.∴P(0,8) .(3) S△OBM=12×∣x M∣×4=20,所以∣x M∣=10,所以x M=10或x M=−10.∴M(−10,0)或M(10,0) .。

平面直角坐标系50题含解析.pdf

平面直角坐标系50题含解析.pdf

一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于()A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)5.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序非负实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A .1B .2C .3D .46.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A .(﹣1,1)B .(﹣2,﹣1)C .(﹣3,1)D .(1,﹣2)7.点M (﹣3,4)离原点的距离是多少单位长度()A .3B .4C .5D .78.如图,点M (﹣3,4)到原点的距离是()A.3B.4C.5D.79.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.1210.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.211.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.312.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S△ABC=()A.1B.2C.3D.413.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=024.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,﹣1)D.(3,1)28.在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个B.2个C.4个D.6个29.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1B.1C.﹣1或3D.330.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)31.我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x1=1,y1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A.401B.402C.2009D.201032.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为()A.(5,2009)B.(6,2010)C.(3,401)D.(4,402)33.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E 的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)二.填空题34.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.35.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.36.如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.37.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是.38.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.39.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿OB折叠,使点A落在Aʹ的位置上.若OB=,,求点Aʹ的坐标为.40.点A(﹣6,8)到x轴的距离为,到y轴的距离为,到原点的距离为.41.在某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,长度单位为100km.地震监测部门预报该地区将有一次地震发生,震中位置为(﹣1,2),影响范围的半径为300km,则下列主干线沿线的6个城市在地震影响范围内有个.主干线沿线的6个城市为:A(0,﹣1),B(0,2.5),C(1.24,0),D(﹣0.5,0),E(1.2,0),F(﹣3.22,0)参考数据:.42.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).43.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.44.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.45.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.46.如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.47.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.48.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.49.如图,已知A1(0,1),,,A4(0,2),,,A7(0,3),A8(,﹣),…则点A2010的坐标是.三.解答题50.已知如图,在平面直角坐标系中有四点,坐标分别为A(﹣4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标.(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围.一.选择题1.在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点M (﹣2,1)在第二象限.故选:B .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为()A .(1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1)考点:点的坐标.分析:根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度,解答即可.解答:解:∵点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的横坐标为2或﹣2,纵坐标是1或﹣1,∴点M 的坐标为(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D .点评:本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.3.已知点M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,且M ʹ到y 轴的距离等于4,那么点M ʹ的坐标是()A .(4,2)或(﹣4,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)考点:坐标与图形性质.分析:由点M 和M ʹ在同一条平行于x 轴的直线上,可得点M ʹ的纵坐标;由“M ʹ到y 轴的距离等于4”可得,M ʹ的横坐标为4或﹣4,即可确定M ʹ的坐标.解答:解:∵M (3,﹣2)与点M ʹ(x ,y )在同一条平行于x 轴的直线上,∴M ʹ的纵坐标y=﹣2,∵“M ʹ到y 轴的距离等于4”,∴M ʹ的横坐标为4或﹣4.所以点M ʹ的坐标为(4,﹣2)或(﹣4,﹣2),故选B .点评:本题考查了点的坐标的确定,注意:由于没具体说出M ʹ所在的象限,所以其坐标有两解,注意不要漏解.4.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)考点:点的坐标.专题:压轴题;新定义.分析:由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.解答:解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.点评:本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了什么.5.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4考点:点的坐标.专题:压轴题;新定义.分析:若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据定义,“距离坐标”是(1,2)的点,说明M到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.解答:解:因为平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个.故选D.点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.6.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)考点:坐标确定位置.专题:压轴题.分析:根据“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),得出原点的位置即可得出答案.解答:解:∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(﹣3,1),故选:C.点评:此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.7.点M(﹣3,4)离原点的距离是多少单位长度()A.3B.4C.5D.7考点:两点间的距离公式.专题:计算题.分析:根据两点间的距离公式即可直接求解.解答:解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.8.如图,点M(﹣3,4)到原点的距离是()A.3B.4C.5D.7考点:两点间的距离公式.分析:根据点在平面直角坐标系中的坐标的几何意义,及两点间的距离公式便可解答.解答:解:∵点M的坐标为(﹣3,4),∴点M离原点的距离是=5.故选C.点评:本题主要考查了坐标到原点的距离与横纵坐标之间的关系及两点间的距离公式.9.在直角坐标中,点P(6,8)到原点的距离为()A.10B.﹣10C.±10D.12考点:两点间的距离公式.分析:点的横纵坐标的绝对值和这点到原点的距离组成一个直角三角形,利用勾股定理求解即可.解答:解:点P(6,8)到原点的距离为:=10,故选A.点评:本题考查了两点间的距离公式,用到的知识点为:点到原点的距离是此点的横纵坐标的绝对值为两直角边的直角三角形的斜边.10.在平面直角坐标系中,点P(,﹣1)到原点的距离是()A.1B.C.4D.2考点:两点间的距离公式.分析:点到原点的距离为点横坐标与纵坐标的平方和的平方根.解答:解:∵()2+(﹣1)2=4∴点P到原点的距离为=2.故选D.点评:本题考查点的特征,关键是牢记点到原点距离的计算公式.11.对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2﹣x1|+|y2﹣y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()A.0B.1C.2D.3考点:两点间的距离公式.专题:压轴题;新定义.分析:对于①若点C在线段AB上,设C点坐标为(x0,y0)然后代入验证显然|AC|+|CB|=|AB|成立.成立故正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,用坐标表示|AC|+|CB|然后根据绝对值不等式可得到大于|AB|不成立,故可得到答案.解答:解:对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:|AB|=|x2﹣x1|+|y2﹣y1|.对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|=|x2﹣x1|+|y2﹣y1|=|AB|成立,故①正确.对于②平方后不能消除x0,y0,命题不成立;对于③在△ABC中,|AC|+|CB|=|x0﹣x1|+|y0﹣y1|+|x2﹣x0|+|y2﹣y0|≥|(x0﹣x1)+(x2﹣x0)|+|(y0﹣y1)+(y2﹣y0)|=|x2﹣x1|+|y2﹣y1|=|AB|.③不一定成立∴命题①成立,故选:B.点评:此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.本题的易错点在于不等式:|a|+|b|≥|a+b|忘记等号也可以成立.12.如图,直线y=﹣2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,=()则S△ABCA.1B.2C.3D.4考点:坐标与图形性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.专题:压轴题;数形结合.分析:本题可先根据直线的方程求出A、B两点的坐标,再根据角相等可得出三角形相似,的大小.最后通过相似比即可得出S△ABC解答:解:∵直线y=﹣2x+4与x轴,y轴分别相交于A,B两点∴OA=2,OB=4又∵∠1=∠2∴∠BAO=∠OCA∴△OAC∽△OAB则OC:OA=OA:OB=1:2∴OC=1,BC=3,=×2×3=3∴S△ABC故选C.点评:主要考查了一次函数图象上点的特征和点的坐标的意义以及与相似三角形相结合的具体运用.要把点的坐标有机地和图形结合起来求解.13.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(,﹣)D.(﹣,)考点:坐标与图形性质;垂线段最短;等腰直角三角形.专题:计算题.分析:线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.解答:解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.点评:动手操作很关键.本题用到的知识点为:垂线段最短.14.设P是函数在第一象限的图象上任意一点,点P关于原点的对称点为Pʹ,过P作PA平行于y轴,过Pʹ作PʹA平行于x轴,PA与PʹA交于A点,则△PAPʹ的面积()A.等于2B.等于4C.等于8D.随P点的变化而变化考点:坐标与图形性质;反比例函数系数k的几何意义;关于原点对称的点的坐标.分析:设P的坐标为(m,n),因为点P关于原点的对称点为Pʹ,Pʹ的坐标为(﹣m,﹣n);因为P与A关于x轴对称,故A的坐标为(m,﹣n);而mn=4,则△PAPʹ的面积为•PA•PʹA=2mn=8.解答:解:设P的坐标为(m,n),∵P是函数在第一象限的图象上任意一点,∴n=,∴m•n=4.∵点P关于原点的对称点为Pʹ,∴P'的坐标为(﹣m,﹣n);∵P与A关于x轴对称,∴A的坐标为(m,﹣n);∴△PAP'的面积=•PA•PʹA=2mn=8.故选C.点评:本题结合反比例函数的性质考查了关于原点对称的点的坐标变化规律和关于x、y轴对称的点的性质,要注意二者的区别.15.在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y 轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA 的最大值为()A.B.C.D.无法判断考点:坐标与图形性质;圆的认识.专题:动点型.分析:计算△DEA的面积,关键是确定底和高,在△DEA中,EA是半径,EA=|b|,点D在半圆EF上运动,点D与AE的距离最大值是|b|,故S△DEA的最大值为:×|b|×|b|=.解答:解:∵在△DEA中,当D运动于DA⊥AE时,此时DA作为高是最大的,DA=|b|∵EA=|b|,∴S△DEA的最大值为:×|b|×|b|=.故选A点评:本题考查了三角形面积的求法,要合理地确定底和高,底一定时,高最大,面积就最大.16.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或考点:坐标与图形性质;待定系数法求一次函数解析式.专题:计算题.分析:求出直线解析式后再求与坐标轴交点坐标,进一步求解.解答:解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选C.点评:主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.17.如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.考点:坐标与图形性质;解直角三角形.分析:本题本题可先根据三角函数求出AC和BC的值,由此即可得出B点的坐标.解答:解:∵∠BAC=60°,∠BCA=90°,AB=a,则AC=AB×cos60°=a,BC=AB×sin60°=a,∴点B的横坐标为a﹣2,纵坐标为a.故选D.点评:本题主要考查了三角函数的应用.18.如果mn<0,且m>0,那么点P(m2,m﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标确定位置.分析:因为m2>0,m﹣n>0,所以根据平面坐标系中点的坐标特点即可确定点在第一象限.解答:解:∵mn<0,m>0,∴n<0,∵m2>0,m﹣n>0,∴点P位于第一象限,故选A.点评:此题考查了坐标系中各象限中点的坐标特点,准确记忆是关键.19.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)考点:坐标确定位置.专题:压轴题.分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.20.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)考点:坐标确定位置.分析:由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.解答:解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.点评:由已知条件正确确定坐标轴的位置是解决本题的关键.21.电影院里的座位按“×排×号”编排,小明的座位简记为(8,6),小菲的位置简记为(8,12),则小明与小菲应坐在()的位置上.A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排考点:坐标确定位置.分析:根据题目信息,有序数对的第一个数表示排数,第二个数表示号数,以及电影院的座位排列规则解答.解答:解:∵座位按“×排×号”编排,∴小明在8排6号,小菲在8排12号,∴小明与小菲都在第8排,是同一排,中间有8号、10号间隔两人.故选A.点评:本题考查了坐标位置的确定,明确有序数对的实际意义是解题的关键,另外,还要了解电影院的座位,同一排的偶数号与偶数号相邻,奇数号与奇数号相邻.22.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200米.A.1个B.2个C.3个D.4个考点:坐标确定位置.分析:根据图形明确所建的平面直角坐标系,然后判断各点的位置.解答:解:①实验楼的坐标是(3,3),原描述错误;②实验楼的坐标是(3,3),正确;③实验楼的坐标为(4,4),坐标位置错误;④实验楼在校门的东北方向上,距校门200米,正确.有两个说法正确,故选B.点评:本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.23.若点P(a,b)在第二、四象限的角平分线上,则a与b的关系为()A.a>b B.a=b C.a<b D.a+b=0考点:坐标与图形性质.分析:根据角平分线上的点到角的两边的距离相等可得第二四象限角平分线上的点的横坐标与纵坐标互为相反数,再根据相反数的定义解答.解答:解:∵点P(a,b)在第二、四象限的角平分线上,∴a、b互为相反数,∴a+b=0.故选D.点评:本题考查了坐标与图形性质,熟记平面直角坐标系的特征是解题的关键.24.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点Bʹ处,则Bʹ点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)考点:坐标与图形性质;勾股定理;正方形的性质;翻折变换(折叠问题).专题:压轴题.分析:过点Bʹ作BʹD⊥OC,因为∠CPB=60°,CBʹ=OC=OA=4,所以∠BʹCD=30°,BʹD=2,根据勾股定理得DC=2,故OD=4﹣2,即Bʹ点的坐标为(2,).解答:解:过点Bʹ作BʹD⊥OC∵∠CPB=60°,CBʹ=OC=OA=4∴∠BʹCD=30°,BʹD=2根据勾股定理得DC=2∴OD=4﹣2,即Bʹ点的坐标为(2,)故选C.点评:主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.25.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)考点:坐标与图形性质.分析:先写出点A的坐标为(﹣4,6),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.解答:解:点A变化前的坐标为(﹣4,6),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(﹣4,3).故选A.点评:本题考查了坐标与图形性质的知识,属于基础题,比较简单.26.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.27.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()。

人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)

人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)

第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系班级:姓名:知识点1平面直角坐标系1.在直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).2.如图,写出平面直角坐标系中点A,B,C,D,E,F 的坐标.3.如图,在平面直角坐标系中:(1)描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(5,-2);(2)写出平面直角坐标系中E,F,G,H,M,N点的坐标.知识点2平面直角坐标系中各象限内点的坐标特征4.在平面直角坐标系中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)6.如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)7.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)8.如果x y<0,那么Q(x,y)在()A.第四象限B.第二象限C.第一或三象限D.第二或四象限9.若点P(m,n)在第三象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形ABCD 中点A和点C 的坐标分别为(-2,3)和(3,-2),则点B 和点D 的坐标分别为()A.(2,2)和(3,-3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)11.点P(-3,4)在第象限,到x 轴的距离是,到y 轴的距离是.知识点3坐标轴上点的坐标特征12.点B(-3,0)在()A.x 轴的正半轴上B.x 轴的负半轴上C.y 轴的正半轴上D.y轴的负半轴上13.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点D.在x轴上或在y轴上14.若点P(a-2,2a+3)在y轴上,则a=,此时点P的坐标是;如果点P在x轴上,那么a=.综合点1非负数与点的坐标15.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)综合点2分类讨论16.到x轴距离为2,到y轴距离为3的点有几个?拓展点1坐标与面积计算17.在直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),要确定这个四边形的面积,你是怎样做的?‘拓展点2规律性问题18.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)19.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2017的坐标为()A.(504,-504)B.(-504,504)C.(-504,503)D.(-505,504)第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系答案与点拨1.如图所示.2.A(5,2),B(0,4),C(-3,3),D(-5,0),E(-3,-4),F(4,-3).3.(1)如图所示,先在x 轴上找出表示4的点,再在y 轴上找出表示5的点,过这两个点分别作x 轴和y 轴的垂线,两垂线的交点就是点A.用同样的方法可描出其他各点.(2)过象限内的点M 分别向x 轴,y 轴作垂线,垂足在x 轴的坐标是4,在y 轴的坐标是1,故M 点的坐标为(4,1),同样,可得E(2,0),F(0,-4),G(-2,2),H(1,-2),N(-3,-2).4.B(点拨:∵-2<0,3>0,∴(-2,3)在第二象限,故选B.)5.A(点拨:因为第一象限点的特征是:横坐标是正数,纵坐标也是正数,而各选项中符合横坐标为正,纵坐标也为正的只有A 中(1,2).故选A.)6.D(点拨:小手盖住的点在第四象限.)7.C(点拨:先依据题意可以判断该点在第二象限.)8.D(点拨:由xy<0可得,x,y 异号,故选D.)9.A(点拨:点P 在第三象限,故m,n 均小于0,而-m,-n 则都大于0,故选A.)10.B(点拨:B 点与A 点的横坐标相同,B 点与C 点的纵坐标相同,故B 点坐标为(-2,-2),同理可得D 点坐标为(3,3).)11.二43(点拨:点P(-3,4)在第二象限内,点P 到x 轴的距离是|4|=4,到y 轴的距离是|-3|=3.)12.B(点拨:x 轴上的所有点的纵坐标为0.)13.D(点拨:由xy=0可以得到,x=0或y=0,即该点横坐标或纵坐标为0,故选D.)14.2(0,7)-32(点拨:由点P(a-2,2a+3)在y 轴上得a-2=0,解得a=2,∴2a+3=7,此时点P 的坐标是(0,7);由点P(a-2,2a+3)在x 轴上得2a+3=0,解得a=-32.)15.C(点拨:由非负数的性质,可知a-2=0,b+3=0,故a=2,b=-3,则-a=-2,-b=3.)16.4个,它们分别是(3,2),(3,-2),(-3,2),(-3,-2).(点拨:在各象限内均有可能.)17.S四边形ABCD =12×8-2×3-12×2×5-12×3×7-12×3×8=62.5.四边形的面积等于长方形的面积减去一个小长方形和三个三角形的面积.18.B(点拨:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒、2秒、3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B.)19.D(点拨:由规律可得,2017÷4=504…1,∴点P2017在第二象限,∵点P5(-2,1),点P9(-3,2),点P13(-4,3),∴点P2017(-505,504).)。

2021-2022学年人教版七年级数学下册《7-1平面直角坐标系》同步练习题(附答案)

2021-2022学年人教版七年级数学下册《7-1平面直角坐标系》同步练习题(附答案)

2021-2022学年人教版七年级数学下册《7-1平面直角坐标系》同步练习题(附答案)1.如图,在平面直角坐标系xOy中,点A的坐标可能是()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣2,2)D.(﹣2,1)2.若点P(m,n)在第三象限,则点Q(﹣m,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,点(0,4)的位置在()A.第一象限B.x轴正半轴上C.第二象限D.y轴正半轴上4.在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)5.点P(m﹣3,m+1)在直角坐标系的x轴上,则点P坐标为()A.(﹣4,0)B.(0,4)C.(0,﹣3)D.(1,0)6.在如图所示的直角坐标系中,M,N的坐标分别为()A.M(2,﹣1),N(2,1)B.M(2,﹣1),N(1,2)C.M(﹣1,2),N(1,2)D.M(﹣1,2),N(2,1)7.在平面直角坐标系中,点M在第四象限,到x轴、y轴的距离分别为4和3,则点M的坐标为()A.(4,﹣3)B.(3,﹣4)C.(﹣3,4)D.(﹣4,3)8.已知点P坐标为(1﹣a,2a+4),且点P到两坐标轴的距离相等,则点P的坐标是()A.(2,2)B.(2,﹣2)C.(6,﹣6)D.(2,2)或(6,﹣6)9.若点M(a+3,2a﹣4)到y轴的距离是到x轴距离的2倍,则a的值为()A.或1B.C.D.或10.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限11.若点M(2﹣a,3a+6)到两坐标轴的距离相等,则点M的坐标()A.(6,﹣6)B.(3,3)C.(﹣6,6)或(﹣3,3)D.(6,﹣6)或(3,3)12.已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案13.已知点P(m,n),且mn>0,m+n<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限14.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1)然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第2020秒时跳蚤所在位置的坐标是()A.(5,44)B.(4,44)C.(4,45)D.(5,45)15.已知点P的坐标为(2﹣a,a),且点P到两坐标轴的距离相等,求a的值.16.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.17.已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过A(2,﹣3)点,且与x轴平行的直线上.18.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.19.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.20.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知:A(1,3)、A1(2,3)、A2(4,3)、A3(8,3)、B(2,0)、B1(4,0)、B2(8,0)、B3(16,0).求:(1)A4、B4点的坐标;(2)A n、B n点的坐标.参考答案1.解:由题意可知,点A在第二象限,且到x轴的距离小于到y轴的距离,即可横坐标的绝对值大于纵坐标的绝对值.A.(﹣1,2)在第二象限,且到x轴的距离小于到y轴的距离,故本选项不符合题意;B.(﹣2,﹣1)在第三象限,故本选不项符合题意;C.(﹣2,2)在第二象限,且到x轴的距离等于到y轴的距离,故本选项不符合题意;D.(﹣2,1)在第二象限,且到x轴的距离小于到y轴的距离,即可横坐标的绝对值大于纵坐标的绝对值,故本选项符合题意.故选:D.2.解:∵点P(m,n)在第三象限,∴m<0,n<0,∴﹣m>0,﹣n>0,∴点Q(﹣m,﹣n)在第一象限.故选:A.3.解:∵点(0,4)的横坐标为0,纵坐标为正数,∴点(0,4)的位置在y轴正半轴上.故选:D.4.解:∵第二象限的点P到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.解:∵点P在x轴上,∴m+1=0,∴m=﹣1,∴m﹣3=﹣4,∴P(﹣4,0).故选:A.6.解:点M在第二象限,那么横坐标小于0,是﹣1,纵坐标大于0,是2,即M点的坐标为(﹣1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.7.解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为4,到y轴的距离为3,所以点M的坐标为(3,﹣4).故选:B.8.解:∵点P(1﹣a,2a+4)到两坐标轴的距离相等,∴|1﹣a|=|2a+4|,∴1﹣a=2a+4或1﹣a=﹣2a﹣4,解得a=﹣1或a=﹣5,a=﹣1时,1﹣a=2,2a+4=2,a=﹣5时,1﹣a=6,2a+4=6,所以,点P的坐标为(2,2)或(6,﹣6).故选:D.9.解:由题意得|a+3|=2|2a﹣4|,∴a+3=2(2a﹣4)或a+3=2(4﹣2a),解得a=或a=1,故选:A.10.解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.11.解:∵点M(2﹣a,3a+6)到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,∴点M的坐标为(6,﹣6)或(3,3);故选:D.12.解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.13.解:∵mn>0,∴m、n同号,∵m+n<0,∴m<0,n<0,∴点P(m,n)在第三象限.故选:C.14.解:由图可得,(0,1)表示1=12秒后跳蚤所在位置;(0,2)表示8=(2+1)2﹣1秒后跳蚤所在位置;(0,3)表示9=32秒后跳蚤所在位置;(0,4)表示24=(4+1)2﹣1秒后跳蚤所在位置;…∴(0,44)表示(44+1)2﹣1=2024秒后跳蚤所在位置,则(4,44)表示第2020秒后跳蚤所在位置.故选:B.15.解:由|2﹣a|=|a|得2﹣a=a,或a﹣2=a,解得:a=1.16.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1=0,解得m=1,所以P点的坐标为(6,0);(3)令m﹣1=(2m+4)+3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(4)令m﹣1=﹣3,解得m=﹣2.所以P点的坐标为(0,﹣3).18.解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).19.解:(1)∵点M在x轴上,∴2m+3=0解得:m=﹣1.5;(2)∵点M在第二象限内,∴,解得:﹣1.5<m<0;(3)∵点M在第一、三象限的角平分线上,∴m=2m+3,解得:m=﹣3.20.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0).。

七年级数学平面直角坐标系测试题及答案

七年级数学平面直角坐标系测试题及答案

七年级数学平面直角坐标系测试题及答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--图3相帅炮七年级数学第六章《平面直角坐标系》测试卷班级 _______ 姓名 ________ 成绩 _______一、选择题(每小题3分,共 30 分)1、根据下列表述,能确定位置的是( )A 、红星电影院2排B 、北京市四环路C 、北偏东30° D、东经118°,北纬40°2、若点A (m ,n )在第三象限,则点B (|m |,n )所在的象限是( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限3、若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、(3,3)B 、(-3,3)C 、(-3,-3)D 、(3,-3) 4、点P (x ,y ),且xy <0,则点P 在( ) A 、第一象限或第二象限 B 、第一象限或第三象限 C 、第一象限或第四象限 D 、第二象限或第四象限5、如图1,与图1中的三角形相比,图2的变化是( )A 、向左平移3个单位长度B 、向左平移1C 、向上平移3个单位长度D 、向下平移1个单位长度 6、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位 于点(3,-2)上,则○炮位于点( )A 、(1,-2)B 、(-2,1)C 、(-2,2)D 、(2,-2) 7、若点M (x ,y )的坐标满足x +y =0,则点M 位于( ) A 、第二象限 B 、第一、三象限的夹角平分线上 C 、第四象限 D 、第二、四象限的夹角平分线上8、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( )A 、将原图形向x 轴的正方向平移了1个单位B 、将原图形向x 轴的负方向平移了1个单位C 、将原图形向y 轴的正方向平移了1个单位D 、将原图形向y 轴的负方向平移了1个单位9、在坐标系中,已知A (2,0),B (-3,-4),C (0,0),则△ABC 的面积为( )A 、4B 、6C 、8D 、310、点P (x -1,x +1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 二、填空题(每小题3分,共18分)11、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。

(人教版数学)初中7年级下册-同步练习-7.1.2 平面直角坐标系-七年级数学人教版(下册)(解析版

(人教版数学)初中7年级下册-同步练习-7.1.2 平面直角坐标系-七年级数学人教版(下册)(解析版

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.在平面直角坐标系中,点P(-2,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.在下列所给出坐标的点中,在第三象限的是()A.B.C.D.3.如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0) B.(﹣2,3) C.(﹣3,2) D.(﹣3,﹣2)4.若点B(m+1,3m﹣5)到x轴的距离与到y轴的距离相等,则点B的坐标是()A.(4,4)或(2,2) B.(4,4)或(2,﹣2) C.(2,﹣2) D.(4,4)5.如图,是某学校的示意图,若综合楼的位置在点,食堂的位置在点,则教学楼的位置在点()A.B.C.D.6.已知点M向左平移3个单位长度后的坐标为,则点M原来的坐标是A.B.C.D.7.如图,四边形是矩形,A,B两点的坐标分别是(8,0),(0,6),点C在第一象限,则点C的坐标为()A.B.C.D.8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,0) B.(2020,1) C.(2020,2) D.(2020,505)二、填空题:(本题共5小题,每小题3分,共15分.)9.若点在y轴上,则点M的坐标为.10.已知点和,且直线轴,则m的值是.11.平面直角坐标系中,点在第二象限,到轴的距离是2,到轴的距离是4,则点的坐标为;12.如图,在网格中建立平面直角坐标系,使点的坐标为,点的坐标为,则点的坐标为.13.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.三、解答题:(本题共5题,共45分)14.如图所示的是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若海洋极地公园的坐标为(4,0),大唐芙蓉园的坐标为(2,-1),请建立平面直角坐标系,并用坐标表示其他景点的位置.15.在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)以点B为参照点,请用方位角和实际距离表示点C的位置.16.在平面直角坐标系中,已知点,解答下列各题:(1)若点P在x轴上,求点P的坐标;(2)若,且轴,求点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.17.图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A1B1C1;(3)连接AB1,B1C,△AB1C的面积= .参考答案:1.B 2.C 3.C 4.B 5.A 6.B 7.D 8.A9.(0,3)10.-111.(-4,2)12.(-3,1)13.(﹣2,1)14.解:如图所示:大圆塔景区(0,0),大明宫国家遗址公园(1,5),陕西西安博物馆(-1,2)15.(1)解:根据A(-3,1),B(-2,-3)画出直角坐标系描出点C(3,2),如图所示:(2)解:由勾股定理可知,BC=5∴点C在点B北偏东45°方向上,距离点B的5km处.16.(1)解:已知点,点P在x轴上,则点P的纵坐标为0 ∴,解得,a=-2∴.(2)解:,且轴,则点的横坐标相等∴,解得,a=-3∴(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等∴点P的横坐标与纵坐标的和为零∴,解得,a=-1把代入17.(1)解:根据题意建立的平面直角坐标系如图所示学校(1,3),邮局(0,-1);(2)解:他经过:商店,公园,汽车站,水果店,学校,游乐场,邮局;(3)解:得到的图形像一艘帆船18.(1)(2,7);(6,5)(2)解:△A1B1C1如图所示;(3)21。

平面直角坐标系测试题习题附答案

平面直角坐标系测试题习题附答案

平面直角坐标系测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 ( )A .(2,5)B .(5,2)C .(﹣5,2)D .(﹣5,2)或(5,2)【答案】D【分析】根据平行于x 轴的直线上的点纵坐标相同,再根据到y 轴的距离为5,即可判断坐标.【详解】解:∵点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,∴点N 的纵坐标为2,∵点N 到y 轴的距离为5,∴点N 的横坐标为±5,则点N 的坐标为(﹣5,2)或(5,2);故选:D .【点睛】本题考查了平面直角坐标系中点的坐标特征,解题关键是明确平行于x 轴的直线上的点纵坐标相同,到y 轴的距离是横坐标的绝对值.2.如果点P (a ,b )在x 轴上,那么点Q (ab ,﹣1)在( )A .y 轴的正半轴上B .y 轴的负半轴上C .x 轴的正半轴上D .x 轴的负半轴上【答案】B【分析】根据在x 轴上的点的特点可知0b =,即可求得0ab =,进而确定Q 点的坐标.【详解】点P (a ,b )在x 轴上,∴0b =,∴0ab =,∴点Q (ab ,﹣1)在y 轴的负半轴上故选B【点睛】本题考查了坐标轴上的点的特点,掌握坐标轴上的点的特征是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x 轴正半轴上的点:横坐标>0,纵坐标=0;②x 轴负半轴上的点:横坐标<0,纵坐标=0;③y 轴正半轴上的点:横坐标=0,纵坐标>0;④y 轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0. 3.点A (-3,1)到y 轴的距离是( )个单位长度.A .-3B .1C .-1D .3【答案】D【分析】由点到y 轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知(3,1)A -到y 轴的距离为33-=∴(3,1)A -到y 轴的距离是3个单位长度 故选D .【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点(,)A a b 到y 轴的距离=a ;到x 轴的距离=b .4.在平面直角坐标系中,点A (2,﹣4),点B (﹣3,1)分别在( )象限 A .第一象限,第三象限B .第二象限,第四象限C .第三象限,第二象限D .第四象限,第二象限【答案】D【分析】应先判断出点A ,B 的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵20,40,30,10>-<-<>∴点A (2,﹣4)在第四象限,点B (﹣3,1)在第二象限故选:D【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)【答案】D【分析】 根据题意可得,从A →B →C →D →A 一圈的长度为2(AB +BC )=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A 点坐标为(1,1),B 点坐标为(﹣1,1),C 点坐标为(﹣1,﹣2), ∴AB =1﹣(﹣1)=2,BC =2﹣(﹣1)=3,∴从A →B →C →D →A 一圈的长度为2(AB +BC )=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D .【点睛】本题考查了坐标规律探索,找到规律是解题的关键.6.若点A (a ,b ﹣2)在第二象限,则点B (﹣a ,b +1)在第( )象限.A .一B .二C .三D .四【答案】A【分析】先根据第二象限内点坐标符号可得0,20a b <->,再判断出,1a b -+的符号即可得.解:点(,2)A a b -在第二象限,0,20a b ∴<->,即0,2a b <>,0,130a b ∴->+>>,则点,(1)B a b -+在第一象限,故选:A .【点睛】本题考查了判断点所在象限,熟练掌握各象限内的点坐标符号规律是解题关键. 7.根据下列表述,能确定位置的是( )A .某电影院2排B .宜昌市夷陵路C .北偏东30D .东经118︒,北纬40︒【答案】D【分析】根据有序数对表示点的位置解答.【详解】解:A 选项:第二排有很多座位,不能确定是哪一个,故A 错误;B 选项:宜昌市夷陵路有很多点,不能确定是哪一个,故B 错误;C 选项:北偏东30,这一个方位很广,不能确定是哪个位置,故C 错误;D 选项:东经118︒,北纬40︒,经线和纬线相交为一个点,故D 正确.故选:D .【点睛】此题考查有序数对,正确掌握利用有序数对表示一个点的坐标是解题的关键. 8.如图,在平面直角坐标系中,若三角形ABC 的三个顶点分别为A (2,3),B (3,1),C (﹣2,﹣2),则三角形ABC 的面积为( )A .6.5B .13C .5.5D .11【分析】利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:∵A(2,3),B(3,1),C(﹣2,﹣2),∴1115545531225107.51 6.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=.故选:A.【点睛】本题考查了坐标与图形,熟练掌握平面直角坐标系中的坐标特点及三角形的面积的求法是解题的关键.二、填空题9.已知ABC的面积为3,且A、B两点的坐标分别为(1,0)、(2,0)-,若点C到y轴距离是1,则点C的坐标为____________.【答案】(1,2)或(-1,2)或(-1,-2)或(1,-2)【分析】以AB=3为底,根据△ABC面积求出其高,进而得到C点的纵坐标的绝对值为2,进而得到C点的纵坐标为2或-2,再由C到y轴距离是1得到其横坐标为1或-1,由此即可求出C点的坐标.【详解】解:∵A、B两点的坐标分别为(1,0)、(2,0)-,∴AB=3,设C点纵坐标为y,且ABC的面积为3,∴1||2ABCS AB y∆=⋅,代入数据,得到:||2y=,∴2y=±,又点C到y轴距离是1,∴C点的横坐标为±1,∴点C的坐标为(1,2)或(-1,2)或(-1,-2)或(1,-2),如下图所示:故答案为:(1,2)或(-1,2)或(-1,-2)或(1,-2) .【点睛】本题考查三角形的面积,平面直角坐标系中点的坐标特点等;本题的关键是通过三角形面积求出点的纵坐标的绝对值,进而确定的点坐标.10.如图,点A、B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为________.【答案】(3,2)【分析】利用DB=1,B(3,0),得出△AOB沿x轴向右平移了2个单位长度,再利用平移中点的变化规律求解即可.【详解】∵点A. B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,DB=1,∴OB=3,∴OD=2,∴△AOB沿x轴向右平移了2个单位长度,∴点C的坐标为:(3,2).故答案为:(3,2).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点.11.已知P(1﹣m,m+2)在x轴上,则点P的坐标是______________.【答案】(3,0)【分析】根据x 轴上点的纵坐标为零,可得m 的值,进而可得答案.【详解】解:(1,2)P m m -+在x 轴上,20m ∴+=,解得2m =-,13m ∴-=,∴点P 的坐标是(3,0).故答案为:(3,0).【点睛】本题考查了点的坐标,利用x 轴上点的纵坐标为零得出m 的值是解题关键. 12.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.【答案】(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2020=4×504+4,∴点A 2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”.13.已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.【答案】(3,2)【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.已知点(34,47)A a a -+在第一、三象限的角平分线上,则a 的值为________.若A 在第二、四象限的角平分线上,则a 的值是_________.【答案】11- 37- 【分析】第一、三象限的角平分线上点的横坐标与纵坐标相等,第二、四象限的角平分线上的点的横坐标与纵坐标互为相反数,根据点的坐标特点列方程,解方程即可得到答案.【详解】 解: 点(34,47)A a a -+在第一、三象限的角平分线上,3447,a a ∴-=+11,a ∴=-(34,47)A a a -+在第二、四象限的角平分线上,34470,a a ∴-++=3.7a ∴=- 故答案为:311,.7-- 【点睛】本题考查的是四个象限的角平分线上点的坐标特点,掌握其坐标特点是解题的关键.三、解答题15.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.【答案】(1)见解析;(2)14【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积. 【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.16.如图,A ,B 两点的坐标分别是()2,1-,()2,1,你能确定()3,3的位置吗?【答案】()3,3的位置是点C .【分析】先根据A 点坐标确定x 轴与y 轴位置,两轴交点为坐标原点O ,然后建立平面直角坐标系,根据点的坐标(3,3)找到点C 即可.【详解】解:点A 向左平移2个单位,是y 轴坐在位置,点A 向上平移一个单位为x 轴坐在位置,两轴相交位置为坐标原点O ,以O 为坐标原点建立平面直角坐标系,如图,从点O 向右平移3个单位,再向上平移3个单位是(3,3)用C 表示.【点睛】本题考查已知点坐标建立平面直角坐标系,根据坐标找点,掌握点的横坐标绝对值是点到y 轴的距离,点的纵坐标绝对值是点到x 轴的距离是解题关键.17.如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系.三角形ABC 内任意一点M 的坐标为(,)x y ,点M 经过这种变换后得到点N ,点N 的坐标是什么?【答案】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【分析】根据点在直角坐标系中所在的象限及位置直接可以确定点的坐标,各组点的横纵坐标都是互为相反数,由此得到点M 的对应点N 的坐标.【详解】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【点睛】此题考查直角坐标系中点的坐标,正确确定各点的坐标及发现规律解决问题是解题的关键.18.如图1,在平面直角坐标系中,正方形OABC 的面积等于4,长方形OADE 的面积等于8,其中点C 、E 在x 轴上,点A 在y 轴上.(1)请直接写出点A ,点B ,点D 的坐标;(2)如图2,将正方形OABC 沿x 轴向右平移,移动后得到正方形O A B C '''',设移动后的正方形O A B C ''''长方形OADE 重叠部分(图中阴影部分)的面积为S ;①当1AA '=时,S =______;当3AA '=时,S =______;当5AA '=时,S =______; ②当1S =时,请直接写出AA '的值.【答案】(1)()0,2A ,()2,2B -,()4,2D ;(2)①2,4,2;②12AA '=或112AA '=. 【分析】(1)由正方形面积求出边长再求出A 、B 点坐标,又由长方形面积求出长再求出D 点坐标.(2)①AA ′=1 时,面积为图2阴影部分;AA ′=3 时,面积为正方形面积;AA ′=5时正方形一半在长方形内,一半在长方形外.②S =1时注意有两种情况:正方形刚进入长方形的时候和正方形快要走出长方形的时候.【详解】解:(1)正方形面积为4∴AB =AO = 2∴()0,2A ,∴()2,2B -,长方形面积为8,AO =2∴AD =8÷2=4∴()4,2D(2)①AA ′=1 时,面积为图2阴影部分,S =AA ′×AO =1×2=2 AA ′=3 时,面积如下图,S =AB′×AO=2×2=4AA ′=5时,面积如下图,S =B'D×BC=1×2=2②正方形刚进入长方形时,可参照图2,阴影部分是AA'O'O ,该部分面积=AA '×AO =AA '×2=1∴AA '=1÷2=12正方形快要走出长方形时,可参照下图,阴影部分是B'DEC ,该部分面积=B'D ×B'C =B'D ×2=1∴B'D=1÷2=12∴A'D=2-12=32∴AA'=4+32=112故答案为AA′=12或AA′=112【点睛】本题考查图形的平移和坐标的知识,准确识图,结合图形灵活运用相关知识是解题的关键.19.图中标明了李明家附近的一些地方.(1)写出书店和邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿(100,200)-,(100,0),(200,100),(200,200)-,(100,200)--,(0,100)-的路线转了一下,又回到家里,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?【答案】(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图见解析,得到箭头符号.(1)根据坐标的概念结合图形即可得;(2)由图形及其坐标得出具体的位置;(3)连线可得答案.【详解】解:(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图,得到箭头符号.【点睛】本题主要考查坐标确定位置,各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0. 20.已知点(2,28)P a a -+分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;【答案】(1)()6,0-;(2)()1,14 【分析】 (1)根据点在数轴上的特点,令280a +=,即可求得a ,进而求得P 的坐标; (2)根据平行与y 轴的直线的特点,令21a -=,即可求得a ,进而求得P 的坐标; 【详解】 (1)点P 在x 轴上, ∴280a +=,2426a ∴-=--=-∴点P 的坐标()6,0-(2)点Q 的坐标为(1,5),直线PQ ∥y 轴,∴21a -=解得3a =286814a ∴+=+=∴点P 的坐标()1,14 【点睛】 本题考查了平面直角坐标系中坐标轴上的点的坐标特点,掌握以上知识是解题的关键. 21.如图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(﹣1,3),点C 的坐标为(1,﹣1).(1)请在图中画出平面直角坐标系;(2)把三角形ABC 向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的三角形A 1B 1C 1,并写出平移后各顶点的坐标.【答案】(1)见解析;(2)见解析; A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【分析】(1)根据已知两点的坐标,即可判断横轴和纵轴的位置,从而画出平面直角坐标系; (2)分别将三角形的三个点向下平移2个单位长度,再向右平移3个单位长度,然后将平移后的对应点顺次连接即可.【详解】解:(1)平面直角坐标系如图所示;(2)如图所示:三角形A 1B 1C 1即为所求,A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【点睛】本题考查平面直角坐标系内的平移作图,以及知道点的坐标确定平面直角坐标系的位置,牢记相关的知识点并能准确应用是解题关键.22.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.类似地,你能用坐标表示你自己学校各主要建筑物的位置吗?【答案】图见解析,校门、国旗杆、教学楼、实验楼、图书馆的位置分别是()0,0,()3,0,()6,0,()6,3-,()5,3.【分析】得出原点位置进而建立坐标系得出各点坐标.【详解】解:如图所示:以校门为原点,正东方向为x 轴正方向,正北方向为y 轴正方向建立平面直角坐标系,规定一个单位长度代表1m ,则校门、国旗杆、教学楼、实验楼、图书馆的位置分别是:()0,0,()3,0,()6,0,()6,3-,()5,3.【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.23.在直角坐标系中,写出下列各点的坐标:(1)点A 在x 轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B 在y 轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C 在y 轴的左侧,在x 轴的上侧,距离每个坐标轴都是4个单位长度.【答案】(1)()4,0A -;(2)()0,4B ;(3)()4,4C -.【分析】(1)根据x 轴上的点的纵坐标等于0得出答案;(2)利用在y 轴上点的坐标性质得出即可;(3)利用点的位置进而得出C 点坐标.【详解】(1)∵点A 在x 轴上,∴点A 的纵坐标为0,∵点A 位于原点左侧,距离原点4个单位长度,∴点A 的横坐标为-4,∴点A 的纵坐标为(-4,0);(2)∵点B 在y 轴上,∴点B 的横坐标为0,∵点B 位于原点的上侧,距离坐标原点4个单位长度∴点B的纵坐标为4∴点B的纵坐标为(0,4);(3)∵点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.∴C的纵坐标为(-4,4).【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.24.已知点P(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【答案】(1)点P的坐标为(-11,-8);(2)P点坐标为(-1,-3).【分析】(1)建立方程a-1=2a+3+3,解方程确定a值,代入计算即可;(2)根据平行x轴的点的纵坐标相等建立方程求解即可.【详解】(1)∵点P(2a+3,a-1),且点P的纵坐标比横坐标大3,∴a-1=2a+3+3,解得a=-7,∴点P(-11,-8);(2)∵点P在过A(2,-3)点,且与x轴平行的直线上,∴a-1=-3,解得a=-2,∴点P(-1,-3).【点睛】本题考查了坐标之间的关系,坐标与平行线的关系,熟练建立方程并灵活解方程是解题的关键.。

第7章平面直角坐标系+同步练习题+2021-2022学年人教版七年级数学下册

第7章平面直角坐标系+同步练习题+2021-2022学年人教版七年级数学下册

2021-2022学年人教版七年级数学下册《第7章平面直角坐标系》同步练习题(附答案)一.选择题1.根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°2.在平面直角坐标系中,点M(﹣3,6)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在如图所示的直角坐标系中,M,N的坐标分别为()A.M(2,﹣1),N(2,1)B.M(﹣1,2),N(2,1)C.M(﹣1,2),N(1,2)D.M(2,﹣1),N(1,2)4.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)5.在直角坐标系内,将点P(1,﹣2)向左平移2个单位长度,再向上平移3个单位长度,可以得到对应点P1的坐标为()A.(﹣1,1)B.(﹣1,﹣5)C.(3,1)D.(3,﹣5)6.如图,这是一所学校的平面示意图,在同一平面直角坐标系中,教学楼A的坐标为(﹣3,0),实验楼B的坐标为(2,0),则图书馆C的坐标为()A.(0,﹣3)B.(﹣1,﹣3)C.(3,0)D.(﹣2,0)7.在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)8.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为()A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4表示,则顶点A2022的坐标是()A.(505,﹣505)B.(﹣505,505)C.(506,﹣506)D.(﹣506,506)10.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2021个点的坐标为()A.(45,9)B.(45,4)C.(45,21)D.(45,0)二.填空题11.点A(5,﹣2)到y轴的距离为,到x轴的距离为.12.点P(m,m+3)在平面直角坐标系的y轴上,则点P的坐标是.13.在平面直角坐标系中,线段AB平行于x轴,且AB=4.若点A的坐标为(﹣1,2),点B的坐标为(a,b),则a+b=.14.已知点P(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=.15.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2021坐标是.16.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.三.解答题17.在平面直角坐标系中,点A(m﹣n,2m+n)在第二象限,到x轴和y轴的距离分别为4,1,试求(m﹣n)2021的值.18.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.19.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.参考答案一.选择题1.解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬43°,能确定具体位置,故本选项正确.故选:D.2.解:点M(﹣3,6)在第二象限,故选:B.3.解:点M在第二象限,那么横坐标小于0,是﹣1,纵坐标大于0,是2,即M点的坐标为(﹣1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:B.4.解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.5.解:∵P(1,﹣2)先向左平移2个单位长度,再向上平移3个单位长度得到点P1,∴1﹣2=﹣1,﹣2+3=1.∴P1(﹣1,1).故选:A.6.解:如图所示:图书馆C的坐标为(﹣1,﹣3).故选:B.7.解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3﹣5=﹣2,∴B点的坐标为:(﹣4,﹣2)或(﹣4,8);故选:C.8.解:∵点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,1)、A6(3,1)、A7(3,0)、A8(4,0)、A9(4,1)、…,∴点A4n+2(n为自然数)的坐标为(2n+1,1),∴点A2022的坐标为(1011,1).故选:B.9.解:根据题意,可知:A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,∴A4n﹣2(﹣n,n)(n为正整数).又∵2022=506×4﹣2,∴A2022(﹣506,506).故选:D.10.解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n结束的有n2个点,第2025个点是(45,0),∴2021个点的坐标是(45,4);故选:B.二.填空题11.解:∵|5|=5,|﹣2|=2,∴点A(5,﹣2)到y轴的距离是5,到x轴的距离是2.故答案为:5,2.12.解:∵点P(m,m+3)在平面直角坐标系的y轴上,∴m=0,∴m+3=0+3=3,所以,点P的坐标为(0,3).故答案为:(0,3).13.解:∵AB∥x轴,A的坐标为(﹣1,2),∴点B的纵坐标为2.∵AB=4,∴点B的横坐标为﹣1+4=3或﹣1﹣4=﹣5.∴点B的坐标为(3,2)或(﹣5,2).则a+b=3+2=5或a+b=﹣5+2=﹣3.故答案为:5或﹣3.14.解:∵点P(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,∴5a﹣7+(﹣6a﹣2)=0,解得a=﹣9.故答案为:﹣9.15.解:观察图形可知,点的横坐标依次是0、1、2、3、4、…、n,纵坐标依次是0、2、0、﹣2、0、2、0、﹣2、…,四个一循环,2021÷4=505…1,故点A2021坐标是(2021,2).故答案为:(2021,2).16.解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,∴A2n﹣1(3032,1010),故答案为(3032,1010).三.解答题17.解:∵点A(m﹣n,2m+n)在第二象限,到x轴和y轴的距离分别为4,1,∴,2m+n=4,m-n=1解得m=1,n=2所以,(m﹣n)2021=(﹣1)2021=﹣1.18.解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=﹣1,解得:m=﹣1或m=﹣2,∴点M的坐标是(﹣2,1)或(﹣3,﹣1);(2)∵|m﹣1|=2,∴m﹣1=2或m﹣1=﹣2,解得:m=3或m=﹣1,∴点M的坐标是:(2,9)或(﹣2,1).19.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).20.解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.。

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)

中考数学总复习《平面直角坐标系》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点A到x轴的距离为2,到y轴的距离为5,且点A在第四象限,则点A的坐标是()A.(2,−5)B.(5,−2)C.(−2,5)D.(−5,2)2.若点P(m+5,m−3)在x轴上,则点P的坐标为()A.(8,0)B.(0,−8)C.(4,0)D.(0,−4)3.在平面直角坐标系中,若直线AB经过点(3,−4)和(−3,4),则直线AB() A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.在平面直角坐标系中,将点P(−1,5)绕原点O顺时针旋转90°得到P′,则点P′的坐标为()A.(1,5)B.(5,1)C.(−1,−5)D.(−5,−1) 5.点P坐标为(6−3a,a+2),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,−3)C.(3,3)或(−6,6)D.(3,−3)或(6,−6)6.在平面直角坐标系中,点A(3,4),B(−1,b),当线段AB最短时,b的值为()A.5B.4C.3D.07.如图,雷达探测器测得六个目标A,B,C,D,E,F,目标E,F的位置分别表示为E(3,330°),F(2,30°)按照此方法,目标A,B,C,D的位置表示不正确的是()A.A(5,60°)B.B(3,120°)C.C(3,210°)D.D(5,270°) 8.如图A1(1,0),A2(1,1),A3(−1,1),A4(−1,−1),A5(2,−1)…按此规律,点A2022的坐标为()A.(505,505)B.(−506,506)C.(506,506)D.(−505,−505)二、填空题9.电影票上“10排8号”记作(10,8),那么(15,9)表示的意义是10.已知A(a,−4)与B(3,4)两点关于x轴对称,则a的值为11.已知点A(m+1,2)和点B(3,m−1),若直线AB∥x轴,则A的坐标为.12.如图,在平面直角坐标系xOy中,Rt△OAB的斜边OB在x轴上∠ABO=30°,若点A的横坐标为1,则点B的坐标为.13.如图,△ABC为等腰直角三角形∠ABC=90°,点B、C在坐标轴上,已知点A坐标为(3,4),则△ABC的面积为.14.在平面直角坐标系中,用大小、形状完全相同的长方形纸片摆放成如图所示的图案,已知点A的坐标为(−1,3),则点B的坐标为.15.如图所示,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C 在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB全等.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.三、解答题17.为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);(2)在(1)建立的平面直角坐标系xOy中.①表示古树C的位置的坐标为______,并在网格中标出古树E(4,−1)的位置;②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.请在网格中画出点P(保留作图痕迹,不写作图过程);该距离和的最小值为______.18.已知平面直角坐标系中有一点M(m−1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到两坐标轴的距离相等时,求点M的坐标.19.如图,已知△ABC的三个顶点的坐标分别为A(−6,0),B(−2,3),C(−1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(2)在格点图内,若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.20.如图,在直角坐标系中A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中描点,画出△ABC;并作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)设点P在y轴上,且△ABP与△ABC的面积相等,直接写出点P的坐标.21.如图,已知△ABC的顶点分别为A(−2,2),B(−4,5),C(−5,1).(1)作出△ABC关于x轴对称的图形△A1B1C1(2)写出点C1的坐标(3)在x轴上找一点P,使得AP+CP最小(画出图形,找到点P的位置).22.如图,在平面直角坐标系中,设一点M自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位长度至P2处,再向下运动3个单位长度至P3处,再向右运动4个单位长度至P4处,再向上运动5个单位长度至P5处…如此继续运动下去,设P n(x n,y n),n=1,2,3,…….(1)计算x1+x2+x3+x4.(2)计算x1+x2+⋅⋅⋅+x2023+x2024的值.参考答案1.解:设A(x,y)∵点A到x轴的距离为2,到y轴的距离为5∴x=±5,y=±2∵点A在第四象限∴x>0,y<0∴x=5,y=−2∴A(5,−2)故选:B.2.解:依题意得:m−3=0,即:m=3∴m+5=3+5=8∴点P的坐标为(8,0)故选A.3.解:点(3,−4)和(−3,4)的横纵坐标互为相反数故点(3,−4)和(−3,4)关于原点对称故直线AB经过原点.故选:C.4.解:如图,过P、P′分别向x轴作垂交于H、K根据旋转的定义可知OP=OP′,∠POP′=90°∴∠POH+∠P′OK=90°,∠P′OK+∠P′=90°∴∠POH=∠P′∴∠PHO=∠P′KO=90°∴△PHO≌△P′OK(AAS).∴PH=OK=5,OH=P′K=1即P′(5,1).故选B.5.解:由点(6−3a,a+2)到两坐标轴的距离相等,得6−3a=a+2,或6−3a+a+2=0解得a=1,或a=4则该点的坐标为(3,3)或(−6,6)故选:C.6.解:由题意知,点B(−1,b)在直线x=−1上运动∴当AB⊥直线x=−1时,线段AB最短此时b=4.故选:B.7.解:∴E(3,330°),F(2,30°)∴A(5,60°),B(3,120°),C(4,210°),D(5,270°)故选:C8.解:由题可知第一象限的点:A2,A6,A10,……角标除以4余数为2;第二象限的点:A3,A7,A11……角标除以4余数为3;第三象限的点:A4,A8,A12……角标除以4余数为0;第四象限的点:A5,A9,A13……角标除以4余数为1;由上规律可知:2022÷4=505⋯2∴点A2022在第一象限.观察图形,得:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),……∴第一象限点的横纵坐标数字隐含规律:点的横纵坐标=n+2(n为角标)4∴点A2022的坐标为(506,506).故选:C.9.解:∴“10排8号”记为(10,8)∴(15,9)表示的意义是15排9号.故答案为:15排9号.10.解:∴A(a,−4)与B(3,4)两点关于x轴对称∴a=3故答案为:3.11.解:∴直线AB∥x轴∴m−1=2∴m=3∴m+1=4即点A坐标:A(4,2)故答案为:(4,2).12.解:过点A作x轴的垂线,垂足为点C ∴Rt△OAB中∠ABO=30°∴∠AOB=60°∴AC⊥OB∴∠OAC=30°∴点A的横坐标为1∴OC=1∴OA=2OC=2∴∠ABO=30°∴OB=2OA=4∴点B的坐标为(4,0)故答案为:(4,0).13.解:如图所示,过点A作AD⊥y轴于点D∴△ABC是等腰直角三角形∴AB =BC ,∠ABC=90°∴∠ABD =90°−∠OBC =∠OCB又∠ADB =∠BOC =90°∴△ADB ≌△BOC (AAS)∴AD =OB,DB =OC∴点A 坐标为(3,4)∴AD =OB =3∴S △ABC =S 梯形−S △ABD −S △OBC =12(1+3)×4−12×1×3−12×1×3=5 故答案为:5.14.解:设每个长方形纸片的宽为x ,长为y由题意可得:{2y −x −y =12x +y =3解得{x =23y =53∴点B 的到x 轴的距离为x +y =73,到y 轴的距离为2y −x =83 ∴点B 的坐标为(−83,73). 故答案为:(−83,73).15.解:如图(1)所示当点C 在x 轴负半轴上,点D 在y 轴负半轴上时若△AOB ≌△COD ,则CO =AO =2∴点C 的坐标为(−2,0);若△AOB ≌△DOC ,则OC =OB =4∴点C 的坐标为(−4,0);如图(2)所示当点C在x轴负半轴上,点D在y轴正半轴上时若△AOB≌△DOC,则CO=BO=4∴点C的坐标为(−4,0).若△AOB≌△COD,则CO=AO=2∴点C的坐标为(−2,0);如图(3)所示当点C在x轴正半轴上,点D在y轴正半轴上时同理可得C的坐标为(4,0);如图(4)所示当点C在x轴正半轴上,点D在y轴负半轴上时,同理可得点C的坐标为(4,0);综上所述,点C的坐标为(−4,0)或(−2,0)或(4,0)故答案为:(−4,0)或(−2,0)或(4,0).16.解:由图可得,动点P的横坐标和运动的次数相同,纵坐标以1,0,2,0为一个循环组依次循环∴经过第2023次运动后,动点P的横坐标为2023∴2023÷4=505 (3)∴经过第2023次运动后,动点P的纵坐标为2∴动点P的坐标是(2023,2)故答案为:(2023,2).17.解:(1)如图所示(2)①点C(−2,2),点E(4,−1)的位置如图所示;②过点A作关于y轴的对称点为A′,则A′(−2,1),连接A′B与y轴交于点P,此时PA+PB最小等于A′B的长度;A′B=√[5−(−2)]2+(5−1)2=√72+42=√65∴点P到古树A,B的距离和的最小值为√65;故答案为:√6518.解:(1)∵|2m+3|=1∴2m+3=1或2m+3=−1解得:m=−1或m=−2∴点M的坐标是(−2,1)或(−3,−1);(2)∵|m−1|=|2m+3|∴m−1=2m+3或m−1=−2m−3解得:m=−4或m=−23∴点M的坐标是:(−5,−5)或(−53,5 3 ).19.(1)解:△A′B′C′如图所示∴A′(0,−6);(2)解:如图平行四边形A′B′C′D′即为所求:根据平行四边形性质可得D′(3,−5)故答案为:D′(3,−5).20.(1)解:如图所示,△ABC即为所求;△A1B1C1即为所求.(2)S△ABC=3×4−12×1×2−12×2×4−12×2×3=4;(3)当点P在y轴上时,△ABP的面积=12AP×|x B|=4即12AP×2=4解得:AP=4.∴点P的坐标为(0,5)或(0,−3).21.解:(1)如图1所示,△A1B1C1即为所求;(2)点C1的坐标为(−5,−1);(3)如图2所示,点P即为所求.22.(1)解:由题意可知P1(1,1),P2(−1,1),P3(−1,−2),P4(3,−2),P5(3,3),P6(−3,3),P7(−3,−4),P8(5,−4),……于是得到x1,x2,x3,x4的值为1,-1,-1,3∴x1+x2+x3+x4=1−1−1+3=2(2)解:∴x5,x6,x7,x8的值分别为3,-3,-3,5∴x5+x6+x7+x8=3−3−3+5=2;∴x1+x2+x3+x4=1−1−1+3=2x5+x6+x7+x8=3−3−3+5=2…x2021+x2022+x2023+x2024=2∴2024÷4=506∴x1220232024。

(完整版)七年级物理平面直角坐标系练习题及答案

(完整版)七年级物理平面直角坐标系练习题及答案

(完整版)七年级物理平面直角坐标系练习题及答案1. 坐标系的基本概念题目:1. 描述平面直角坐标系的定义和特点。

2. 给出以下坐标点的位置:A(3, 5), B(-2, -4), C(0, 0)。

答案:1. 平面直角坐标系是由一个水平的x轴和一个垂直的y轴组成的。

其中,x轴和y轴的交点称为原点O,x轴的正方向是从左往右,y轴的正方向是从下往上。

通过确定点的x坐标和y坐标,可以唯一确定平面上的点。

2. - 点A(3, 5)位于x轴正方向3个单位,y轴正方向5个单位处。

- 点B(-2, -4)位于x轴负方向2个单位,y轴负方向4个单位处。

- 点C(0, 0)位于原点O处。

2. 与坐标轴的关系题目:1. 计算点P(5, 3)与x轴和y轴的夹角。

2. 坐标系中存在哪些象限?分别描述它们的特点。

答案:1. 点P(5, 3)与x轴和y轴的夹角可以通过以下方法计算:- 与x轴的夹角:$\theta_x = \arctan \left(\frac{3}{5}\right)$- 与y轴的夹角:$\theta_y = 90 - \theta_x$2. 坐标系中存在四个象限:- 第一象限:x坐标和y坐标均为正数。

- 第二象限:x坐标为负数,y坐标为正数。

- 第三象限:x坐标和y坐标均为负数。

- 第四象限:x坐标为正数,y坐标为负数。

3. 点的坐标计算题目:1. 分别计算点A(2, 5)和点B(-3, 7)在x轴和y轴上的投影坐标。

答案:1. - 点A(2, 5)在x轴上的投影坐标为(2, 0)。

- 点A(2, 5)在y轴上的投影坐标为(0, 5)。

- 点B(-3, 7)在x轴上的投影坐标为(-3, 0)。

- 点B(-3, 7)在y轴上的投影坐标为(0, 7)。

以上是七年级物理平面直角坐标系练题及答案的完整版。

参考资料:- 《物理教程(七年级上册)》。

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案

九年级中考数学复习《平面直角坐标系》专项练习题-附带答案一、单选题1.在平面直角坐标系中,点P(3,﹣2)在第()象限A.一B.二C.三D.四2.在平面直角坐标系中,已知线段PQ=4,且PQ⊥x轴,若点P的坐标为(5,−2),则点Q的坐标为()A.(5,2)B.(9,−2)C.(5,2)或(5,−6)D.(9,−2)或(1,−2)3.在平面直角坐标系中,点P(m﹣2,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5 B.6 C.7 D.84.在平面直角坐标系中,点A,B,C,D,E,F的位置如图所示,如果点E的坐标是(﹣3,0),点F的坐标是(3,0),则在第三象限上的点是()A.点A B.点B C.点C D.点D5.图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,−4),A(−1,2),则点B的坐标为()A.(−2,−3)B.(−4,−1)C.(−4,−2)D.(−2,−2)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)7.如图,在平面直角坐标系xOy中,四边形ABCO是正方形,已知点A的坐标为(2,1),则点C的坐标为()A.(−1,2)B.(1,−2)C.(−1,√5)D.(−2,1)8.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4)B..(1,3)C..(2,4)D..(2,3)二、填空题9.点A,点B同在平行于x轴的直线上,则点A与点B的坐标相等.10.已知点P(x﹣3,2x﹣4)在纵轴上,则x的值是.11.如果将点A(-3,-1)向右平移2个单位长度,再向下平移3个单位得到点B,那么点B的坐标是.12.将点A(3,-4)沿X轴负方向平移3个单位长度,得到A′点的坐标为,再将A′沿Y轴正方向平移4个单位长度,得到A″点的坐标为13.北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,−1),表示王府井的点的坐标为(1,−1),则表示永定门的点的坐标为.三、解答题14.在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我两架飞机在A(-1,2)与B(3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.15.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?16.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.17.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,);(2)点A4n﹣1的坐标(n是正整数)为(3)指出蚂蚁从点A2013到点A2014的移动方向.参考答案1.D2.C3.D4.C5.C6.D7.A8.A9.纵10.311.(-1,-4)12.(0,-4);(0,0)13.(0,−7)14.解:能.如下图,先把AB四等分,然后过靠近A点的分点M作AB的垂线即为y轴,以AM为单位长度沿y轴向下2个单位即为O点,过点O作x轴垂直于y轴,然后描出敌机位置为点N.15.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).16.(1)解:∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)∴平移规律为:向右平移6个单位,向上平移4个单.如图所示:(2)解:A′(2,3),B′(1,0),C′(5,1).17.(1)解:由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)解: 根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)解: 根据平面直角坐标系,P(-1,-3)的位置如下图18.【解答】解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0);故答案为:2,0;4,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n﹣1的坐标(2n﹣1,0);(3)∵2013÷4=503…1,∴从点A2013到点A2014的移动方向与从点A1到A2的方向一致,为→。

第11章 平面直角坐标系 沪科版数学八年级上册同步练习(3课时 含答案)

第11章 平面直角坐标系 沪科版数学八年级上册同步练习(3课时 含答案)

第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.下列各点中,在第二象限的是( )A.(5,3) B.(-5,0) C.(-5,1) D.(-5,-1)2.若点P(m-1,-2)在第四象限,则m的取值范围是( )A.m<1 B.m<0 C.m>1 D.m>03.若教室中5排3列的位置记为(5,3),则3排5列的位置记为________.4.在平面直角坐标系中,若点A(m-1,m+2)在x轴上,则点A的坐标为________.5.在平面直角坐标系中,有一点M(a-2,2a+6),试求满足下列条件的a值或a的取值范围.(1)点M在y轴上;(2)点M在第一象限;(3)点M到x轴的距离为2.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.已知平行四边形的对边平行且相等.以平行四边形ABCD的顶点A为原点,直线AD为x轴建立平面直角坐标系(如图),若B,C两点的坐标分别为(1,3),(5,3),则该平行四边形的面积是________.(第1题)2.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(-2,1),B(-4,5),C(-6,3).求三角形ABC的面积.(第2题)3.在如图所示的平面直角坐标系中,描出以下各点:A(0,0),B(2,5),C(6,6),D(5,0),并顺次连接形成四边形ABCD.求出这个图形的面积.(第3题)第11章 平面直角坐标系11.2 图形在坐标系中的平移1.在平面直角坐标系中,将点(-2,3)向右平移6个单位后得到的点的坐标是( )A.(4,3) B.(-8,3)C.(-2,9) D.(-2,-3)2.在平面直角坐标系xOy中,将三角形ABC平移得到三角形DEF,若点A(-1,3)的对应点为D(2,5),则点B(-3,-1)的对应点E的坐标是( ) A.(1,0) B.(0,1) C.(-6,0) D.(0,-6)3.把点(-2,3)先向上平移4个单位,再向左平移3个单位,得到的点的坐标为__________.4.如图,在平面直角坐标系中,已知点A(-3,3),B(-4,-1),C(-2,1),P(a,b)为三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+5,b-2).(第4题)(1)直接写出点A1,B1,C1的坐标;(2)在图中画出三角形A1B1C1.第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.C 2.C 3.(3,5) 4.(-3,0)5.解:(1)由题意得a-2=0,解得a=2.(2)由题意得{a-2>0,2a+6>0,解得a>2.(3)由题意得|2a+6|=2,解得a=-2或-4.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.12 2.解:S三角形ABC=12×3×2+12×3×2=6.3.解:如图所示.(第3题)S 四边形ABCD =12×2×5+12×(5+6)×4-12×1×6=24.第11章 平面直角坐标系11.2 图形在坐标系中的平移1.A 2.B 3.(-5,7)4.解:(1)A 1(2,1),B 1(1,-3),C 1(3,-1).(2)如图所示,△A 1B 1C 1即为所求.(第4题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面直角坐标系》同步练习题
一、填空题:
1.在坐标平面内,有序实数对与平面内的点是_______对应的。

2.点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标是______。

3.如果直线L//x轴,且到x轴的距离为5,那么直线L与y轴的交点坐标是________。

4.已知点P(-2,7),则点P到x轴的距离为_______,到y轴的距离为_____。

5.过点M(3,2)且平行于x轴的直线上点的纵坐标是_______,过点M(3,2)且平行于y 轴的直线上的点的横坐标是_______.
6.地球上的点,人们常用_______来表示,如某地位于北纬20°,东经117°。

7.点A(-3,2)在第_____象限,点D(3,-2)在第__象限,点C(3,2)在第__象限,点F(0,2)在__轴上,点E(2,0)在__轴上。

8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是_____。

9.点P(-2,m)在第二象限的角平分线上,则m =____。

10.x轴上的点,其纵坐标为___,y轴上的点,其横坐标为___,原点的坐标为___。

二、选择题:
11.气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是()
A.西太平洋
B.北纬26º,东经133º
C.距台湾300海里
D.台湾与冲绳之间
12.若点A(a,b)在第二象限,则点B(a-b,b-a)一定在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
13.若点A(n,2)与B(-3,m)关于原点对称,则n-m等于()
A.-1 B.-5 C.1 D.5
14.若a﹥0,则点P(-a,2)应在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
《平面直角坐标系》同步练习题答案:
1.一一
2.(-3,2)
3.(0,5)或(0,-5)
4.7,2
5.2,3
6. 经纬度
7. 二,四,一,Y,X
8. (-5,4)
9. 2
10. 0,0,(0,0)
11.B 12.B 13.D 14.B。

相关文档
最新文档