不等式与不等式组复习(1)PPT

合集下载

人教版数学七年级下册 不等式与不等式组 课件PPT

人教版数学七年级下册 不等式与不等式组 课件PPT
+ 1 > 0,
②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;

《不等式的性质》不等式与不等式组PPT课件

《不等式的性质》不等式与不等式组PPT课件
不等式基本性质3:不等式的两边都 乘以(或除以)同一个负__数__,不等 号如的果方_a_>改向_b_,变____c__<__0。,那么_a_c_<_b_c_(_或__ac____bc_ )
例1:
我是最棒的 ☞
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
方向不变。
➢如式不果的等a两>式边b,基都c本乘<性0以质(那3或么:除ac以<b)c同(或一ac个负bc数,不)就等是号说的不方等向
改变。
等式性质与不等式性质的区别和联系
• 区别:等式两边都乘以(或除以)同一个数(除数不 为0)时,结果仍相等;不等式两边都乘以(或除以) 同一个数(除数不为0)时,会出现两种情况,若是 正数,不等号方向不改变,若是负数不等号方向要改 变,而且不等式两边同乘以0,结果相等.
5. 8 x 1,两边都乘 7 ,得 _x____87_.
7
8
例 已知a<0 ,试比较2a与a的大小。 解法一:∵2>1,a<0, ∴2a<a(不等式的基本性质3)
解法二: 在数轴上分别表示2a和a的点(a<0), 如图.2a位于a的左边,所以2a<a
∣a∣ ∣a∣
2a
a
想一想:还有其 他比较2a与a的 大小的方法吗?
如果_a_>_b_,那么a±c>b±c _________.
不等式还有什么类似的性质呢? ➢如果 7 > 3
那么 7×5 _>___ 3× 5 , 7÷5 __>__ 3÷ 5 ,
➢如果-1< 3,
那么-1×2<____3×2,
-1÷2__<__3÷2,
不等式基本性质2:不等式的两边都乘以

人教版七年级数学下册教学课件(人教版) 第九章 不等式与不等式组 第1课时 解一元一次不等式

人教版七年级数学下册教学课件(人教版) 第九章 不等式与不等式组 第1课时 解一元一次不等式

归纳总结
一元一次不等式的解法与一元一次方程的解法 类似,其根据是不等式的基本性质,其步骤是:去 分母、去括号、移项、合并同类项、将未知数的系 数化为 1.
针对训练
1.解下列不等式,并在数轴上表示解集:
(1) 5x+15>4x-1;
(2) 2(x+5)≤3(x-5);
(3) x 1< 2x 5;
知识点三 一元一次不等式的特殊解
例3 求不等式3(x+1)≥5x-9的非负整数解.
解析:求不等式的非负整数解,即在原不等式的解集 中找出它所包含的“非负整数”特殊解;因此 先需求出原不等式的解集.
解:∵解不等式3(x+1)≥5x-9得x≤6. ∴不等式3(x+1)≥5x-9的非负整数解为 0,1,2,3,4,5,6.
等式;(4)是一元一次不等式.
归纳总结
判断一个不等式是否为一元一次不等式的步骤: 先对所给不等式进行化简整理,再看是否满足: (1)不等式的左、右两边都是整式; (2)不等式中只含有一个未知数; (3)未知数的次数是1且系数不为0. 当这三个条件同时满足时,才能判定该不等式是一 元一次不等式.
针对练习
课堂小结
解一元一次不等式的一般步骤和根据如下:
步骤
根据
1
去分母
不等式的基本性质 3
2
去括号
单项式乘以多项式法则
3
移项
不等式的基本性质 1
合并同类项,得 4 ax>b,或ax<b (a≠0)
合并同类项法则
5 系数化为1
不等式的基本性质 3
归方F纳法法 正确理解关键词语的含义是准确解题的关键,
“非负整数解”即0和正整数解.
当堂练习
1.下列不等式中,是一元一次不等式的是( C )

3-1《不等式与不等关系》课件(共29张PPT)

3-1《不等式与不等关系》课件(共29张PPT)
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.

《不等式与不等式组》ppt完美课件

《不等式与不等式组》ppt完美课件

的解的有
5 3

是-32x>1 的解的有 -2,-2.5 .
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
10.将下列不等式的解集在数轴上表示出来:
(1)x<-3;
(2)x≥-1;
(3)x≠2;
(4)x>-2.
解:
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
七年级数学(下册)·人教版
第九章 不等式与不等式组
9.1 不等式 9.1.1 不等式及其解集
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
1.用“> ”或“ < ”表示大小关系的式子叫做不等式,用“ ≠ ” 表示不等关系的式子也是不等式. 2.使不等式成立的未知数的值叫做不等式的解;一般地,一个含有未知数 的不等式的 所有的解 组成这个不等式的解集.求不等式的 解集 的过程叫 做解不等式.
14.x 与 3 的差的 2 倍小于 x 的 2 倍与 3 的差,用不等式表示为( C )
A.2(x-3)<x-3
B.2x-3<2(x-3)
C.2(x-3)<2x-3
D.2x-3<12(x-3)
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
解:(1)3x>-2; (2)4y+1<5; (3)x2-2>0; (4)2y-6≥0.
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
20.若方程(m+2)x=2 的解为 x=1,想一想(m-2)x>-3 的解集是多少? 试探究-1,-2,0,1,2 这五个数中的哪些数是该不等式的解. 解:由题意可知:m=0,则不等式(m-2)x>-3 可化为-2x>-3.可以看 出其解集为 x<32.故-1,-2,0,1 是该不等式的解.

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
数学 七年级下册 人教版
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

《不等式的性质》不等式与不等式组PPT优秀课件

《不等式的性质》不等式与不等式组PPT优秀课件
数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
小结:关键是两两间大小关系要先表示或判定出来.
4
精典范例
5.【例1】利用不等式的性质,填“>”或“<”.
(1)若x>y,则x-10 > y-10;
(2)若-1.25y<10,则y > -8;
(3)若a<b且k>0,则k+a < k+b;
(4)若-1m>-1n,则 m < n;
2
2
(5)若a>b,则2a+1 > 2b+1;
(6)若a<b且c>0,则ac+c < bc+c.
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.

北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)

北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)

戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。

注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。

⑵常用的不等号有:<、≤、>、≥、≠。

⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。

⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

例1:判断下列哪些式子是不等式,哪些不是不等式。

①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。

不等式: 。

变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。

例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。

变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)

第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
a<b => a+c<b+c ,a-c<b-c.
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)
栏目导航
9
4.设 M=a2,N=-a-1,则 M、 M>N [M-N=a2+a+1=
N 的大小关系为________.
a+122+34>0,
∴M>N.]
栏目导航
10
合作探究 提素养
栏目导航
11
用不等式(组)表示不等关系 【例 1】 京沪线上,复兴号列车跑出了 350 km/h 的速度,这个速 度的 2 倍再加上 100 km/h,不超过民航飞机的最低时速,可这个速度已经 超过了普通客车的 3 倍,请你用不等式表示三种交通工具的速度关系.
栏目导航
23
解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪 一个,然后再用作差法比较它们的大小即可.
栏目导航
24
3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如 果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅 游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家 旅行社价格更优惠?
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质 第1课时 不等关系与不等式
2
学习目标
核心素养
1.会用不等式(组)表示实际问题中 1. 借助实际问题表示不等式,提升
的不等关系.(难点) 2.会用比较法比较两实数的大 小.(重点)
数学建模素养. 2. 通过大小比较,培养逻辑推理素 养.
栏目导航
14
1.用一段长为 30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m, 要求菜园的面积不小于 216 m2,靠墙的一边长为 x m.试用不等式表示其 中的不等关系.
栏目导航
15
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以 0<x≤18,

《一元一次不等式与不等式组》知识讲解(1)

《一元一次不等式与不等式组》知识讲解(1)
【答案】D
3
初一实验班——荣伟伟
一元一次不等式的解法
要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,
2 x 50 是一个一元一次不等式. 3
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);
②只含有一个未知数; ③未知数的最高次数为 1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是 1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一 元一次方程表示相等关系,由等号“=”连接,等号没有方向.
移项、合并同类项得: − 3 x 6 4
系数化 1,得 x −8 故原不等式的解集是 x −8
例 3.m 为何值时,关于 x 的方程: x − 6m −1 = x − 5m −1 的解大于 1?
63
2
【答案与解析】
解: x-12m+2=6x-15m+3
5x=3m-1
x = 3m −1 5
要点二、一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为: x a (或 x a )的形式,解一元一次不等式的一般步骤为:
(1)去分母; (2)去括号; (3)移项;
(4)化为 ax b (或 ax b )的形式(其中 a 0 );

4.若关于
x、y
的二元一次方程组
3x + y x + 3y
=1+ =3

不等式的基本性质(共16张PPT)

不等式的基本性质(共16张PPT)

复习回顾
(1)什么叫做不等式?
例如: 5x12 x5
6
4
(2)等式有哪些性质?你能分别用文字语言和符号语言
表示吗?
问题:研究等式性质的基本思路是什么?
运算的 不变性
探究1 不等式的性质1
为了研究不等式的性质,我们可以先从一些数字的运算
开始.用“<”或“>”完成下列两组填空.
① 5>3 5+2 3+2 , 5+(-2)
(1)x-5<11 ; (2)3x+3>2x+7 .
巧记口诀(拍掌读口诀) 加减都用性质1,不等号方向不改变 乘除正数性质2,不等号方向还不变 乘除负数性质3,不等号方向必改变
运用新知:
例1: 设a>b,用“<”或”>”填空,并说明依据不等式的哪条性质:
(1) a +12 b +12
(2) b -10 a -10
(3) 3a
3b
(5)-3.5b+1 -3.5a+1
不等式性质2: 不等式两边都乘(或除以)同一个正数,不等号的方 向不变.
数学语言: 如果a>b,c>0,那么ac>bc,a/c>b/c .
问题3:类似等式性质的符号语言表示,你能把不等式的性质2用符号语言表示吗?
针对练习:
(1)在不等式-8<0的两边都除以-8得-8÷(-8) (2)在不等式-3>-4的两边都乘以-3可得 (3)在不等式a>b的两边都乘以-1可得
-2 ×(-3)____ 3 ×(-3) -2 ÷(-3)_____ 3 ÷(-3)
课堂检测: 加减都用性质1,不等号方向不改变
(1)不等式的性质是什么?不等式性质与等式性质的联系与区别是

中职教育数学《不等式-复习课》课件

中职教育数学《不等式-复习课》课件

用符号“>”或“<”填空,并说 出应用了不等式的哪条性质.
>
>
> >
1.比较(x - 2)(x 2)与x2的大小。
a b 1 1 2. 已知
a b ,不等式:(1) 2 2 ;(2)
a b 成立的个数是( )
1
;(3)
1
ab a
A. 0
B. 1
C. 2
D. 3
例1
解下列一元一次不等式,并将解集在数轴上表示出来:
a b o Biblioteka a b; a b 0 a b; a b 0 a b.


对称性 传递性 加法性质 乘法性质
指数运算性质 倒数性质
a b b a; a b b a a b,b c a c
a b a c b c; a b,c d a c b d a b,c 0 ac bc; a b,c 0 ac bc a b 0,c d 0 ac bd a b 0 an bn; a b 0 n a n b
不等式复习课
学习目标:
1.了解含绝对值的不等式。 2.理解比较实数大小的方法。 3.理解不等式的基本性质。 4.理解区间的概念。 5.掌握一元一次不等式和一元一次不等式组
的解法。 6.掌握一元二次不等式。
一、不等关系与不等式:
a, b 1、实数
大小比较的基本方法
2、不等式的性质:(见下表)
不等式的性质
(1).5x(x12)6( x1
3) , 4(1
x)
x2
; (2). 4
3 1
3
0 x
,
1 4
x.
(3) 0<4x+19-6(x-1)<6

中职数学第二章不等式第一节复习课件

中职数学第二章不等式第一节复习课件

课堂探究
1.探究问题 【探究】在一个倾斜的天平两侧分别放有重物,其质量分别是a,b,且a<b, 如果在两侧托盘内同时加上(或减去)同样重的砝码,天平有无变化?
答案:无变化
2.知识链接 基本性质1:如果a>b,那么a+c>b+c. 基本性质2:如果a>b,c>0,那么ac>bc. 基本性质3:如果a>b,c<0,那么ac<bc. 基本性质4:如果a>b,b>c,那么a>c.
④b-5<0;
⑤x的3倍大于或等于9;⑥y的一半小于3.
⑤3x≥9 ;
⑥1/2y<3.
(3) 比较下列各组数的大小: ①-1/2和-3/5 ; ②7/13和8/13 ; ③8/9和26/27
答案: ①-1/2>-3/5; ②7/13<8/13; ③8/9<26/27
(4)比较下列各组中两个代数式的大小(x,y,z是任意实数) ①x-2和x-1;②y2+2和y2;③z/3和z/2.
(2)对于任意两个实数a,b,有:a<b a-b<0;a>b a-b>0; a=b a-b=0,由此可以用求差法来判断两个数或两个式的大小.
3.拓展练习 例1 用不等式表示下面的不等关系: (1)2x与3的和不大于-6; (2)x 的5倍与1的差小于x 的3倍; (3)a与b的差是负数.
答案:(1)2x+3≤-6;(2)5x-1<3x; (3)a-b<0.
不等式的基本性质
一、学习要求
1.了解不等式及其概念、会用不等式表示数量之间的不等 关系、会解一次不等式并将解集在数轴上表示出来. 2.理解不等式的四个基本性质并能用性质对不等式进行变 形. 3.掌握等式或不等式的等价表示,并能熟练运用其比较两 个数或式的大小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)12 4(3x 1) 2(2x 16)
(3) 2x 1 3x 1 5
3
2 12
3(x 2) 4 x

(4) 1 2x 3

x
1
【拓展提升】
1、不等式组
2x 0 3 x 0
的正整数解的个数是(
C

A.1 个 B.2 个 C.3 个 D.4 个
D、 3x 6 化为 x 2
B 4、不等式组
2 x
x 1
4
0
0
的解集在数轴上表示正确的是(

A
B
C
D
D 5、已知两个不等式的解集在数轴上如图表示,那么这个解集为(

A x 1
B x 1
C 1 x 1
D x 1
6、解下列不等式(组):
(1) 3(2x 7) 23
因此,不等式组的解集为
1
3 <x<6
【巩固提高】
1、判断题(正确的在括号内打“√”,错误的打“×”)
√ (1)如果 a b ,则 a 5 b 5 ( )
× (2)如果 a b ,则 2a 2b ( )
× (3)如果 ab ac (a 0) ,则 b c ( )
x>3

(2) xx

1的解集是 0
x<-1

(3)
x x

1 2
的解集是
无解

(4)
x x

5 3
的解集是
-5<x<-3

设a<b,你能说出下列四种情况下不等式组的解吗?用 数轴试一试
设a < b X>a X >b X<a X <b X>a X <b X<a X >b
在数轴上表示解
a
b
ab
a
b
a
b
不等式组的解集 规律(口诀)
X>b
同大取大
X<a
同小取小
a<X<b 大小小大中间找
无解 大大小小解不了
例1 当x取何值时,代数式X 4 与 3 X 1 的差
大于1?
3
2
解:根据题意2(,x得+4)X -3 43(-3x3-X21)1 >>61,,
2x+8-9x+3>6,
同大取大
X<a
同小取小
a<X<b 大小小大中间找
无解 大大小小解不了
2、当 k

1 2
时,关于 x 的方程(2 4k)x 3 的解是负数。
3、已知不等式3(1-x)<2(x+9) 的最小整数解为方程3x-ax=6的解, 求a的值。
解: 3(1-x)<2(x+9) 去括号,得 3-3x<2x+18 移项,得 -2x-3x<18-3 -5x<15 x>-3
所以,原不等式的最小整数解为 x=-2,即它为方程 3x-ax=6 的解, 把 x=-2 代入到方程 3x-ax=6 中,得
3×(-2)-a×(-2)=6 -6+2a=6 a=6
4、若关于
x
的不等式组

x 2

x
3
1

0
3x 5a 4 4(x 1) 3a
恰有三个整数解,求实数 a 的取值范围。
去分母 不漏乘,分子添括号
去括号
不漏乘,括号前面是负号 时里面的各项都要变号
移项
移项要变号
合并同类项 字母不变,系数相加
等式两边同除以系数:正数 系数化为1 方向不变,负数方向改变
设a<b,你能说出下列四种情况下不等式组的解吗?用 数轴试一试
设a < b X>a X >b X<a X <b X>a X <b X<a X >b
在数轴上表示解
a
b
ab
a
b
a
b
不等式组的解集 规律(口诀)
X>b
4、请写出下列不等式组的解集:(在草稿上画数轴)
(1)
x x

2 3
的解集是
(3)
x x

1的解集是 2

(2)
x x

1的解集是 0


(4)
x x

5 3
的解集是

4、请写出下列不等式组的解集:(在草稿上画数轴)
(1)
x x

2 3
的解集是
-7x+11>6,
-7x>-5,
得 所以,当x取小于 5
7
5
x< 7
的任何数时,代数式 X 4 与3 X 1
3
2
的差大于1。
{2x-1> -x ①
例2解不等式组:
1 2
x<3

解:解不等式①,得
x>
1
3
解不等式②,得 x<6
Байду номын сангаас
在同一条数轴上表示不等式①②的解集,
如下图


-1 0 1 2 3 4 5 6 7
2、设 a b ,用“ ”或“ ”填空:
> (1) 2a 5
2b 5
< (2) 0.5a 1
> 0 . b5 1 (3) a b
0
B 3、下列变形正确的是:(

A、 3 x 7 化为 x 4
B、 3x 6 1 化为 x 13
2
6
C、 x 12 5 化为 x 7
江高三中 龚韶静 2017年6月5日
【知识点回顾】
1、4 x 与 7 的和不小于 6
4x76
2、根据不等式的性质填空:
(1) 2x 3 x 两边都 减x ,不等号方向 不变 ,得 x ≥3 ;
(2) 3x 4 两边都 除以-3 ,不等号方向 改变 ,得 x 4 ; 3
3、不等式-5x 15 0的解集是: x3 ,它的正整数解是 1,2,3。
相关文档
最新文档