数学建模的方法和步骤

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模的方法和步骤

建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关.当然,建模的过程也有共性,一般来说大致可以分为以下的几个步骤:

1.形成问题

要建立现实问题的数学模型,首先要对所要解决的问题有一个十分明晰的提法.只有明确问题的背景,尽量弄清对象的特征,掌握有关的数据,确切地了解建立数学模型要达到的目的,才能形成一个比较明晰的“问题”.

2.假设和简化

根据对象的特征和建模的目的,对问题进行必要的、合理的假设和简化.如前所述,现实问题通常是纷繁复杂的,我们必须紧抓住本质的因素(起支配作用的因素),忽略次要的因素.此外,一般地说,一个现实问题不经过假设和简化,很难归结成数学问题.因此有必要对现实问题作一些简化,有时甚至是理想化.

3.模型的构建

根据所作的假设,分析对象的因果关系,用适当的数学语言刻画对象的内在规律,构建现实问题中各个量之间的数学结构,得到相应的数学模型。这里,有一个应遵循的原则:即尽量采用简单的数学工具.

4.检验和评价

数学模型能否反映原来的现实问题,必须经受多种途径的检验.这里包括:①数学结构的正确性,即有没有逻辑上自相矛盾的地方;②适合求解,即是否会有多解或无解的情况出现;③数学方法的可行性,即迭代方法是否收敛,以及算法的复杂性等.而最重要和最困难的问题是检验模型是否真正反映原来的现实问题.模型必须反映现实,但又不等同于现实;模型必须简化,但过分的简化则使模型远离现实,无法解决现实问题.因此检验模型的合理性和适用性,对于建模的成败是非常重要的.评价模型的根本是看它能否准确地解决现实问题.此外,是否容易求解也是评价模型的一个重要标准.

5.模型的改进

模型在不段检验过程中经过不断修正,逐步趋向完善,这是建模必须遵循的重要规律,一旦在检验中发现问题,人们必须重新审视在建模时所作的假设和简化的合理性,检查是否正确刻画对象内在的量之间的相互关系和服从的客观的规律.针对发现的问题作出相应的修正.然后,再重复上述检验修改的过程,直到获得某种程度的满意模型为止.

6.模型的求解

经过检验,能比较好地反映原现实问题的数学模型.最后将通过求解得到数学上的结果;再通过“翻译”回到现实问题,得到相应的结论.模型若能获得解的确切表达式固然最好,但现实中多数场合需依靠电子计算机数值求解.电子计算技术的飞速发展,使数学模型这一有效的工具得以发扬光大.

相关文档
最新文档