生存分析SPSS(单因素和多因素对生存率的可能分析)
SPSS教程-生存分析
Survival Variable TIME
for GROUP = 1
Number Number Number Number
Cumul SE of SE of
Intrvl Entrng Wdrawn Exposd of Propn Propn Propn Proba- Cumul Proba- SE of
Start this During to Termnl Termi- Sur- Surv bility Hazard Sur- bility Hazard
Time Intrvl Intrvl Risk Events nating viving at End Densty Rate viving Densty Rate
14.1.2.3 结果解释
在结果输出窗又口口中将看到如下统计数据:
共有26个观察对象进入入分析。系统先显示示中药组(group = 1)的生生存状况寿命表,按用用户指 定,从0月月起,隔2个月月直至至42个月月(原指定从0—48个月月,但因42个月月后,生生存概率已为0, 故42个月月后至至48个月月的生生存状况不再显示示),分别显示示进入入该时点例数(Number Entrng this Intrvl)、从该时点失去的例数(Number Wdrawn Durong Intrvl)、该时点暴露于死亡危险的例 数(Number Exposd to Risk)、该时点死亡的例数(Number of Termnl Events)、该时点死亡概 率(Propn Terminating)、该时点生生存概率(Propn Surviving)、该时点末生生存率(Propn Surv at End)、单位时点的累积概率(Cumul Probability Densty)、该时点风险比比例(Hazard Rate)、 生生存率的标准误(SE of Cumul Surviving)、单位时点累积概率的标准误(SE of Probability Densty)、风险比比例的标准误(SE of Hazard Rate)。如本例,用用中药+化疗的方方式治疗白白血血病 患者,至至8个月月时,死亡率为17.39%,生生存概率为82.61%,生生存率为66.38%,风险比比例 为9.52%。至至42个月月时,生生存概率和生生存率均为0,此时风险比比例为100%。中药组的50%生生存率 在19.44个月月。
实战利用SPSS进行生存分析
实战利用SPSS进行生存分析生存分析(Survival Analysis)是一种用于分析个体在一定时间内发生其中一事件的概率的统计方法。
生存分析可以用于疾病的生存时间分析、产品寿命分析、客户流失分析等。
SPSS是一种常用的统计分析软件,可以进行生存分析的实证研究。
生存分析的基本概念包括:生存时间(Survival Time)、生存率(Survival Rate)、累积风险(Cumulative Hazard)以及生存函数(Survival Function)等。
生存时间是指个体从其中一起始点到发生其中一事件所经过的时间。
生存率是指个体在其中一时间点存活下来的概率,也称为存活函数。
累积风险是指个体在其中一时刻前发生其中一事件的风险累积值。
进行生存分析的步骤包括:导入数据、设置生存时间和事件变量、选择合适的生存分析方法、进行分析和结果解释。
首先,在SPSS中导入数据。
可以将数据以Excel格式保存,然后在SPSS中选择File->Open->Data,选择相应的文件导入。
选择合适的生存分析方法。
SPSS提供了多种生存分析方法,如Kaplan-Meier生存曲线、Cox回归模型等。
选择合适的方法可以根据研究目的和数据特点来确定。
例如,如果想了解不同因素对生存时间的影响,可以选择Cox回归模型。
在SPSS中,可以使用Analyze->Survival->Survival,然后选择合适的方法进行分析。
进行生存分析。
根据选择的方法,SPSS会输出相应的结果。
例如,对于Kaplan-Meier生存曲线分析,SPSS会生成生存曲线和相应的生存率表格;对于Cox回归模型,SPSS会输出回归系数、风险比率等统计结果。
可以通过点击Results窗口中的相应选项来查看结果。
结果解释。
根据生存分析结果,可以解读生存曲线、计算生存率、比较不同组别间的生存差异等。
对于Kaplan-Meier生存曲线,可以通过图形来比较不同组别的生存率;对于Cox回归模型,可以根据回归系数和风险比率来解释不同因素对生存时间的影响。
19、生存分析SPSS.
(SPSS of Survival
Analysis)
生存分析的理论复习 1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事 件)和出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、寿 命表法。 (2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。 (3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主要 因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。 统计方法cox比例风险回归模型等。 (4)预测:建立cox回归预测模型。
0.2406 0.7594 0.7594 0.0221 0.2676 0.7324 0.5562 0.0257 0.2452 0.7548 0.4198 0.0255 0.1656 0.8344 0.3503 0.0248 0.1702 0.8298 0.2937 0.0239 0.0773 0.9227 0.2682 0.0235 0.0537 0.9463 0.2538 0.0233 0.0155 0.9845 0.2499 0.0233 0.0504 0.9496 0.2373 0.0232 0.0388 0.9612 0.2281 0.0232
一、建立数据文件(data-01.sav)
定义3个变量:
生存时间变量:t,值标签“生存时间(年)”
生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数”
SPSS数据分析的医学统计方法选择
SPSS数据分析的医学统计方法选择医学统计方法是指在医学研究中使用统计学方法对数据进行分析和解释的方法。
SPSS作为一种统计分析软件,可以用于医学研究中的数据处理和分析。
在选择SPSS数据分析的医学统计方法时,需要考虑研究目的、变量类型、样本大小等因素。
以下是一些常用的医学统计方法,可以在SPSS中使用:描述性统计分析:描述性统计分析是对数据进行基本的统计描述,包括算术平均数、中位数、众数、标准差、方差等。
可以使用SPSS中的描述统计功能进行分析。
t检验:t检验用于比较两组样本之间的差异,例如比较两种不同治疗方法的效果差异。
SPSS中的独立样本t检验和配对样本t检验功能可以使用该方法。
方差分析(ANOVA):方差分析用于比较三个或以上样本之间的差异,例如比较不同年龄组之间的生理指标差异。
SPSS中的单因素和多因素方差分析功能可以使用该方法。
相关分析:相关分析用于分析两个或多个变量之间的相关关系,例如分析年龄和血压之间的关系。
SPSS中的相关分析功能可以使用该方法。
回归分析:回归分析用于探究一个或多个自变量对一个因变量的影响程度,例如探究血糖水平与体重、血压、年龄等变量之间的关系。
SPSS中的线性回归和多元回归功能可以使用该方法。
生存分析:生存分析用于研究时间到事件(如患病、死亡)之间的关系,例如研究其中一种治疗方法对生存时间的影响。
SPSS中的生存分析功能可以使用该方法。
聚类分析:聚类分析用于对样本进行分类分组,例如将患者根据疾病病情进行分组。
SPSS中的聚类分析功能可以使用该方法。
主成分分析:主成分分析用于降维和提取数据中的主要方差成分,例如将多个生理指标转化为一个综合指标。
SPSS中的主成分分析功能可以使用该方法。
逻辑回归分析:逻辑回归分析用于探究自变量与因变量之间的关系,并进行分类预测,例如预测其中一种疾病的风险因素。
SPSS中的逻辑回归功能可以使用该方法。
以上仅是医学研究中常用的一些统计方法,在选择时应根据研究需求和实际情况进行选择。
如何用SPSS做生存分析(TCGA数据举例)
如何用SPSS做生存分析(TCGA数据举例)生存分析是评价疾病预后的一个重要分析方法,尤其是在肿瘤研究中。
之前我们介绍过好几个肿瘤生存分析的在线工具,比如KM plotter,Onclnc,GEPIA等等(生存分析,这个网站还不错!,懒人怎么做肿瘤病人的生存分析?)。
有童鞋反映说这几个工具分析出来的结果咋不一样呢?原因主要有:1、在线工具的数据样本来源不同,大致上是KM plotter(TCGA 数据+GEO数据)>GEPIA(TCGA数据)>Onlnc(部分TCGA数据)2、分析时样本剔除的标准有所不同。
此外,在线工具分析的结果你无法得到入选分析样本的临床数据,也无法得到下图这样分类更加详细的生存分析结果。
(硕士论文:浙江省常见恶性肿瘤生存分析)所以有的时候还是得自己亲自动手做不做生存分析,今天就给大家介绍一下如何用SPSS分析对TCGA数据库中的肿瘤(肺腺癌)数据进行生存分析。
(SPSS版本是16.0的,还是英文的,从一个留学的同学那拷来的,一直没换,大家将就着看吧)首先是下载TCGA的临床数据和测序数据(FPKM数据),这一步可以用简易TCGA下载工具这个小工具来处理(这么好用的TCGA 数据下载工具?!)。
得到临床数据后,我们需要得到Over survival(OS)的数据,如果病人死亡了,OS就等于days to death,如果还活着,那就等于days to last followup。
而没有数据的病例就是我们需要剔除的条目了。
得到OS的数据之后,我们可以选择不同的临床信息进行生存分析,比如TNM分级,吸烟与否,治疗方式等等。
我们以抽烟为例,Not Availale为不抽烟病例,其他为抽烟的病例。
根据存活与否排序,得到OS的数据,再根据OS排序,删除没有生存信息的数据再看下吸烟情况,不吸烟的人似乎有点少,看来得肺腺癌的还是吸烟的多啊。
考虑到“节目效果”,这里把吸烟史=1的也归到不吸烟组。
实战利用SPSS进行生存分析
实战利⽤SPSS进⾏⽣存分析⽤SPSS软件进⾏⽣存分析给⼤家介绍3种常⽤⽅法寿命表法、Kaplan-Meier分析法、Cox回归分析⼀、寿命表分析适⽤于⼤数据⽰例:若要研究性别对于肺病⽣存率有⽆区别,收集数据下列信息time:⽣存时间(单位天)status:0=存活,1=死亡sex:1=男,2=⼥操作步骤按步骤将数据导⼊(lung数据集来⾃于R 内置数据)选定寿命表分析⽅法对各选项进⾏设置(其中注意状态设置:选取表⽰事件已发⽣的值)设置完所有选项后确认得到结果(可进⾏导出)1.得到存活表:该表给出了男⼥对应时间内存活和死亡⼈数,并计算了存活率、风险⽐等统计量2.中位数⽣存时间:即⽣存率为50%时,⽣存时间的平均⽔平;可知:⽣存时间的平均⽔平⼥⼠⾼于男⼠3.⽣存函数:男⼠较⼥⼠累计⽣存率下降快⼆、Kaplan-Meier分析适⽤于⼩样本⽰例:若要研究药物治疗对卵巢癌⽣存率有⽆区别,收集数据下列信息futime:⽣存时间(单位天)fustat:0=存活,1=死亡rx:1=未治疗,2=治疗操作步骤:按步骤将数据导⼊(ovarian数据集来⾃于R内置数据)选定Kaplan-Meier分析法,并对选项进⾏设置设置结束后确认,得到结果(可进⾏导出)1.⽣存表的均值和中位数、百分位数:可以看出治疗与未治疗有均值、四分位数略有差异2.整体⽐较:检验结果p值>0.05,证明治疗组与⾮治疗组差异不显著3.存活函数:治疗组较⾮治疗组⽣存结果好,但从假设检验结果来看差异不明显三、Cox回归分析⽰例:若要研究结肠癌治疗⽅式对患者⽣存时间的影响,收集了下⾯所⽰的数据:time:⽣存时间(单位天)status:0=存活,1=死亡rx:治疗⽅式,Obs=观察,Lev=⽅式1,Lev+5FU=⽅式2obstruct:0=⽆阻塞的结肠肿瘤,1=有阻塞的结肠肿瘤perfor:0=⽆结肠穿孔,1=有结肠穿孔extent:传播程度:1 =黏膜下层,2 =肌⾁,3 =浆膜,4 =相邻结构操作步骤:导⼊结肠癌colon数据(R中内置数据)选定cox回归分析参数设置:协变量依次导⼊,⽅法按分析所需进⾏选择点击'分类',协变量依次选⼊分类协变量点击'绘图',勾选⽣存函数,主要变量为rx,将rx变量选⼊单线框中,绘制⽣存曲线点击'选项',设置输出RR的95%置信区间。
生存分析
SPSS Survival(生存分析)SPSS Survival菜单包括Life Tables过程、Kaplan-Meier(卡普兰---梅尔)过程、Cox Regression过程、Cox w/Time-Dep Cov(含时间依存变量的Cox模型)过程。
这里只介绍Life Tables过程和Kaplan-Meier过程。
一、Kaplan-Meier过程采用乘积极限法(Product-limit estimates)来估计生存率,同时还可以对一个因素进行检验。
适用于以个体为单位来收的小样本或大样本且有精确生存时间的生存资料,是最基本的一种生存分析方法。
Kaplan-Meier法用于:1、估计某研究因素不同水平的中位生存时间。
2、比较该研究因素不同水平的生存时间有无差异。
3、控制一个分层因素后对研究因素不同水平的生存时间比较(此时将按分层因素的不同水平对研究因素对生存时间的影响分别进行分析)。
操作过程:1. Analyze==>Survival ==>Kaplan-Meier2. Time框:选入“time”3. Status框:选入“status”;击define events钮,在single value框右边的空格中输入“1”(0=“截尾或生存”,1=“死亡”等阳性结果)4. Factor框:选入“group”5. Compare factors列表框(分组因素水平间比较):Test Statistics:选择Log- rank、Breslow、Tarone-WareLinear trend for factor levels:选Pooled over strata或Pairwiseover strata6. Save(忽略)7. Option列表框Statistics: 选Survival table(s)、Mean and median Survival Plots: 选Survival单击OK钮三、界面说明图1 Kaplan-Meier法主对话框【Time】框选入生存时间变量。
生存分析 SPSS
例子
• 这里的所谓删失 (censored) 是由于某 种原因,无法继续观测;这意味着老 鼠至少活过了这个最后记录的时间, 但最终活了多久就不得而知了。 • 这种删失在对于人类疾病的跟踪研究 中经常出现;虽然不如未删失 (uncensored) 的数据完整,但也包含 了其至少活了多久这样的信息。 • 这里数据中的删失称为右删失。
Ha za rd Fu n c tio n fo r p a tte rn s 1 - 2
Group
.00 1.00 4
5
3
2
根据Cox模型所估计的治 疗组(group=1)和对照组 (group=0)的累积危险函数
Cu m Ha za rd
1
0 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00
l n l n St ( |x ) ' l n H ( t] 0
e x p (x ' )
或 者
例18.1数据拟合Cox回归模型的SPSS输出:
可以得到各种点图(1)
S u rviva l Fu n c tio n fo r p a tte rn s 1 - 2
17.1 对生命数据的简单描述:生命表
• 生命表 (Life Table) 是对生存分析 数据的一种数量和图形的描述。 • 生命表计算出一些估计,并依此 画出描绘性的图。 • 下页的生存函数图是从简单生命 表得到的:
Survival Function
1.1 1.0 .9 .8 .7 .6 .5 .4 .3 .2 .1 0.0 0 20 40 60 80 100 120 140 160 180 1.00 .00
• 在上面得到的生存函数的估计下,可 以对治疗组和对照组进行比较。所用 的检验为Wilcoxon (Gehan)检验。 • 这里的零假设是:这两组的生存函数 相同。 • 可以很容易从计算机输出得到检验的 p- 值等于 0.0564 。因此,如取显著性 水平为0.05,就不能拒绝零假设。
SPSS生存分析过程
SPSS生存分析过程SPSS(Statistical Package for the Social Sciences)是一款常用的统计分析软件,它提供了许多功能强大的数据分析方法,其中包括生存分析(Survival Analysis)。
生存分析适用于研究时间至关重要的事件或结果的数据,例如疾病的存活时间、机械故障的发生时间等。
下面将介绍SPSS生存分析的具体过程。
一、数据准备在进行生存分析之前,首先需要准备好相关的数据。
常见的生存分析数据包括个体的生存时间(或称为观察时间)、生存状态(生存/死亡)、以及一些影响因素(如性别、年龄、治疗方式等)。
在SPSS中,可以将这些数据保存在一个数据集中,每一行代表一个个体,每一列代表一个变量。
二、加载数据集打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择相应的数据文件进行加载。
三、生存曲线估计1.选择“分析”-“生存”-“生存曲线”菜单,打开生存曲线分析对话框。
2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。
3. 选择评估生存函数类型,默认为“Kaplan-Meier”方法。
4.设置显著性水平,默认为0.055.点击“确定”按钮,即可生成生存曲线图。
生存曲线图显示了不同时间点上个体存活的比例。
根据生存曲线图,可以观察到存活时间的变化趋势,比较不同组别(如性别、年龄组别等)之间的存活差异。
四、生存分析模型除了生存曲线图,我们还可以进行更深入的生存分析,包括拟合生存分析模型和进行相关统计检验。
1. 选择“分析”-“生存”-“Cox 比例风险”菜单,打开Cox比例风险模型对话框。
2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。
3.选择将影响因素拖放到“因素”框中,可以同时拖放多个因素进行分析。
选中的因素将出现在“选择项”列表中。
4.点击“方法”按钮,选择要使用的估计方法,如“法向向似然估计”。
5. 点击“确定”按钮,即可生成Cox比例风险模型的结果报告。
SPSS生存分析过程
SPS S Surviv a 1(生存分析)菜单SPSS S urvi V al 菜单包括 L i f e Table s 过程、Kaplan-Meier 过程、Cox R e gress i o n 过程、Cox w / T i me-Dep C o v 只介绍Life Table s 过程与Ka p la n —Me i er 过程。
L i fe T a bles 过程Life Tab 1 es 过程用于: 1、估计某生存时间得生存率。
2、绘制各种曲线如生存函数.风险函数曲线等。
3、对某一研究因素不同水平得生存时间分布进行比较,控制另一因素后对研究因素不同水平得生存时间分布进行比较,包括从总体上比较与不同水 平之间进行两两比较。
、建立数据文件定义两个列变量:时间变量: 取名"t 1 me", 1 a bel 标上 s u rv i v al t ime( w e ek)”。
二、操作过程 从菜单选择1、An a lyze==>Surv i v a 1 ==>Li f e Tables2、T ime 框:选入 t i me3、Disp 1 ay Time In t e r v a Is 框:在前面得框内填入生存时间上限, 本例填入20 (此区间必须包括生存时间得最大值);在by 后面得框内填生存状态变量:取名“status”,并赋值,1= “死亡”。
过程。
这里入生存时间得组距,本例填入5 ,以保证结果列出“15』得组段。
4. Statu s 框:选入 statu s ;击 def ine e v ents 钮9在 s i ng 1 e va 1 ue 框 右边得空格中输入1 5、单击Option 按钮,弹出对话框: •Life Table ( s ) 输出寿命表,系统默认 • Plots:选Su r y ival(累积生存函数曲线)击 C 0 n t inu e 6、单击OK 钮 附:界面说明Factor:By Factor:Dpti ons,・,寿命表主对话框[Tim e 】框选入生存时间变量。
SPSS(7)生存分析
第十四章生存分析在临床诊疗工作的评价中,慢性疾病的预后一般不适合用治愈率、病死率等指标来考核,因为其无法在短时间内明确判断预后情况,为此,只能对患者进行长期随访,统计一定时期后的生存或死亡情况以判断诊疗效果。
这就是生存分析。
第一节Life Tables过程14.1.1 主要功能调用此过程时,系统将采用即寿命表分析法,完成对病例随访资料在任意指定时点的生存状况评价。
14.1.2 实例操作[例14-1]用中药+化疗(中药组,16例)和单纯化疗(对照组,10例)两种疗法治疗白血病患者后,随访记录存活情况如下所示,试比较两组的生存率。
中药组对照组随访月数是否死亡随访月数是否死亡10 21213 18 6 19 26 9 8 6 43 9 4 31 24 否是是否否是是否是是是是否否21371161113177是否是是否否否否否14.1.2.1 数据准备激活数据管理窗口,定义变量名:随访月数的变量名为TIME,是否死亡的变量名为DEATH,分组(即中药组与对照组)的变量名为GROUP。
输入原始数据:随访月数按原数值;是否死亡的,是为1,否为0;分组的,中药组为1,对照组为2。
14.1.2.2 统计分析激活Statistics菜单选Survival中的Life Tables...项,弹出Life Tables对话框(图14.1)。
从对话框左侧的变量列表中选time,点击 钮使之进入time框;在Display Time Intervals栏中定义需要显示生存率的时点,本例要求从0个月显示至48个月,间隔为2个月,故在0 through框中输入48,在by框中输入2。
选death,点击 钮使之进入Status框,点击Define Event...钮弹出Life Tables:Define Event for Status Variable对话框,在Single value栏中输入1,表明death = 1为发生死亡事件者;点击Continue钮返回Life Tables对话框。
SPSS生存分析过程
SPSS生存分析过程SPSS生存分析是一种统计方法,用于分析生存数据,以估计特定事件发生的概率。
生存数据通常指描述个体或物体生存时间的时间数据,以及相关因素对个体生存时间的影响。
生存时间可以是一些事件的发生时间,例如死亡,失业,或者产品的失效时间。
1.数据准备:首先,需要将生存数据导入到SPSS软件中。
生存数据通常包含两列:一列是“时间”变量,表示每个个体从起始时间开始到特定事件发生的时间段;另一列是“事件”变量,表示该事件是否发生(例如,1表示事件已发生,0表示事件未发生)。
如果数据还包含其他相关因素,例如个体特征或处理组别,也需要导入到SPSS中。
2.生存函数估计:在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。
然后,在“非参数生存估计”选项中,选择适当的方法来估计生存函数。
常见的生存函数估计方法有卡普兰-梅尔法(Kaplan-Meier)估计和纳尔逊-艾伦估计。
此过程将计算每个时间点的生存率和累积生存率。
3.生存曲线绘制:在生存函数估计后,可以选择将生存曲线绘制出来以直观地展示结果。
在SPSS软件中,选择“曲线图”选项,在对话框中选择适当的数据集和变量。
然后,选择“生存曲线”类型,并进行必要的设置,例如选择颜色和样式。
生成的生存曲线可以展示不同组别或条件下的生存状况。
4.半参数模型拟合:半参数模型(如Cox比例风险模型)可以用来研究不同因素对生存时间的影响。
在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。
然后,在“半参数模型”选项中选择适当的模型,例如Cox比例风险模型。
进行模型拟合后,可以查看各个因素的风险比(Hazard Ratio)和置信区间,了解不同因素对生存时间的影响。
5.结果解释:对于生存分析的结果解释,需要考虑生存率、生存曲线及相关因素的影响。
可以根据生存函数估计结果和生存曲线来比较不同组别、条件或处理下的生存状况。
通过半参数模型拟合的结果,可以解释不同因素对生存时间的影响程度和方向。
SPSS生存分析
SPSS生存分析生存分析(Survival Analysis),也称为事件分析(Event Analysis)或持续时间分析(Duration Analysis),是一种统计方法,用于研究事件的发生和结束时间,如生命、疾病治愈、工作停留时间等。
生存分析的目的是研究一组对象的生命周期,并了解特定因素对事件发生和结束的影响。
在这种分析中,对象可以是个体、组织、产品等。
常见的应用包括生物医学研究、流失分析、医疗保险研究和个体退休研究等。
生存分析的关键概念是生存函数和风险函数。
生存函数是描述一个对象存活到给定时间的概率,通常用生存曲线表示。
风险函数描述了一个对象在给定时间点发生事件的风险,它可以用来比较不同组之间事件发生的差异。
在进行生存分析时,常用的统计模型包括Kaplan-Meier法、Cox比例风险模型和加速失效时间模型。
Kaplan-Meier法用于无偏估计生存函数,能够考虑有丢失数据和不完全随访的情况。
Cox比例风险模型可以用来估计各种相关因素对事件发生的相对风险,而加速失效时间模型可以考虑随时间变化的风险因素。
在使用SPSS进行生存分析时,首先需要导入数据并定义目标事件和截尾事件。
然后,可以使用Kaplan-Meier法绘制生存曲线,并进行生存函数的比较。
同时,也可以使用Cox比例风险模型来估计不同因素对事件发生的影响,并计算相对风险。
除了基本的生存分析方法外,SPSS还提供了许多扩展功能,如处理丢失数据、处理时间依赖变量和处理集群数据等。
这些功能可以帮助研究人员更好地分析和解释生存数据。
总之,生存分析是一种有力的统计方法,可以用于研究事件发生和结束的时间,并评估相关因素对事件的影响。
使用SPSS进行生存分析可以方便地进行数据处理、模型拟合和结果解释,使研究人员能够深入了解事件发生的模式和原因。
SPSS生存分析过程
SPSS Survival(生存分析)菜单SPSS Survival 菜单包括Life Tables 过程、Kaplan-Meier 过程、Cox Regression 过程、Cox w/Time-Dep Cov 过程。
这里只介绍Life Tables 过程和Kaplan-Meier 过程。
Life Tables 过程Life Tables 过程用于:1、估计某生存时间的生存率。
2、绘制各种曲线如生存函数、风险函数曲线等。
3、对某一研究因素不同水平的生存时间分布进行比较,控制另一因素后对研究因素不同水平的生存时间分布进行比较,包括从总体上比较和不同水平之间进行两两比较。
一、建立数据文件定义两个列变量:时间变量:取名“ time ”,label 标上“ survival time(week) 。
” 生存状态变量:取名“ status ”,并赋值:0=“删失”,1=“死亡”。
二、操作过程从菜单选择1、Analyze==>Survival ==>Life Tables2、Time 框:选入time3、Display Time Intervals 框:在by 前面的框内填入生存时间上限,本例填入20(此区间必须包括生存时间的最大值) ;在by 后面的框内填入生存时间的组距,本例填入5,以保证结果列出“15-”的组段。
4、 S tatus 框:选入 status ;击 define events 钮,在 single value 框右边的空 格中输入15、 单击Option 按钮,弹出对话框: Life Table(s)输出寿命表,系统默认 Plots:选Survival (累积生存函数曲线) 击 Continue6、单击0K 钮 附:界面说明, 4 Time :O 5Di epliy Tira s 020 Iz 5 SIatus: aarFactor:By Factor:2pti on^ .-图1寿命表主对话框【Time 】框 选入生存时间变量【Display Time Intervals 】框 欲输出生存时间范围及组距。
医学统计学SPSS生存分析实例
医学统计学SPSS生存分析实例生存分析(Survival Analysis)是一种统计方法,用于研究时间事件、生存时间和失败时间。
它可以用于预测生存时间,比如病人生存时间的分析,或者预测其中一种设备故障的时间分析等。
下面是一个医学统计学SPSS生存分析的实例,我们使用一份研究糖尿病患者的数据集进行分析。
该数据集包含了500名糖尿病患者的相关信息,包括患病时年龄、性别、BMI指数、高血压、吸烟等等。
我们的目标是分析不同因素对患者生存时间的影响。
首先,我们导入数据集并检查数据的完整性和准确性。
然后,我们进行数据预处理,包括对缺失数据的处理和离群值的处理。
接下来,我们使用Kaplan-Meier方法生成生存曲线。
生存曲线显示了患者在不同时间点的生存概率。
通过比较生存曲线,我们可以确定哪些因素对患者的生存时间有显著影响。
我们使用SPSS的Survival Analysis模块进行生存分析。
首先,我们选择一个目标变量,比如患者的生存时间。
然后,我们选择要分析的预测变量,比如年龄、性别、BMI指数、高血压和吸烟。
我们还可以选择分组变量,比如患者的病情程度,以便进一步比较。
接下来,我们进行分析。
SPSS将为每个预测变量生成相应的生存曲线和生存函数。
我们可以通过观察曲线的交叉点、陡峭程度和95%置信区间等指标来确定哪些因素对生存时间有显著影响。
在我们的实例中,我们发现年龄、BMI指数和高血压对患者的生存时间有显著影响。
年龄越大,BMI指数越高,高血压越严重的患者生存时间越短。
性别和吸烟并没有显著影响。
最后,我们可以使用Cox回归模型进行更进一步的生存分析。
Cox回归模型可以用于计算患者的风险比(Risk Ratio),以评估各个变量对生存时间的贡献度。
我们可以根据回归系数和风险比来评估不同因素的相对重要性。
总结起来,医学统计学SPSS生存分析可以帮助我们理解不同因素对患者生存时间的影响。
通过研究生存曲线,我们可以评估治疗方法的有效性,优化诊断和治疗流程,并提供更好的病人护理。
SPSS数据分析—单因素及多因素方差分析
SPSS数据分析—单因素及多因素方差分
析
T检验可以用于解决单个样本或两个样本的均值比较问题。
但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。
方差分析是基于变异分解的思想,利用F
分布进行比较。
在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。
在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。
方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。
由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。
在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。
在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、建立数据文件(data-01.sav)
定义5个变量: 生存时间变量:t,值标签“生存时间(月)” 生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数” 分组变量:group,取值“1=甲组,2=乙组” 生存时间序号变量(可无):i
布的比较。 5. 对多组生存时间分布进行两两比较。 (比较总体生存时间分布采用wilcoxon检验)
实例分析
例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效, 某研究者随机将43例病人分成两组,甲组23例、乙组20 例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
(2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。
(3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主 要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案 等。统计方法cox比例风险回归模型等。
1)√寿命表,系统默认。 2)图: √生存函数 3)比较第一个因子的水平: √整体比较
三、主要输出结果
1. 10月生存率的估计: 甲法 48%,标准误 0.1 乙法 30%,标准误 0.1
2. 两组的中位生存期估计:
3. 绘制生存曲线:
4. 两组生存时间分布的比较:
Kaplan-Meier 过程
SPSS过程
(SPSS of Survival Analysis)
生存分析的理论复习
1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事件) 和出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、 寿命表法。
No
X1
X2
X3 X4 X5 X6
Kaplan-Meier过程用于(尤其小样本资料): 1. 估计各生存时间的生存率以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 比较某研究因素不同水平的生存时间有无差异。 4. 控制某个分层因素后对研究因素不同水平的生存时间
分布进行比较。 5. 对多组生存时间分布进行两两比较。 (各总体分布比较采用Log-rank等非参数方法)
一、建立数据文件(同前)
二、操作过程
主菜单:分析Analyze生存SurvivalKaplan-Meier
对话框参数设置:
1. 时间time框:选入 “t”。 2. 状态status框:选入“status”,击defin”。 3. 因子factor框:选入“group”。 4. 单击选项option按钮,弹出对话框:
二、操作过程
2)
√
水平间的两两比较。
6. 单击Save按钮,弹出保存新变量Save new variables 对话框:
√ √
三、主要输出结果
1. 生存表: 略 2. 两组的中位生存期估计:
3. 绘制生存曲线:
4. 两组生存时间分布的比较:
Cox回归过程
Cox回归过程用于: 1. 多个因素对生存时间的影响作用分析和比较 2. 生存(或死亡)风险预测
实例分析
例2:(数据同例1)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
(1)计算甲、乙两法各生存时间的生存率和标准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有无差别。
二、操作过程
主菜单:分析Analyze生存Survival寿命表Life tables
对话框参数设置:
1. 时间time框:选入 “t”。 2. 显示时间间隔Display time intervals框:步长by前面填入最大生存时
间的上限(必须包括生存时间最大值),步长by后面填入生存时 间的组距。本例上限填“60”,组距填“1”。 3. 状态status框:选入“status”,击define events 钮,在single value 框填入“1” 4. 因子factor框:选入“group”,定义最小值“1”,最大值“2”。 5. 单击选项option按钮,弹出对话框:
实例分析
例3:为探讨某恶性肿瘤的预后,某研究者收集了63 例患者的生存时间、生存结局及影响因素。影响因素 包括病人年龄、性别、组织学类型、治疗方式、淋巴 结转移、肿瘤浸润程度,生存时间以月计算。变量的 赋值和所收集的资料分别见表17-8和表17-9。试用 Cox回归模型进行分析。
表17-9 63名某恶性肿瘤患者的生存时间(月)及影响因素
1)统计量: √生存分析表,系统默认。 √ 均值和中位生存时间,系统默认。
2)图: √生存函数 5. 单击比较因子Compare Factor按钮,弹出对话框:
1)检验统计量Test Statistics: 都用于检验时间分布是否相同。 √对数秩Log-rank:各时间点的权重一样。 Breslow:按各时间点的观察例数赋权。 Tarone-Ware:按各时间点观察例数的平方根赋权。