三轴试验.

合集下载

试验六三轴试验

试验六三轴试验

试验六三轴试验实验六:三轴试验⼀、基本原理三轴剪切试验是⽤来测定试件在某⼀固定周围压⼒下的抗剪强度,然后根据三个以上试件,在不同周围压⼒下测得的抗剪强度,利⽤莫尔-库仑破坏准则确定⼟的抗剪强度参数。

三轴剪切试验可分为不固结不排⽔试验(UU )、固结不排⽔试验(CU )以及固结排⽔剪试验(CD )。

1、不固结不排⽔试验:试件在周围压⼒和轴向压⼒下直⾄破坏的全过程中均不允许排⽔,⼟样从开始加载⾄试样剪坏,⼟中的含⽔率始终保持不变,可测得总抗剪强度指标U C 和U φ;2、固结不排⽔试验:试样先在周围压⼒下让⼟体排⽔固结,待固结稳定后,再在不排⽔条件下施加轴向压⼒直⾄破坏,可同时测定总抗剪强度指标CU C 和CU φ或有效抗剪强度指标C ′和φ′及孔隙⽔压⼒系数;3、固结排⽔剪试验:试样先在周围压⼒下排⽔固结,然后允许在充分排⽔的条件下增加轴向压⼒直⾄破坏,可测得总抗剪强度指标d C 和d φ。

⼆、试验⽬的1、了解三轴剪切试验的基本原理;2、掌握三轴剪切试验的基本操作⽅法;3、了解三轴剪切试验不同排⽔条件的控制⽅法和孔隙压⼒的测量原理;4、进⼀步巩固抗剪强度的基本理论。

三、试验设备1、三轴剪⼒仪(分为应⼒控制式和应变控制式两种)。

(1)三轴压⼒室:压⼒室是三轴仪的主要组成部分,它是由⼀个⾦属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压⼒室底座通常有3个⼩孔分别与围压系统以及体积变形和孔隙⽔压⼒量测系统相连。

(2)轴向加荷传动系统:采⽤电动机带动多级变速的齿轮箱,或者采⽤可控硅⽆级调速,根据⼟样性质及试验⽅法确定加荷速率,通过传动系统使⼟样压⼒室⾃下⽽上的移动,使试件承受轴向压⼒。

(3)轴向压⼒测量系统:通常的试验中,轴向压⼒由测⼒计(测⼒环或称应变圈等等)来反映⼟体的轴向荷重,测⼒计为线性和重复性较好的⾦属弹性体组成,测⼒计的受压变形由百分表测读。

轴向压⼒系统也可由荷重传感器来代替。

(4)周围压⼒稳压系统:采⽤调压阀控制,调压阀当控制到某⼀固定压⼒后,它将压⼒室的压⼒进⾏⾃动补偿⽽达到周围压⼒的稳定。

三轴试验

三轴试验

三轴试验一、基本原理三轴压缩实验是根据摩尔-库伦强度理论,用3~4个试样,分别在不同的恒定周围压力(即小主应力σ3)下施加轴向压力(即主应力差),进行剪切直至破坏,从而确定土的抗剪强度参数。

根据排水条件的不同,三轴试验分为以下三种试验类型:即不固结不排水试验(UU),固结不排水试验(CU),和固结排水试验(CD),试验方法的选择应根据工程情况,土的性质,建筑物施工和运行条件及所采用的分析方法而定。

(1)不固结不排水剪试验(UU):是在整个实验过程中,从加周围压力和增加轴向压力直到剪坏为止,均不允许试样排水对保和试样可测得总抗剪强度参数CU、ФU或有效抗剪强度参数C′、Ф′和孔隙水压力参数。

(2)固结不排水剪试验(CU):试验是先使试样在某一周围压力下固结排水,然后保持在不排水的情况下,增加轴向压力直到剪坏为止,可以测得总抗剪强度指标CCu、ФCu或有效抗剪强度参数C′、Ф′和孔隙水压力参数。

(3)固结排水剪试验(CD):是在整个试验过程中允许试样充分排水,即在某一周围压力下排水固结,然后在充分排水的情况下增加轴向压力直到剪坏为止,可以测定有效抗剪强度指标2Cd、Фd。

二、固结不排水试验(一)仪器设备1、应变控制式三轴压缩仪由周围压力系统,反压力系统,孔隙水压力量测系统和主机组成。

2、附属设备包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆筒,:3、百分表量程3cm或1cm,分度值〉0.01mm。

4、天平程量200g,感量0.01g;程量1000g,感量0. 1g。

5、橡皮膜应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气空。

(二)操作步骤1、仪器检查⑴周围压力的测量精度为全量程的1%,测读分值为5kPa。

⑵孔隙水压力系统内的气泡应完全排除。

系统内的气泡可用纯水或施加压力使气泡溶于水,并从试样底座溢出,测量系统的体积因数应小于1.5×10-5cm3/ kPa。

⑶管路应畅通,活塞应能滑动,各连接处应无漏气。

三轴试验

三轴试验

密砂
松砂
竖向应变
密砂
松砂 竖向应变 图3-3三轴试验应力应变曲线
两类试验方法变形模量比较
三轴压缩
轴向压应力
• 土的变形模量随竖向
压力的增加而减小,
即土的压缩性增大 轴

• 侧限压缩


土的侧限变形模量随
应 变
竖向压力的增加而增

侧限压缩 三轴压缩
• 即土的压缩性减小
图3-4两类试验方法应力-应变关系比较
三轴试验
• 特点:
• (1)侧向可变形, 为轴对称三维应力状 态
• (2)可控制排水条件
• (3) 可有Δ多σ1 种加载路


σ3
σ3
σ3
σ3 Δσ1
动画3-4 三轴压缩排水试验装置
• 三轴压缩排水试验结论
• 密砂的变形: • 土体被挤密 屈服 • 土体竖向压缩而侧向鼓出 • 超固结粘土 • 压缩性状与密砂相似 • 松砂的变形: • 体积压缩密度增加, • 有时出现侧向鼓出 • 正常固结粘土 • 压缩性状与松砂相似

三轴剪切试验的三种方法

三轴剪切试验的三种方法

三轴剪切试验的三种方法
三轴剪切试验是一种用于测试材料弹性、强度和塑性的试验方法,一般有三种不同的试验方法:
1. 自由落体试验:该试验方法是最简单的试验方法之一,通过在材料上施加重力来测试其弹性和强度。

自由落体试验通常在实验室中使用,可以通过测量落点的高度和位移来估算材料的弹性和强度。

2. 抛射试验:该试验方法是通过在材料上施加弹性波或冲击波
来测试其强度和弹性的试验方法。

这种试验方法通常用于测试材料的弹性和塑性,可以通过测量冲击能量、冲击时间和冲击频率等参数来估算材料的弹性和强度。

3. 压力试验:该试验方法是通过施加压力来测试材料的强度和
其他性能的试验方法。

压力试验通常包括三种不同的类型:拉伸试验、压缩试验和剪切试验。

拉伸试验是指向材料施加弹性力,以测量其长度的伸展。

压缩试验是指向材料施加压力,以测量其体积的压缩。

剪切试验是指向材料施加剪切力,以测量其破坏性质和强度。

这三种试验方法通常有各自的优缺点和适用范围,根据具体的应用场景选择最合适的方法即可。

三轴试验

三轴试验

剪切试样按下列步骤进行: (1)将轴向测力计、轴向变形百分表及孔隙 水压力读数均调整至零民。 (2)选择剪切应变速率,进行剪切。粘质土 每分钟应变为0.05%~0.1%;粉质土每分钟应变 0.1%~0.5%。 (3)测记轴向压力、孔隙水压力和轴向变形。 (4)试验结束,关电动机和各阀门,开排气 阀,排除压力室内的水,拆除试样,描述试样破 坏形状。称试样质量并测定含水量。
破坏后的试样
1.不固结不排水试验
(1)剪切应变速率宜为每分钟应变0.5%~ 1.0%。 (2)启动电动机,开始剪切。试样每产生 0.3%~0.4%的轴向应变,测记一次测力计读数和 轴向变形值。当轴向应变大于3%,每隔0.7%~ 0.8%的应变值测记一次读数。 (3)当测力计读数出现峰值时,剪切应继续 进行,超过5%的轴向应变为止。当测力计读数无 峰值时,剪切进行到轴向应变为15%~20%。 (4)试验结束,关电动机,关周围压力阀, 开排气阀,排除压力室内的水,拆除试样,描述 试样破坏形状。称试样质量,并测定含水量。
4.3.2 三轴压缩试验
横梁
试样应力特点
与试验方法
百分表
量力环
量 水 管
试 样
强度包线 试验类型 优缺点
孔压 量测
围压 力 3 阀门
马达
阀门
二、试验方法:
三轴剪切试验可分为不固结不排水试验(UU)、固结 不排水试验(CU)以及固结排水剪 试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直 至破坏的全过程中均不允许排水, 土样从开始加载至试 样剪坏,土中的含水率始终保持不变,可测得总抗剪强度 指标c 和φ ; 2、固结不排水试验:试样先在周围压力下让土体排水固 结,待固结稳定后,再在不排水 条件下施加轴向压力直 至破坏,可同时测定总抗剪强度指标 和 或有效抗剪强度 指标 和及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然 后允许在充分排水的条件下增加 轴向压力直至破坏,可 测得总抗剪强度指标和 。

三轴试验

三轴试验

孔隙水压力阀,测定孔隙水压力。开排水阀。当需测定排水过程时, 测记排水管水面及孔隙水压力值,直至孔隙水压力消散95%以上。固 结完成后,关排水阀,测记排水管读数和孔隙水压力读数。
试样剪切步骤:
关孔隙水压力阀,微调压力机升降台,使活塞与试样接触,此 时轴向变形百分表的变化值为试样固结时的高度变化。
2、固结不排水试验:试样先在周围压力下让土体排水固 结,待固结稳定后,再在不排水 条件下施加轴向压力直 至破坏,可同时测定总抗剪强度指标 和 或有效抗剪强度 指标 和及孔隙水压力系数;
3、固结排水剪试验:试样先在周围压力下排水固结,然 后允许在充分排水的条件下增加 轴向压力直至破坏,可 测得总抗剪强度指标和 。
应力特点与试验方法
常用试验类型
百分表
类型
固结 排水
施加 3
固结
施加 1-3
排水
量测 体变
固结 不排水
固结
不排水
孔隙水 压力
不固结 不排水
不固结
不排水
孔隙水 压力
围压 力3
阀门
横梁 量力环
量 水 管
孔压
试 样
量测
马达
阀门
破坏偏差应力取值方法
1-3
(1-3)f (1-3)f
密砂 松砂
15% 1
取曲线的最大偏差应力值
作为(1-3)f
取规定的轴向应变值(通
常15%)所相应的偏差应
力作为(1-3)f
以最大有效主应力比
((1/3)max处的偏差应 力值作为(1-3)f
三轴试验确定土的强度包线
1-3
3=500kPa
(1-3)f

强度包线

3=300kPa

土力学三轴试验

土力学三轴试验

土力学三轴试验土力学三轴试验三轴试验中土的剪切性状分析摘要:按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。

文中将讨论正常固结饱和黏性土在剪切时将具有不同的强度特性。

关键词:不固结不排水抗剪强度,固结不排水抗剪强度,固结排水抗剪强度作者简介:Triaxial shear Characters of Middle-earthLI Jia-chun(shanghai University,department of civil engineering,08124240)Abstract: Consolidation by the state before shear and shear when the drainage is divided into three types: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear. This article will discuss the normally consolidated saturated clay in the shear strength will have different characteristics.Key words: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear.0 引言广义黏性土包括粉土,黏性土。

黏性土的抗剪强度远比无粘性土复杂。

要准确掌握原状土的强度特性,也就非常困难。

对土的强度研究,大多数用均匀的重塑土。

原状土和重塑土之间在结构上和应力历史存在重大差异,且原状土的取样扰动对其实际强度也有较大影响。

按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。

动三轴试验操作步骤

动三轴试验操作步骤

动三轴试验操作步骤三轴试验是一种用来研究岩土体力学性质的实验方法。

它通过施加轴向负载和两个正交的侧向负载来模拟实际工程中的应力状态。

以下是进行三轴试验的一般操作步骤:1.准备工作:a.确定试验目的和研究对象。

b. 准备试样,通常使用直径50mm和高度100mm的圆柱形试样。

c.计算所需的试验应力(轴向和侧向)和应变水平。

d.准备试验设备,包括三轴试验机、数据采集系统等。

2.装配试样:a.在试样上下两面涂抹润滑剂,以确保试样表面平滑并减少摩擦。

b.在试样上下两面安装薄膜,以防止试样与应力传感器接触。

c.将试样放入三轴试验机的试样夹具中,并确保试样与夹具接触紧密。

3.调整试验设备:a.确保三轴试验机的水平度,以避免试样受到非均匀应力的影响。

b.安装应力传感器和变形传感器,并校准它们的读数。

c.连接数据采集系统,并测试其工作正常。

4.施加轴向负载:a.将试样上夹具的一端固定在试验机上,并将另一端与活塞头连接。

b.逐渐施加轴向负载,以达到所需的应力水平。

在施加负载的过程中,记录应力和变形的变化,以便后续分析。

5.施加侧向负载:a.调整侧壁夹具的位置,使其与试样的侧面平行,并确保与试样接触紧密。

b.逐渐施加侧向负载,以达到所需的应力水平。

在施加负载的过程中,记录应力和变形的变化。

6.记录数据:a.使用数据采集系统实时记录试验过程中的应力和变形数据。

b.在每个负载步骤后,记录试样表面的水平变形,以进一步分析土体的力学特性。

7.完成试验:a.当达到所需的应力水平并完成试验后,减小轴向负载和侧向负载,并记录卸载过程中的应力和变形数据。

b.将试样从试验机中取出,并进行后续的应力与应变分析。

8.数据处理和分析:a.对试验过程中获得的应力和变形数据进行处理,得到土体的应力-应变关系曲线以及强度参数。

b.对不同试验条件下的数据进行比较和分析,以进一步研究土体的力学特性。

以上是进行三轴试验的一般操作步骤。

在实际操作中,还需要根据具体的试验目的和研究对象进行一些特殊操作,例如使用不同的负载路径、进行循环加载等。

三轴试验 破坏面正应力

三轴试验 破坏面正应力

三轴试验破坏面正应力三轴试验 - 破坏面正应力在材料力学研究中,三轴试验是一种常用的试验方法,用于研究材料在三维应力状态下的破坏行为。

本文将介绍三轴试验的基本原理和破坏面正应力的相关内容。

一、三轴试验简介三轴试验是一种将材料置于三维应力状态下进行加载的试验方法。

常用的三轴试验设备包括恒应力型和恒应变型两种。

在恒应力型试验中,试样在三个方向上分别施加恒定的应力,而在恒应变型试验中,试样在三个方向上施加恒定的应变。

通过对试样施加不同的应力或应变,可以观察材料在不同载荷条件下的破坏行为。

二、破坏面正应力破坏面正应力是指在材料破坏时,与破坏面垂直方向上的应力。

在三轴试验中,破坏面正应力是研究破坏行为的重要参数之一。

在三轴试验过程中,试样在不同的应力状态下逐渐实现破坏。

当试样达到破坏点时,破坏面正应力会达到最大值。

而破坏面正应力的大小与材料的性质以及试验加载条件有关。

破坏面正应力的大小可以通过应力-应变曲线来计算得出。

在三轴试验中,可以测量试样在三个方向上的应变,然后通过应变数据和加载施加的应力计算出破坏面正应力。

三、应力空间在三轴试验中,应力状态可以用应力空间来表示。

应力空间是一个三维坐标系,以三个正应力(σ₁,σ₂,σ₃)作为坐标轴。

在应力空间中,试样所受的应力状态可以用一个点来表示。

根据破坏面正应力的计算公式,可以将破坏面正应力的变化情况在应力空间中绘制成等值线或等值面。

这样可以更直观地观察破坏面正应力的变化规律。

四、破坏机制材料在三轴试验中的破坏行为可以归结为两种基本破坏机制:拉压破坏和剪切破坏。

1. 拉压破坏当试样所受应力状态为拉压状时,破坏面正应力呈现出拉压状态。

材料在拉压状应力下呈现出脆性破坏特征,常见破坏形态为断裂和压碎。

2. 剪切破坏当试样所受应力状态为剪切状时,破坏面正应力呈现出剪切状态。

材料在剪切状应力下呈现出塑性破坏特征,常见破坏形态为剪切和滑移。

根据材料的性质和试验加载条件,材料在三轴试验中可能同时存在拉压破坏和剪切破坏。

三轴试验

三轴试验

试验条件与现场条件 的对应关系
固结排水试验
2 1
固结不排水试验
层固结后, 在1层固结后,快速施工 层 层固结后 快速施工2层
不固结不排水试验 粘土地基上的分层慢 速填方 软土地基上的快速填方
常规三轴试验优缺点
单元体试验, 单元体试验,试样内应力和应变相对均匀 应力状态和应力路径明确 排水条件清楚, 排水条件清楚,可控制 破坏面不是人为固定的 设备操作复杂 现场无法试验 常规三轴试验不能反映σ 常规三轴试验不能反映σ2的影响
4.3.2
横梁

百分表
量力环
量 水 管
试 样

力σ
二、试验方法: 试验方法:
三轴剪切试验可分为不固结不排水试验(UU)、固结 三轴剪切试验可分为不固结不排水试验(UU)、固结 )、 不排水试验(CU) 不排水试验(CU)以及固结排水剪 试验(CD)。 试验(CD)。 不固结不排水试验: 1、不固结不排水试验:试件在周围压力和轴向压力下直 至破坏的全过程中均不允许排水, 至破坏的全过程中均不允许排水, 土样从开始加载至试 样剪坏,土中的含水率始终保持不变, 样剪坏,土中的含水率始终保持不变,可测得总抗剪强度 指标c 指标c 和φ ; 固结不排水试验: 2、固结不排水试验:试样先在周围压力下让土体排水固 待固结稳定后, 结,待固结稳定后,再在不排水 条件下施加轴向压力直 至破坏, 至破坏,可同时测定总抗剪强度指标 和 或有效抗剪强度 和及孔隙水压力系数; 指标 和及孔隙水压力系数; 固结排水剪试验:试样先在周围压力下排水固结, 3、固结排水剪试验:试样先在周围压力下排水固结,然 轴向压力直至破坏, 后允许在充分排水的条件下增加 轴向压力直至破坏,可 测得总抗剪强度指标和 。

三轴试验应力123大小关系

三轴试验应力123大小关系

三轴试验应力123大小关系
摘要:
1.三轴试验简介
2.应力大小关系概述
3.试验中应力123 的具体表现
4.应力123 对三轴试验的影响
5.结论
正文:
三轴试验是土力学中常用的一种试验方法,通过模拟土体中的应力状态,研究土体的力学性质。

其中,应力是影响三轴试验结果的重要因素之一。

在三轴试验中,应力的大小关系对于试验结果具有决定性的影响。

一般来说,应力123 的大小关系可以通过应力路径来确定。

应力路径是指土体在受到不同应力作用下的应力变化过程。

在三轴试验中,应力123 的大小关系可以通过应力路径的起点、终点以及路径上的应力变化情况来确定。

在试验过程中,应力123 的具体表现会根据不同的应力路径和试验条件而有所不同。

通常情况下,应力123 的大小关系可以通过应力计来测量。

应力计是一种用于测量土体中应力的仪器,可以通过应力计的读数来了解应力123 的大小关系。

应力123 对三轴试验的影响主要表现在试验结果的准确性和可靠性方面。

如果应力123 的大小关系不正确,将会导致试验结果的偏差,从而影响试验的准确性和可靠性。

综上所述,应力123 的大小关系对于三轴试验的结果具有重要的影响。

三轴试验中体变和轴向应变的关系

三轴试验中体变和轴向应变的关系

三轴试验是岩土力学中常用的一种试验方法,通过施加不同的压力和剪切力来研究土体在不同应力状态下的力学特性。

在三轴试验中,土体的体变和轴向应变是两个重要的参数,其关系对于土体的力学性质研究具有重要意义。

本文将从体变和轴向应变的概念、影响因素以及相关理论模型等几个方面进行探讨。

一、体变和轴向应变的概念体变是指土体在受到外部力作用下,体积发生的变化。

在三轴试验中,通过测量土体在不同应力状态下的体积变化,可以得到土体的体变特性,如压缩模量、泊松比等参数。

体变的大小和方向受到外部应力的影响,其大小可以用体应变来表示。

轴向应变是指在土体受到轴向应力作用下,沿轴向方向发生的应变。

在三轴试验中,通过施加不同的轴向应力并测量对应的轴向应变,可以得到土体的轴向应变特性。

轴向应变的大小和方向受到轴向应力的影响,其大小可以用轴向应变来表示。

二、体变和轴向应变的影响因素1. 土体的物理性质:土体的物理性质包括颗粒大小、排列密实度等因素,这些因素会影响土体的体变和轴向应变特性。

颗粒较大的土体一般具有较大的体变和轴向应变,而排列密实的土体则具有较小的体变和轴向应变。

2. 外部应力状态:外部应力状态是影响土体体变和轴向应变的重要因素之一。

在三轴试验中,通过施加不同大小和方向的应力,可以得到不同应力状态下的体变和轴向应变特性。

3. 土体的孔隙结构:土体的孔隙结构是影响土体体变和轴向应变的另一个重要因素。

孔隙结构的大小和分布会影响土体在受到外部应力作用下的变形特性,从而影响土体的体变和轴向应变。

三、体变和轴向应变的理论模型1. 应变-体应力模型:应变-体应力模型是描述土体体变和轴向应变关系的重要理论模型。

该模型通过对土体的压缩过程进行分析,建立了应变和体应力之间的数学关系,从而描述了土体的体变特性。

2. 应变-剪切应力模型:应变-剪切应力模型是描述土体轴向应变和剪切应力之间关系的重要理论模型。

该模型通过对土体的剪切过程进行分析,建立了应变和剪切应力之间的数学关系,从而描述了土体的轴向应变特性。

三轴试验固结稳定的标准

三轴试验固结稳定的标准

三轴试验固结稳定的标准
三轴试验是一种用于测定土体抗剪强度的试验方法。

在试验过程中,土样受到三个方向的压力,分别为垂直压力和两个水平压力。

试验过程中,土样的变形和应力状态会发生变化,最终达到一个稳定状态。

固结稳定是三轴试验的一个重要评价指标,主要包括以下几个方面:
1.体积应变:当土样受到压力作用时,其体积会发生收缩或膨胀。

体积应变是衡量土样变形程度的一个重要指标。

在达到固结稳定时,土样的体积应变应满足一定的要求。

2.剪切应变:在三轴试验中,土样在水平方向上会受到剪切应力的作用。

当土样达到固结稳定时,剪切应变应满足一定的要求。

3.应力状态:在三轴试验中,土样受到的应力状态会发生变化。

当土样达到固结稳定时,其应力状态应满足一定的要求,包括主应力的大小和方向。

4.强度指标:在三轴试验中,土样的强度指标(如抗剪强度)会随着试验过程的进行而发生变化。

当土样达到固结稳定时,其强度指标应满足一定的要求。


需要注意的是,不同的工程背景和土性条件下,三轴试验固结稳定的标准可能会有所不同。

在实际应用中,可以根据工程需求和土性特点来确定合适的固结稳定标准。

三轴试验报告

三轴试验报告

三轴试验报告引言:三轴试验是一种常用的地质力学试验方法,通过对土壤样品的加载和变形进行观测和分析,以了解土壤力学性质和工程行为。

本报告旨在分析和总结三轴试验的实验结果,并对土壤的力学特性进行评估和解释。

一、实验目的三轴试验旨在研究土壤在不同应力状态下的力学特性,包括抗剪强度、应力应变关系和变形特性等。

通过本次实验,我们希望了解土壤的抗剪强度、塑性和压缩特性。

二、实验装置和方法本次试验使用了常规的三轴试验装置,包括试验设备、介质装置和传感器等。

试验过程中,首先根据土壤的物理性质选取了适当的试样,并将其制备成规定的尺寸和密度。

然后,我们在试样上施加一定的垂直荷载,并通过三轴装置施加一定的径向和切向应力。

在试验过程中,我们根据实验要求逐步增加荷载,直至试样破坏。

三、实验结果分析根据试验数据和实验结果,我们得出以下结论:1. 抗剪强度:通过三轴试验获得了土壤的抗剪强度参数,包括摩擦角和内聚力。

实验结果表明,土壤的抗剪强度与应力状态、密实度和颗粒特性有关。

高密度和尺寸较大的颗粒通常表现出较好的抗剪强度。

2. 应力应变关系:三轴试验结果还提供了土壤的应力应变关系,其中包括应力路径、应变曲线和模量等。

试验结果显示,土壤的应变特性在不同应力状态下表现出不同的非线性和弹塑性行为。

3. 变形特性:通过三轴试验,我们还能得到土壤的变形特性,如压缩系数、剪胀性和渗透系数等。

实验结果表明,土壤在受到应力加载时会出现不同程度的压缩变形和剪切变形。

四、实验误差和改进在本次实验中,我们认识到存在一些实验误差和不足之处。

其中包括采样过程中的干扰、试样制备的不均匀性以及实验过程中的操控误差等。

为了提高实验结果的准确性和可靠性,我们可以采取以下改进措施:加强对土样的采集和处理、优化试样的制备过程、加强实验操作的规范和标准化、提高仪器设备的精度和稳定性等。

五、实验应用和意义三轴试验在工程领域中具有重要的应用价值和深远的意义。

通过对土壤力学性质的研究和评估,可以为岩土工程设计和施工提供基础数据和依据。

三轴试验的原理和用途

三轴试验的原理和用途

三轴试验的原理和用途嘿,朋友们!今天咱来聊聊三轴试验。

你知道吗,这三轴试验就像是给大地做的一次全面体检!想象一下,我们的大地就像一个巨大的物体,而三轴试验就是要深入探究它的各种特性呢。

它的原理其实并不复杂,就是通过对土样或岩石样在三个方向上施加不同的力,就如同我们从三个角度去推、去挤、去压一个东西一样。

这样做有啥用呢?那可太重要啦!通过三轴试验,我们能知道这些土啊、岩石啊到底有多结实,能不能承受住各种压力。

这就好比我们要盖一栋高楼,总得先搞清楚地基稳不稳固吧?要是没搞清楚就盲目施工,那不是等着出问题嘛!它还能告诉我们这些材料在不同压力下的变形情况,就像我们知道了一个气球能被吹多大,会不会爆掉一样。

这对于工程建设来说,可是至关重要的信息呀!咱再打个比方,三轴试验就像是一个超级侦探,能把土和岩石的秘密都给挖出来。

它能帮助工程师们设计出更安全、更可靠的建筑和基础设施。

没有它,那些大桥怎么能稳稳地横跨江河呢?那些隧道怎么能安全地穿越山体呢?而且啊,这三轴试验可不仅仅局限于建筑领域哦。

在地质勘探中,它也是大显身手呢!能帮助地质学家们了解地下的情况,为寻找矿产资源等提供重要依据。

你说神奇不神奇?想想看,如果没有三轴试验,我们的世界会变成什么样呢?可能到处都是摇摇欲坠的建筑,随时都有危险。

所以啊,可别小看了这个看似普通的试验,它可是在背后默默守护着我们的安全呢!总之,三轴试验就是这么厉害,它就像一把神奇的钥匙,打开了我们了解大地的大门。

让我们能更科学、更合理地利用土地和资源,建设出更美好的世界。

朋友们,现在你们是不是对三轴试验有了更深的认识和理解呢?是不是也和我一样觉得它超级重要呢?。

关于三轴试验的概念

关于三轴试验的概念

关于三轴试验的概念
三轴试验(Triaxial test)或三轴剪切试验(Triaxial shear test),是土力学中现有决定剪应力强度参数最可靠的方法之一。

它在例行性试验或研究中广泛为使用。

在此试验中,一般所之土壤试体直径约1.4英寸(36毫米),长度为3英寸(76毫米)。

用薄橡皮膜包裹之试体放在一装有水或甘油之圆塑胶容器内。

经由容器内液体之压缩对试体施加围压。

要造成试体受剪破坏,我们必须透过一垂直之加载活塞来施加轴向应力。

黏土之压密-排水试验需要相当长的时间。

为此,可以为这些土壤做压密-不排水附带孔隙水压量测之试验来得到排水剪力强度参数。

因为在施加轴差应力时不准许试体排水,所以试验可以快速进行。

在不压密-不排水试验中,土壤试体在受围压时不准许排水。

试体在不排水的情况下以施加轴差应力来达到剪力破坏。

因为试体在任何一阶段都不排水,试验可以很快的施做完成。

因为施加围压土壤试体中之孔隙水压会增高到u c。

在施加轴差应力孔隙水压会进一步的增高。

三轴试验应力应变曲线

三轴试验应力应变曲线

三轴试验应力应变曲线
三轴试验是一种土力学试验方法,主要用于研究土体在三个不同
方向的应力状态下的力学性质。

根据三轴试验的结果,可以得出土体
的应力应变曲线。

土体在三轴试验中受到三个正交方向的应力作用,其中一个是垂
直于一个平面的应力(称为主应力)、另外两个则相等且垂直于该平
面的应力(称为次应力)。

主应力的变化导致了土体内部的应变变化,这种变化可以用应力应变曲线来表示。

三轴试验应力应变曲线分为三个阶段:
1. 初期线性阶段:在低应力水平下,土体内部的颗粒间相互作
用较小,土体呈现较大的弹性变形,其应力应变关系为线性关系。

2. 限制应变阶段:土体开始发生塑性变形,应变逐渐增加而应
力基本不变。

此时土体内部出现了裂隙,土体的抗剪强度明显下降。

3. 稳定应变阶段:应变增大,应力也随之增大。

在此阶段,土
体的裂隙处于稳定状态,土体的稳定性得到保持。

三轴试验应力应变曲线描述了土体在三轴试验过程中的应力应变
变化规律,对于进行土体力学分析和设计具有重要的参考价值。

三轴试验

三轴试验

三轴试验一、基本原理三轴压缩实验是根据摩尔-库伦强度理论,用3~4个试样,分别在不同的恒定周围压力(即小主应力σ3)下施加轴向压力(即主应力差),进行剪切直至破坏,从而确定土的抗剪强度参数。

根据排水条件的不同,三轴试验分为以下三种试验类型:即不固结不排水试验(UU),固结不排水试验(CU),和固结排水试验(CD),试验方法的选择应根据工程情况,土的性质,建筑物施工和运行条件及所采用的分析方法而定。

(1)不固结不排水剪试验(UU):是在整个实验过程中,从加周围压力和增加轴向压力直到剪坏为止,均不允许试样排水对保和试样可测得总抗剪强度参数CU、ФU或有效抗剪强度参数C′、Ф′和孔隙水压力参数。

(2)固结不排水剪试验(CU):试验是先使试样在某一周围压力下固结排水,然后保持在不排水的情况下,增加轴向压力直到剪坏为止,可以测得总抗剪强度指标CCu、ФCu或有效抗剪强度参数C′、Ф′和孔隙水压力参数。

(3)固结排水剪试验(CD):是在整个试验过程中允许试样充分排水,即在某一周围压力下排水固结,然后在充分排水的情况下增加轴向压力直到剪坏为止,可以测定有效抗剪强度指标2Cd、Фd。

二、固结不排水试验(一)仪器设备1、应变控制式三轴压缩仪由周围压力系统,反压力系统,孔隙水压力量测系统和主机组成。

2、附属设备包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆筒,:3、百分表量程3cm或1cm,分度值〉0.01mm。

4、天平程量200g,感量0.01g;程量1000g,感量0. 1g。

5、橡皮膜应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气空。

(二)操作步骤1、仪器检查⑴周围压力的测量精度为全量程的1%,测读分值为5kPa。

⑵孔隙水压力系统内的气泡应完全排除。

系统内的气泡可用纯水或施加压力使气泡溶于水,并从试样底座溢出,测量系统的体积因数应小于1.5×10-5cm3/ kPa。

⑶管路应畅通,活塞应能滑动,各连接处应无漏气。

三轴试验分类及各试验过程。

三轴试验分类及各试验过程。

三轴试验分类及各试验过程。

嘿,咱今儿就来唠唠三轴试验分类和各试验过程这档子事儿。

你知道吗,三轴试验就像一个神秘的盒子,里面藏着好多不同的宝贝呢!它主要有固结不排水剪试验、固结排水剪试验和不固结不排水剪试验这几种。

先说说固结不排水剪试验吧,这就好比是一场紧张刺激的比赛。

土样先被好好地固结一番,就像运动员赛前的充分准备。

然后呢,在试验过程中不让水排出去,就像比赛中遇到了些阻碍,但还是要努力向前冲呀!在这个试验里,能看到土样在这种特殊条件下的表现,是不是很有意思呢?再来瞧瞧固结排水剪试验,它呀,就像是一场有条不紊的行军。

土样同样先进行固结,然后在试验过程中让水能够自由地排出去,就像军队在前进过程中有良好的后勤保障一样。

通过这个试验,可以清楚地了解土样在排水顺畅情况下的特性,这多重要啊!最后是不固结不排水剪试验,这就有点像一场毫无准备的冒险啦!土样没经过固结,水也不让排,就这么直接上阵了。

在这个试验里,可以看到土样最原始、最直接的反应,是不是很神奇呢?那这些试验过程是咋进行的呢?哎呀,这可得好好说说。

首先得准备好土样,这就跟做饭要先准备食材一样重要。

然后把土样放在三轴仪里,就像把食材放进锅里。

接着施加各种压力和条件,就像控制火候和添加调料。

在这个过程中,要仔细观察土样的变化,就像看着锅里的菜慢慢变熟一样。

通过一系列的数据测量和分析,就能得出土样的各种特性啦!你想想,要是没有这些三轴试验,我们怎么能对土这么了解呢?怎么能知道在不同情况下土会有怎样的表现呢?这可都是为了让我们的建筑更稳固,让我们的生活更安全呀!所以说,三轴试验可不是随便玩玩的,那可是有着大用处呢!总之,三轴试验分类明确,每个试验都有它独特的意义和价值。

而试验过程呢,也是环环相扣,一步都不能马虎。

咱得重视这些试验,好好研究土的奥秘,为我们的工程建设和生活保障出一份力呀!你说是不是这么个理儿呢?。

三轴试验应力123大小关系

三轴试验应力123大小关系

三轴试验应力123大小关系
【原创实用版】
目录
1.三轴试验简介
2.三轴应力试验的应力大小关系
3.结论
正文
一、三轴试验简介
三轴试验是一种广泛应用于岩土工程、材料科学等领域的实验方法,主要用于研究材料在三个正交方向上的应力状态。

三轴试验能够模拟实际工程中材料的应力状态,为工程设计和施工提供重要依据。

在三轴试验中,通常需要测试三个主应力(σx, σy, σz)的大小关系,以评估材料的强度和稳定性。

二、三轴应力试验的应力大小关系
在三轴试验中,三个主应力(σx, σy, σz)之间的关系可以通过实验数据进行分析。

根据实验结果,可以得出以下结论:
1.在大多数情况下,σx > σy > σz。

这是因为在多数材料中,x 方向的拉伸强度最大,y 方向次之,z 方向最小。

2.当材料受到横向压缩时,σy 可能大于σx。

这种情况下,材料的稳定性会受到影响,可能导致侧向挤压或剪切破坏。

3.当材料受到竖向压缩时,σz 可能大于σx 和σy。

这种情况下,材料容易发生挤压破坏。

4.在某些特殊情况下,三个主应力的大小关系可能发生变化,例如在复合材料、功能梯度材料等特殊材料中。

三、结论
综上所述,通过分析三轴应力试验的应力大小关系,可以对材料的强度和稳定性进行评估。

在实际工程中,根据材料的应力状态,可以采取相应的设计和施工措施,以确保工程安全和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、试验方法:
• 三轴剪切试验可分为不固结不排水试验(UU)、固结 不排水试验(CU)以及固结排水剪 •试验(CD)。 •1、不固结不排水试验:试件在周围压力和轴向压力下直至 破坏的全过程中均不允许排水, 土样从开始加载至试样剪 坏,土中的含水率始终保持不变,可测得总抗剪强度指标c 和φ ; •2、固结不排水试验:试样先在周围压力下让土体排水固结 ,待固结稳定后,再在不排水 条件下施加轴向压力直至破 坏,可同时测定总抗剪强度指标 和 或有效抗剪强度指标 和及孔隙水压力系数; •3、固结排水剪试验:试样先在周围压力下排水固结,然后 允许在充分排水的条件下增加 轴向压力直至破坏,可测得 总抗剪强度指标和 。
3=500kPa 3=300kPa 3=100kPa

强度包线

c O
3
1f

15%
1
由不同围压的三轴试验,得到破坏时相应的(1-)f 分别绘制破坏状态的莫尔应力圆,其公切线即为强度包
线,可得强度指标c与
仪器设备
1.不固结不排水试验
• (1)剪切应变速率宜为每分钟应变0.5%~1.0% 。 • (2)启动电动机,开始剪切。试样每产生0.3% ~0.4%的轴向应变,测记一次测力计读数和轴向变 形值。当轴向应变大于3%,每隔0.7%~0.8%的应 变值测记一次读数。 • 3)当测力计读数出现峰值时,剪切应继续进 行,超过5%的轴向应变为止。当测力计读数无峰值 时,剪切进行到轴向应变为15%~20%。 • (4)试验结束,关电动机,关周围压力阀,开 排气阀,排除压力室内的水,拆除试样,描述试样 破坏形状。称试样质量,并测定含水量。
应力特点与试验方法
横梁
常用试验类型
类型 固结 排水 固结 不排水 施加 3 固结 施加 1 -3 排水 量测 体变 孔隙水 压力
百分表
量力环
量 水 管
试 样
孔压 量测
固结
不排水
不固结 孔隙水 不固结 不排水 不排水 压力
围压 力 3 阀门
马达
阀门
破坏偏差应力取值方法
1-3
( 1 - 3 ) f
2.固结不排水试验 •试样排水固结按下列步骤进行: • (1)开孔隙水压力阀,测定孔隙水压力。开 排水阀。当需测定排水过程时,测记排水管水面及 孔隙水压力值,直至孔隙水压力消散95%以上。固结 完成后,关排水阀,测定排水管读数和孔隙水压力 读数。 • (2)微调压力机升降台,使活塞与试样接触 ,此时轴向变形百分表的变化值为试样固结时的高 度变化。
排水剪或慢 剪(CD)
固结不排水 剪或固结快 剪(CU)
地基土的透水性好,排水条件较佳,建筑物 加荷速率较慢
建筑物竣工以后较久,荷载又突然增大,或 地基条件等介于上述两种情况之间
试验条件与现场条件
2 1
固结不排水试验
的对应关系
固结排水试验 在1层固结后,快速施工2层
不固结不排水试验
粘土地基上的分层慢 速填方 软土地基上的快速填方
三轴剪切试验
•一.试验目的:
三轴剪切试验是测定土体抗剪强度的一种方 法,通常用3~4个圆柱形试样,分别在不同 的恒定 围压力下(即小主应力σ3)施加轴向压力(即主应 力差σ1-σ3)进行剪切直至破坏, 然后根据摩尔 —库仑理论,求得土的抗剪强度参数c、φ值。同时 ,试验过程中若测得了孔隙 水压力还可以得到土体 的有效抗剪强度指标c′、φ′和孔隙水压力系数等 。
常规三轴试验优缺点


单元体试验,试样内应力和应变相对均匀
应力状态和应力路径明确 排水条件清楚,可控制 设备操作复杂
现场很难试验
常规三轴试验是在轴对称下进行的
3.固结排水试验
•试样的安装、固结和剪切,与固结不排水试验的 相应步骤相同,但在剪切过程中应打开排水阀, 剪切速率采用每分钟应变 0.003%~0.012%。
土的抗剪强度指标随试验方法、排水条件的不同而异,对于 具体工程问题,应该尽可能根据现场条件决定采用实验室的试验 方法,以获得合适的抗剪强度指标 试验方法 不排水剪或 快剪(UU) 适用条件 地基土的透水性和排水条件不良,建筑物施 工速度较快
密砂

取曲线的最大偏差应力值 作为(1-3)f 取规定的轴向应变值(通 常15%)所相应的偏差应 力作为(1-3)f 以最大有效主应力比 ((1/3)max处的偏差应 力值作为(1-3)f
Hale Waihona Puke ( 1 - 3 ) f松砂

15%
1
三轴试验确定土的强度包线
1 - 3 ( 1 - 3 ) f
相关文档
最新文档