(精品)氢燃料电池汽车系统控制原理框图
燃料电池汽车工作原理
燃料电池汽车工作原理燃料电池汽车是一种新型的环保型交通工具,其工作原理基于燃料电池的电化学反应,将氢气与氧气通过电化学反应产生电能驱动电动机,推动汽车运行。
在燃料电池汽车中,主要包括燃料电池、电动机、电池组、氢气储罐等组成部分,下面将详细介绍燃料电池汽车的工作原理。
1. 燃料电池的工作原理燃料电池是燃料电池汽车的核心部件,其工作原理类似于电池。
燃料电池有多种类型,常见的是质子交换膜燃料电池(PEMFC)。
在燃料电池中,氢气经过阴极,氧气经过阳极,在电解质膜中发生电化学反应。
反应式如下:在阳极:2H2→4H++4e-在阴极:O2+4H++4e-→2H2O综合反应:2H2+O2→2H2O这些反应释放出能量,转化为电能,从而驱动电动机工作,推动汽车前进。
2. 电动机的工作原理电动机是燃料电池汽车的动力来源,接收来自燃料电池的电能,通过电磁感应原理将电能转化为机械能,驱动车辆运行。
电动机具有高效率、无排放、无噪音等优点,是燃料电池汽车的核心部件之一。
3. 电池组的作用电池组是用来存储电能的装置,通常是锂电池,在燃料电池汽车中充当储能装置的作用。
电池组可以储存来自燃料电池的电能,同时也可以通过回收制动能量实现能量回馈,提高能量利用效率。
4. 氢气储罐的原理燃料电池汽车需要氢气作为燃料,氢气储罐是存放氢气的设备。
氢气储罐通常采用高压氢气罐或液态氢气罐,确保氢气的稳定储存和供给。
氢气作为清洁能源的一种,可以通过水电解或氢气提取等方式制备。
总结:燃料电池汽车通过燃料电池产生电能驱动电动机工作,实现零排放、高效能的特点。
随着新能源汽车的不断发展,燃料电池汽车将成为未来交通运输的重要发展方向,助力构建绿色低碳的车辆出行环境。
氢燃料电池 ppt课件
燃料电池的出现
1839年,英国Sir William R. Grove爵士发表了世界 上第一篇有关燃料电池研究的报告-以Pt为电极的氢氧燃料电池
从1960年10月质子交换膜燃料电池首次用于双子星 座航天飞船飞行
燃料电池用于航天领域
长时间运作 重量轻 发电时不用回转装置,没有噪音和磨损 产生纯水,作为宇航员的饮用水
6
氢的特点
氢能利用形式多
既可以通过燃烧产生热能 ➢ 发电 ➢ 做功
作为能源材料用于燃料电池 转换成固态氢用作结构材料
用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在 的内燃机稍加改装即可使用
氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各 种应用环境的不同要求
7
氢能有待解决的关键问题
31
燃料电池分类
碱性燃料电池
Alkaline Fuel Cell, AFC 电解质——强碱(KOH) 燃料——纯氢 氧化剂——纯氧或脱除微量CO2的空气 电池工作温度——50~200 度 用于特殊场合,航天提供饮用水和动力
地面应用缺陷
以空气代替纯氧时,必须消除微量的CO2 以重整气代替纯氢时,必须消除大量的CO2
现在,我国实施可持续发展战略,积极推动包括氢能在 内的洁净能源的开发和利用。近年来,在氢能领域取得 了多方面的进展。
29
氢能利用代表之一——燃料电池
燃料电池发电是继水力、火力和核能发电之后的第四 类发电技术
不经过燃料燃烧直接将电化学反应方式将燃料的化学 能转变为电能的高效发电装置
特点
高效85%~90%;实际40~60% 环境友好 安静 可靠性高
二氧化碳6%
16
生物质制氢
生物质气化制氢
4 - 新能源热管理控制
2018-9-3
1、PHEV空调系统的原理构架 2、自动空调控制与传统燃油车的差异 3、PHEV车型热管理控制器原理 4、实例:TMS控制器设计逻辑 5、新能源汽车热管理控制系统发展趋势讨论
PHEV原理构架
新能源车型分类
纯电动汽车(EV):电池+电机+减速机构,代表车型特斯拉
电池冷却器控制
EVA侧电子开关及充电机冷却
其余PHEV拓扑参考
东风小康
吉利PHEV构架
1、压缩机对车内和电池进行制冷(绿色回路); 2、PTC和发动机对车内和电池进行制热(红色回路); 3、电池散热(浅蓝色回路); 4、电机散热(蓝色回路); 5、由于电机散热的安全等级更高,而热管理控制器不是安全键,因此热管 理控制器不参与电机散热。
PWM
\ Lin 同上
PHEV控制逻辑设计思路
根据系统原理进行功能分解。 每项功能采用场景分析方法,进行控制原理设计。
补充:PWM风扇控制
风扇需求=MAX(发动机需求、空调需求、电机需求) 具体控制思路根据实际情况考虑,也可以参照上面讲过的燃油车PWM风扇控制
乘员舱采暖
电池冷却水泵控制
电机冷却水泵控制
弱度混合动力汽车:节油率3~5%,代表技术:怠速启停
混合动力汽车
中度混合动力汽车:节油率10%~20%,代表技术:制动能量回收 混合动力汽车(HEV)
重度混合动力汽车
燃料电池汽车:
氢质子反应堆+电池+电机+减速机构
插电式混合动力汽车 (PHEV)
新能源车型分类
PHEV:续航里程中等,但结构复杂,成本高。且纯电续航里程之外,燃油模式比普 通燃油车更耗油 HEV:节油能力有限,电池能力有限。不过不用充电,结构相对简单,成本低。 EV:续航里程最大,不过没有发动机模式,对可靠性提出更高要求。
燃料电池工作原理、分类及组成_图文
磷酸 (PAFC)
电解质
KOH
含氟质子交换膜
H3PO4
阳极
Pt/C
Pt/C
Pt/C
阴极
C(含觸煤)
流动离 子
操作温 度 可用 燃料
特性
OH-
室温~100℃
精炼氢气 电解副产氢气 1.需使用高纯度氢
气做燃料 2.低腐蚀性及低温
较易选择材料
Pt/C
H+
室温~80℃
天然气、甲醇 汽油
1.功率密度高, 体积小,重量轻 2.低腐蚀性及低溫 ,较易选择材料
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳 极侧是浸入甲醇水溶液中的,加之在DMFC工作时, 又有C02的析出;而阴极侧,排水量也远大于电化学 反应生成水,不管是气化蒸发以气态排出,还是靠 毛细力渗透到扩散层外部被气体吹扫以液态排水, 均会对电极与膜之间结合界面产生一定分离作用力。
因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改 进结构与工艺,增加MEA的电极与膜之间的结合力,防 止MEA在电池长时间工作时膜与电极分离、增加欧姆极 化,大幅度降低电池性能,严重时导致电池失效。
根据电池工作温度不同,AFC系统可分为中温型与 低温型两种。
前者以培根中温燃料电池为代表,它由英国培根 (F.T.Bacon)研制,工作温度约为523K,阿波罗 登月飞船上使用的AFC系统就属于这一类型。
低 温 型 APC 系 统 的 工 作 温 度 低 于 373K , 是 现 在 AFC系统研究与开发的重点。
因此与PEMFC相比,DMFC阴极侧不但排水负荷增 大,而且阴极被水掩的情况更严重,在设计DMFC 阴极结构与选定制备工艺时必须考虑这一因素。
正因为如此,在至今评价DMFC时,阴极氧化剂(如 空气中氧)的利用率均很低,其目的是增加阴极流 场内氧化剂的流动线速度,以利于向催化层的传质 和水的排出,但这势必增加DMFC电池系统的内耗, 这是研究高效大功率DMFC电池系统时必须解决的 技术问题。
燃料电池电动汽车原理
燃料电池电动汽车原理
燃料电池电动汽车是一种利用燃料电池作为能量源的汽车。
燃料电池是一种将化学能转化为电能的装置,其原理是利用氢气和氧气的反应来产生电能。
具体来说,燃料电池电动汽车的原理如下:
1. 氢气供应:燃料电池电动汽车使用氢气作为燃料。
氢气可以从氢气储存罐中储存,并通过供氢系统供应给燃料电池。
2. 氧气供应:燃料电池电动汽车从空气中获取氧气,一般通过空气滤清器和进气道进入系统中。
氧气与氢气在燃料电池中进行反应。
3. 化学反应:燃料电池中的阳极和阴极之间存在电解质层,其中阳极通常为氢气供应电极,阴极则是氧气供应电极。
在电解质层内,氢气从阳极通过一系列化学反应转化为电子和正电离子,这些正电离子会穿过电解质层到达阴极。
4. 电子流动:电子流经过外部电路以供电。
这些电子在电路中形成电流,是燃料电池电动汽车工作的主要能量来源。
5. 氧化还原反应:正电离子与到达阴极的氧气发生氧化还原反应,产生水。
这是一个放出能量的过程,并产生一定的热量。
6. 电能输出:通过电流控制器将电能输出给电动机,从而驱动汽车行驶。
电能的输出可以控制来调节汽车的速度。
总之,燃料电池电动汽车利用燃料电池将氢气和氧气反应产生电能,从而驱动电动机进行汽车的行驶。
与传统燃料发动机相比,燃料电池电动汽车具有零排放、高能量转化效率等优点,是一种环保且高效的交通工具。
氢能源汽车设计图PPT(共 42张)
高压储氢罐 空气
调压器 控制阀门 压缩机
循环泵
管口
注水
注水
质子交换膜燃 料电池
水箱
热交换器
直流电动机
扇
排放阀 输出
控制阀门 冷却或加热电路
返回目录
氢能源汽车原理图
2.高压储氢罐原理图
管道系统阀门 气瓶阀门
调压器
感应器
导电连接
低压氢气出口
气瓶 高压充氢
安全阀的支管 氢气进入或释放的支管
储氢罐 表层密封Biblioteka 料关闭阀门冷却水热交换器
外壳 碳纤维 内衬
支架 真空绝缘
感应器
调压器 泵 热交换器 流量控制
前往发动机
阀门
释放 阀门
氢气进去
中等量储存 5.6kg可回收氢气
容器 2.25安全系数
·
热传输系统 更换燃料率
最小流速
漏电率
The end
返回目录
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
1. 高压氢气罐2.进气格栅Airflow (via Intake grille) 3. 动力 控制单元( PCU ) 4. 动力电池(Battery) 5. 驱动电机 (Electric Motor )6.燃料电池 ( Fuel Cell. )
专业名词:
Anode:正极 cathode负极 hydrogen氢气 oxygen氧气
氢能源汽车
一、氢能源汽车
日本丰田Mirai
1.外部设计图 2.部件设计图
日本本田FCV CLARITY
1.外部设计图 2.部件设计图
奔驰 GLC F-Cell
1.外部设计图
新能源汽车技术概论 第七章 燃料电池电动汽车
本章课程结束
3)需要配备辅助电池系统
燃料电池可以持续发电,但不能充电和回收再生制动的反馈能量。通常在燃料电池汽 车上须增加辅助电池,来储存燃料电池富裕的电能和在燃料电池汽车减速时接受再生 制动时的能量。
燃料电池电动汽车基本机构
纯燃料电池电动汽车只有燃料电池一个动力源,汽 车的所有功率负荷都由燃料电池承担。其主要缺点有: 燃料电池的功率大,成本昂贵。
(1)当输入直流电压在一定范围内变化时,能输出负载要求的变化范围的 直流电压。
(2)输出负载要求的直流电流(范围):能够输出足够的直流负载电流, 并且能够允许在足够宽的负载变化范围的情况下设备能正常运行。
(3)变换器是能量传递部件,因此需要转换效率高,以便提高能源的利用 率;
(4)为了降低对燃料电池的输出电压要求,变换器应具有升压功能; (5)由于燃料电池输出的不稳定,需要变换器闭环运行进行稳压,为了给 驱动器稳定的输入,需要变换器有较好的动态调节能力;
燃料电池发动机系统
驱动电机 DC/DC变换器的基本功能:
(1)直流电机驱动系统采用换向器和电刷,保证了励磁磁动势与电枢磁动 势的严格正交,易于控制。但直流电机结构复杂,其高速性能和可靠性受换 向器和电刷的影响较大。 (2)交流电机坚固耐用、结构简单、技术成熟、免维护、成本低,尤其适 合恶劣的工作环境。其缺点在于损耗大、效率低、功率因数低,进而导致控 制器容量增加,成本上升。
功率跟随模式 开关模式。
五、 典型的氢燃料电池汽车
图7-14 2017款本田FCX Clarity燃料电池车
Honda FCX Clarity主要动力部件的整车布置图
Honda FCX Clarity动力系统结构主要由动力控制单元 (Power Control Unit),燃料储气罐(Hydrogen Storage Tank),驱动 电机(Electric Motor),燃料电池堆(Fuel Cell Stack ),高功率的锂
第09章 氢燃料电池课件
第9章氢燃料电池本章主要内容:1.燃料电池基本原理2.燃料电池热力学和反应动力学3.燃料电池的电荷管理4.燃料电池内的质量传递5.燃料电池的一维数值模型9.1 燃料电池简介燃料电池(Fuel Cell,FC)是一种直接将储存在燃料和氧化剂中的化学能高效地转化为电能的发电装置。
这种装置的最大特点是由于反应过程不涉及到燃烧,因此其能量转换效率不受“卡诺循环”的限制,能量转换效率高达60~80%。
实际使用效率是普通内燃机的2~3倍。
另外,它还具有燃料多样化、排气干净、噪声小、环境污染低、可靠性高及维修性好等优点。
燃料电池被认为是21世纪全新的高效率、节能、环保的发电方式之一。
9.1.1 原理燃料电池是一种能量转换装置。
它按电化学原理,即原电池(如日常所用的锌锰干电池)的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能。
对于一个氧化还原反应,如:[O]+[R]→P式中,[O]代表氧化剂,[R]代表还原剂,P代表反应产物。
原则上可以把上述反应分为两个半反应,一个为氧化剂[O]的还原反应,一个为还原剂[R]的氧化反应,若e代表电子,即有:以最简单的氢氧反应为例,即为如图9-1所示,氢离子在将两个半反应分开的电解质内迁移,电子通过外电路定向流动、作功,并构成总的电的回路。
氧化剂发生还原反应的电极称为阴极,其反应过程称为阴极过程,对外电路按原电池定义为正极。
还原剂或燃料发生氧化反应的电极称为阳极,其反应过程称阳极过程,对外电路定义为负极。
图9-1燃料电池工作原理示意图燃料电池与常规电池不同,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐中。
当它工作(输出电流并做功)时,需要不间断地向电池内输入燃料和氧化剂,并同时排出反应产物。
因此,从工作方式上看,它类似于常规的汽油或柴油发电机。
由于燃料电池工作时要连续不断地向电池内送入燃料和氧化剂,所以燃料电池使用的燃料和氧化剂均为流体(即气体和液体)。
氢燃料电池的工作原理
氢燃料电池的工作原理燃料电池本质是水电解的“逆”装置,主要由3 部分组成,即阳极、阴极、电解质,如图1[3]。
其阳极为氢电极,阴极为氧电极。
通常,阳极和阴极上都含有一定量的催化剂,用来加速电极上发生的电化学反应。
两极之间是电解质。
以质子交换膜燃料电池(PEMFC)为例,其工作原理如下:(1) 氢气通过管道或导气板到达阳极;(2) 在阳极催化剂的作用下,1 个氢分子解离为2 个氢质子,并释放出2 个电子,阳极反应为:H2→2H++2e。
(3) 在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,在阴极催化剂的作用下,氧分子和氢离子与通过外电路到达阴极的电子发生反应生成水,阴极反应为:1/2O2+2H++2e→H2O总的化学反应为:H2+1/2O2=H2O电子在外电路形成直流电。
因此,只要源源不断地向燃料电池阳极和阴极供给氢气和氧气,就可以向外电路的负载连续地输出电能。
3 PEMFC 的特点及研发应用现状燃料电池种类较多,PEMFC 以其工作温度低、启动快、能量密度高、寿命长等优点特别适宜作为便携式电源、机动车电源和中、小型发电系统。
PEMFC 发电机由本体及其附属系统构成。
本体结构除上述核心单元外,还包括单体电池层叠时为防止汽、水泄漏而设置的密封件,以及压紧各单体电池所需的紧固件等。
附属系统包括:燃料及氧化剂贮存及其循环单元,电池湿度、温度调节单元,功率变换单元及系统控制单元。
图2 是一个典型的PEMFC 发电系统示意图[4]。
(1) PEMFC 作为移动式电源的应用PEMFC 作为移动式电源的应用领域分为两大类:一是可用作便携式电源、小型移动电源、车载电源等。
适用于军事、通讯、计算机等领域,以满足应急供电和高可靠性、高稳定性供电的需要。
实际应用是手机电池、笔记本电脑等便携电子设备、军用背负式通讯电源、卫星通讯车载电源等。
二是用作自行车、摩托车、汽车等交通工具的动力电源,以满足环保对车辆排放的要求。
燃料电池电动汽车的工作原理和组成
燃料电池电动汽车的工作原理和组成燃料电池电动汽车作为新能源汽车的一种,其工作原理和组成是怎样的呢?下面将从工作原理和组成两个方面进行详细介绍。
一、工作原理1. 氢气和氧气的电化学反应燃料电池电动汽车的核心是燃料电池,其工作原理是利用氢气和氧气在电化学反应过程中产生电能。
在燃料电池内部,氢气从阴极一侧进入,氧气从阳极一侧进入,两者在电解质膜上发生化学反应,产生水和电能,因此也被称为氢气电池。
2. 电能转化为动力燃料电池产生的电能经过电控系统,转化为汽车所需的动力,驱动电动汽车行驶。
二、组成结构1. 燃料电池系统燃料电池系统包括燃料电池堆、氢气储存罐、氧气供应系统等组成部分。
其中,燃料电池堆是最核心的部件,由多个单个燃料电池组成,通过将氢气和氧气输入到电解质膜上,产生电能。
2. 电控系统电控系统是燃料电池电动汽车的大脑,负责控制燃料电池系统的运行和管理。
它通过各种传感器实时监测燃料电池的工作状态,并根据车速、踏板行程等信息来控制燃料电池系统的输出。
3. 电池除了燃料电池之外,燃料电池电动汽车还配备了锂电池等储能设备。
这些电池主要用于存储制动能量回收等过程中产生的电能,以及在起步、加速等高功率场景下提供额外动力。
4. 电动驱动系统电动驱动系统包括电动机、变速箱和传动装置等部件,负责将燃料电池产生的电能转化为汽车的动力,驱动车辆前进。
5. 氢气储存和氢气供应系统燃料电池电动汽车的氢气储存和供应系统是汽车能否正常工作的关键。
氢气储存罐主要用于储存氢气,而氢气供应系统则负责将储存罐中的氢气输送到燃料电池堆中进行反应。
以上就是关于燃料电池电动汽车的工作原理和组成的详细介绍。
通过以上介绍,可以看出燃料电池电动汽车是利用氢气和氧气进行电化学反应产生电能,再将电能转化为动力驱动汽车行驶的新型环保能源汽车。
希望通过全社会的努力,未来燃料电池电动汽车能够更加普及,为环境保护事业贡献力量。
燃料电池电动汽车的工作原理和组成是众多科学家和工程师们多年努力研究和发展的成果。
氢燃料电池车辆电动机系统设计
氢燃料电池车辆电动机系统设计氢燃料电池车辆作为一种新兴的清洁能源交通工具,其电动机系统设计至关重要。
本文将结合目前氢燃料电池车辆电动机系统的发展现状和未来趋势,深入探讨其设计原理、关键技术和优化方向。
一、原理氢燃料电池车辆的电动机系统是通过将氢气与氧气在燃料电池中进行氧化还原反应,从而产生电能驱动电动机工作,实现车辆动力输出。
整个系统主要包括燃料电池、氢气储存装置、氧气供给装置、电动机控制器等部分。
1. 燃料电池燃料电池是氢燃料电池车辆电动机系统的核心部件,其工作原理是将氢气与氧气在阳极和阴极进行氧化还原反应,从而产生电能。
常见的燃料电池有聚合物电解质膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)等。
其中,PEMFC由于其高效率、低温运行等优点被广泛应用于氢燃料电池车辆。
2. 氢气储存装置氢气储存装置主要用于存储氢气,以保证车辆长时间行驶。
目前常用的氢气储存装置包括高压储氢罐和液态氢储罐,后者由于能有效提高氢气储存密度,因此在实际应用中更受青睐。
3. 氧气供给装置氢燃料电池车辆的氧气供给装置主要用于向燃料电池输送氧气,并需要保证氧气的纯度和供给量。
通常采用的氧气供给方式有外部氧气供给和空气中吸氧两种方式,前者可以提供更高纯度的氧气,但增加了系统复杂度。
4. 电动机控制器电动机控制器是氢燃料电池车辆电动机系统的“大脑”,主要负责控制电动机的启停、转速调节、能量回收等功能。
优秀的电动机控制器可以提高系统的响应速度和能效,进而提升车辆的性能和续航里程。
二、氢燃料电池车辆电动机系统设计关键技术1. 功率匹配与峰值功率输出氢燃料电池车辆的功率匹配是指燃料电池和电动机之间的功率输出匹配,主要取决于车辆的动力需求。
在实际工程中,需要根据车辆的质量、行驶工况、道路拓扑等因素进行合理的功率匹配设计,以实现最佳的动力输出效果。
2. 能量管理与回收氢燃料电池车辆的能量管理与回收是提高车辆能效的关键技术。
通过对车辆制动、惯性滑行等能量回收装置的设计和优化,可以在车辆制动过程中将能量转化为电能进行储存,进而延长车辆的续航里程。
氢燃料电池发动机工作原理
氢燃料电池发动机工作原理氢燃料电池发动机是一种高效清洁能源汽车动力系统,通过氢气和氧气的化学反应产生电能驱动电机工作,是绿色环保的新型动力技术。
下面我们将详细介绍氢燃料电池发动机的工作原理。
一、氢燃料电池的概念及分类氢燃料电池是利用氢气和氧气在催化剂的作用下发生电化学反应,产生电能的装置。
根据不同的工作原理和材料,氢燃料电池可分为碱性电解质膜燃料电池(AFC)、聚合物电解质膜燃料电池(PEMFC)、磷酸盐燃料电池(PAFC)、硫酸盐燃料电池(SOFC)等多种类型。
聚合物电解质膜燃料电池被广泛应用于汽车动力系统中。
二、氢燃料电池发动机的工作原理1. 氢气的储存和供应氢燃料电池发动机的工作原理首先涉及氢气的储存和供应。
氢气可以通过电解水、甲烷蒸化重整、氢气液化等多种方式获取,并存储在高压氢气瓶中。
在使用时,氢气从氢气瓶中释放出来,并通过氢气流量控制器控制供给。
2. 氢气的校正和分配氢气流量控制器将氢气分配到燃料电池的阳极(氢气电极),在给定的氢气质量流率下,保证正常燃料电池的工作。
3. 燃料电池的反应经过氢气的供给和校正后,氢气进入燃料电池的阳极。
在阳极,氢气通过催化剂(通常是铂基的催化剂)和电解质膜,与氧气进行电化学反应产生正电子和氢离子。
然后,氢离子通过电解质膜传递到阴极,而正电子则沿着外回路传导到阴极,这就产生了电流。
4. 氧气的供给在燃料电池的阴极侧,氧气通过空气滤清器和阀门进入,并在阴极与阳极之间与氢离子结合,与电解质反应成为水。
5. 电化学能量转化正电子从阳极流出,经过外回路传导到阴极,氢离子通过电解质膜传递到阴极,最终在阴极和氧气的反应过程中,氢气和氧气迅速发生氧化还原反应,产生电能。
这样就形成了电流,这一电能可以驱动电机工作,从而提供动力。
6. 产生的副产品氢燃料电池在发电过程中还会产生少量的热能和水蒸汽,这些副产品为燃料电池的工作提供了一定的热管理和水分离需求。
三、氢燃料电池发动机的优势与发展前景1. 优势氢燃料电池发动机具有零排放、高效率、噪音低、燃料来源广泛等优势。
燃料电池工作原理、分类及组成-图文精选全文
在五六十年代,阱-空气燃料电池曾作为军用电源大力开发。
这种电池最主要的缺点是阱具有极高毒性、价格昂贵。而 且,这种电池系统需要大量辅助设备,这不仅需要消耗电 池所产生功率中的相当大一部分,而且在电池正常工作前 必须启动这些辅助设备。
因此,尽管在理论上阱氧化产生的能量比大多数其他燃料 要大得多,但阱电池在商业上似乎不大可能有重要用途。
因此与PEMFC相比,在DMFC阳极结构与作燃料时,由于阳极室充满了液 态水,DMFC质子交换膜阳极侧会始终保持在良好的 水饱和状态下。
但与PEMFC不同的是,当DMFC工作时不管是电迁 移还是浓差扩散,水均是由阳极侧迁移至阴极侧, 即对以甲醇水溶液为燃料的DMFC,阴极需排出远 大于电化学反应生成的水。
其应用目标是便携式电源及交通工具用动力电 源。
在燃料电池系统中采用液体燃料是吸引各种商业用 户的有效途径之一。
因为液体燃料储运方便,易处置。曾经考虑用作 AFC系统的液体燃料有阱(N2H4)、液氨、甲醇和 烃类。
由于AFC系统通常以KOH溶液作为电解质,KOH与某 些燃料可能产生的化学反应使得AFC几乎不能使用 液体燃料。
PAFC结构
PAFC系统
AFC
碱性燃料电池
碱性燃料电池的设计基本与质子交换膜燃料电池相似,但其使用的电 解质为水溶液或稳定的氢氧化钾基质。电化学反应:
阳极: 2H 4OH 4H2O 4e 阴极: O2 2H2O 4e 4OH
碱性燃料电池的工作温度大约80℃。因此启动也很快,但其电力密度 却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得笨拙。 不过,它们是燃料电池中生产成本最低的,因此可用于小型的固定发 电装置。
隔膜材料
• PAFC的电解质封装在电池隔膜内。隔膜材料目前采用微孔结构隔膜, 它由SiC和聚四氟乙烯组成,写作SiC-PTFE。新型的SiC-PTFE隔膜 有直径极小的微孔,可兼顾分离效果和电解质传输。
《氢氧燃料电池》PPT课件
二、工作原理
氢氧燃料电池工作 时,向阳极和阴极 分别输入氢气和氧 气〔或空气〕,氢 气和氧气在电极与 电解质间的界面上 发生电极反响,同 时向外电路输出电 流。Pa源自e 3三、氢氧燃料电池的优点
〔1〕发电效率高
传统的大型火力发电效率为35%~40%。氢氧燃料电池的能
量转换效率可高达60~80%,为内燃机的2~3倍; 此外,火力发电
聚集地面而构成易燃易爆危险。
Page 5
四、氢氧燃料电池的缺点
本钱高,价格昂贵。 氢气的生产、存储难。
Page 6
五、氢氧燃料电池的分类
按电池构造和工作方式分为离子膜、培根型和石棉膜三类。 ①离子膜氢氧燃料电池:用电池放电时,在氧电极处生成
水,通过灯芯将水吸出。这种电池在常温下工作、构造紧 凑、重量轻,但离子交换膜内阻较大,放电电流密度小。 ②培根型燃料电池:属碱性电池。氢、氧电极都是双层多 孔镍电极(内外层孔径不同),加铂作催化剂。电解质为 80%~85%的苛性钾溶液,室温下是固体,在电池工作温 度(204~260°C)下为液体。这种电池能量利用率较高, 但自耗电大,起动和停机需较长的时间〔起动需24小时, 停机17小时〕。
Page 8
六、再生式氢氧燃料电池
将电池反响产物〔水〕通过电解器转变成反响物〔氢和 氧〕,再重复使用以产生电能的燃料电池,由燃料电池和 电解器两局部组成。可以作为大功率太阳电池阵电源系统 的贮能装置。有日照时,太阳电池阵提供电能给航天器负 载,还用于将水电解成氢和氧,使局部电能贮存起来。航 天器进入阴影区太阳电池不能发电或供电缺乏时,由这种 燃料电池供电。
必须到达一定规模后才具有较高的发电效率,而燃料电池的发电效率
却与规模无关。
〔2〕发电环境友好
氢燃料汽车结构及工作原理
氢燃料汽车结构及工作原理氢燃料汽车是一种以氢气作为燃料的新型汽车,它采用燃料电池作为动力装置。
作为清洁能源汽车的代表,氢燃料汽车在环境保护和减少碳排放方面具有重大意义。
下面就氢燃料汽车的结构及工作原理进行详细介绍。
**一、氢燃料汽车的结构**1. **氢储罐**:氢燃料汽车需要使用氢气作为燃料,因此需要安装氢储罐来存储氢气。
通常采用高压氢储罐或液态氢储罐,以确保储存和输送氢气的安全性和效率。
2. **燃料电池系统**:燃料电池是氢燃料汽车的动力核心,它将氢气与氧气在电化学反应中产生电能,驱动电动机运行。
燃料电池系统包括氢气供应系统、阴极氧气供应系统、阳极氢气供应系统和电池板等组件。
3. **电动机**:氢燃料汽车采用电动机作为动力输出装置,通过燃料电池产生的电能驱动电动机转动,从而驱动汽车前进。
4. **控制系统**:包括电力控制单元(ECU)、氢气供给控制系统、电动机控制系统等,用于监控和调节燃料电池系统和电动机的工作状态,实现汽车的动力输出和能量管理。
5. **其他辅助系统**:包括制动系统、悬挂系统、空调系统、动力转向系统等,用于保证汽车的正常行驶和乘坐舒适性。
**二、氢燃料汽车的工作原理**氢燃料汽车的工作原理主要包括氢气供应、燃料电池工作和电能输出三个方面,具体如下:1. **氢气供应**:氢气储罐中的氢气通过氢气供应系统送入燃料电池系统,其中通过氢气供给控制系统确保氢气的流量和压力满足燃料电池系统的要求。
2. **燃料电池工作**:在燃料电池系统中,氢气经过阳极氢气供给系统供入燃料电池板的阴极部分,同时氧气通过阴极氧气供给系统送入燃料电池板的阳极部分,两者在电化学反应的作用下产生水和电能。
3. **电能输出**:燃料电池产生的电能经过电力控制单元(ECU)进行管理和调节,然后驱动电动机将电能转化为机械能,从而带动汽车的前进。
氢燃料汽车结构简洁、运行效率高,能够大大降低车辆的尾气排放,对环境具有极大的益处。
氢燃料电池车工作过程
氢燃料电池车工作过程
氢燃料电池车的工作过程可以分为以下几个步骤:
1.氢气供应:氢气通过氢气储罐和氢气供应系统进入燃料电池堆的
阳极(负极)。
2.氢气分解:在阳极上,氢气在催化剂(通常是铂)的作用下被分
解成质子和电子,这个过程称为氧化反应。
3.质子传递和电子流动:质子通过质子交换膜向阴极(正极)传递,
而电子则通过外部电路流向阴极,形成电流。
这个过程中,电子不能通过质子交换膜。
4.氧气供应和还原反应:氧气从外界通过进气口进入燃料电池堆的
阴极。
在阴极上,氧气与质子和电子发生还原反应,生成水。
5.电能输出:化学反应过程中产生的电流和电压被收集和利用,供
给电动机使用,驱动车辆前进。
同时,电流也通过电池管理系统储存在电池中,供给车辆其他电子设备使用。
6.排放物处理:氢燃料电池车排放的唯一物质是水蒸气或水,实现
了零排放。
总的来说,氢燃料电池车的工作过程就是通过氢气和氧气的化学反应产生电能,并利用这些电能驱动车辆前进。
这种技术具有环保、高效、零排放等优点,是未来汽车发展的重要方向之一。