八年级数学正比例函数测试题

合集下载

八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。

沪教版八年级上册数学第十八章 正比例函数和反比例函数含答案(必考题)

沪教版八年级上册数学第十八章 正比例函数和反比例函数含答案(必考题)

沪教版八年级上册数学第十八章正比例函数和反比例函数含答案一、单选题(共15题,共计45分)1、如图,在直角坐标系中,有菱形,点的坐标是,双曲线经过点,且,则k的值为()A.40B.48C.64D.802、函数的自变量x的取值范围是()A.x<1B.x>1C.x≤1D.x≥13、下列函数中,反比例函数是()A.y=x﹣1B.y=C.y=D.y=4、如图,点G是BC的中点,点H在AF上,动点P以每秒2㎝的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列六个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24cm2;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的值为33;⑥图2中的N点表示第12秒时y的值为18cm2.A.3个B.4个C.5个D.6个5、已知反比例函数()的图像上有两点A( ,),B( ,),且,则的值是()A.正数B.负数C.非正数D.不能确定6、如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图像大致如图2所示,则这条线段可能是图1中的()A.线段PDB.线段PCC.线段PED.线段DE7、公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力阻力臂=动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力F (单位: N)关于动力臂L(单位:)的函数解析式正确的是()A. B. C. D.8、小明学习了物理中的杠杆平衡原理发现:阻力阻力臂动力动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m,则动力(单位:N)关于动力臂(单位:m)的函数图象大致是()A. B.C. D.9、函数的自变量x的取值范围是()A.x≥2B.x≥3C.x≠3D.x≥2且x≠310、如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米11、如图,在平面直角坐标系中有一矩形ABCD黑色区域,其中A(6,2),B (6,1),C(2,1),D(2,2),有一动态扫描线为双曲线y=(x>0),当扫描线遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的k的取值范围是()A.4≤k≤6B.2≤k≤12C.6<k<12D.2<k<1212、如图,次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间之间的关系用图象描述大致是()A. B. C. D.13、如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),分别过点A、B、P作x轴的垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有( )A. S1= S2<S3B. S1>S2>S3C. S1= S2>S3D.S1<S2<S314、如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.215、如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,若MO=5,则ON=________.根据图象猜想,线段MN的长度的最小值________.17、若双曲线的图象在第二、四象限内,则的取值范围是________.18、如图,反比例函数y= 的图象与一次函数y=x+2的图象交于A、B两点.当x________时,反比例函数的值小于一次函数的值.19、若y=(m+3)x m﹣5是反比例函数,则m满足的条件是________ .20、如图,一次函数y=-2x+b与反比例函数y= (x>0)的图象交于A,B两点,连结OA,过B作BD⊥x轴于点D,交OA于点C,若CD:CB=1:8,则b=________.21、如图三个反比例函数,,在x轴上方的图象,由此观察得到的大小关系为________22、若y=(m﹣1)x|m|是正比例函数,则m的值为________23、某中学要在校园内划出一块面积为100 m2的矩形土地做花圃,设这个矩形的相邻两边长分别为xm和ym,那么y关于x的函数解析式为________.24、已知函数,若,则 x=________ .25、在函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?28、已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29、分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;米/秒向上抛一个小球,小球的高度h米与小球运动的时(2)以固定的速度v间t秒之间的关系式是h=vt﹣4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=gt2(其中g取9.8m/s2);(4)已知橙子每kg的售价是1.8元,则购买数量Wkg与所付款x元之间的关系式是x=1.8W.30、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm)1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、D6、C7、C8、A9、D10、A11、B12、A13、A14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

最新 练习19.2.1 正比例函数 课时练习 2021-2022学年八年级数学人教版下册

最新 练习19.2.1 正比例函数 课时练习 2021-2022学年八年级数学人教版下册

2022年人教版数学八年级下册19.2.1《正比例函数》课时练习一、选择题1.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣22.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定3.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高4.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例B.在y=-0.5x中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例5.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣26.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A. B. C. D.7.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能8.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4二、填空题9.若函数y=(m-1)x+m2-1是正比例函数,则m=.10.已知点A(-2,4)为正比例函数y=kx上一点,则k=;若B点(2,a)在此直线上,则a=.11.已知y=(m2+1)x为正比例函数,则图象经过象限,y随x增大而.12.若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第______象限.13.函数y=-7x的图象在第象限内,经过点(1,),y随x的增大而.14.如图,已知菱形ABCD在平面直角坐标系中,A(-4,0),D(0,3),连OC,则直线OC解析式为.三、解答题15.已知y是x的正比例函数,当x=-2时,y=6,求y与x的函数关系式.16.已知y+2与2x+3成正比例函数,当x=-1时,y=8.(1)求y与x的函数关系式;(2)若A(-5,y1),B(2,y2),试比较y1与y2的大小关系.17.在函数y=-3x的图像上取一点P,过P 点作PA⊥x轴A为垂足,己知P点的横坐标为-2,求ΔPOA的面积(O为坐标原点).18.已知y-1与x成正比例,当x=-2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,-2)在这个函数的图像上,求a的值;(3)若x的取值范围是0≤x≤5,求y的取值范围.参考答案1.C2.B3.C4.D5.B6.C7.B8.B9.答案为:-1;10.答案为:-2;-4;11.答案为:第一、三;增大;12.答案为:二、四;13.答案为:二、四;-7;减小;14.答案为:y=0.8x;15.答案为:y=-3x;16.(1)y=-4x+4;(2)y1>y2.17.解:面积为6.18.(1)解:已知y-2与x成正比例,∴得到y-1=kx,∵当x=-2时,y=4,将其代入y-1=kx,解得k=-1.5,则y与x之间的函数关系式为:y=-1.5x+1;(2)由(1)知,y与x之间的函数关系式为:y=-1.5x+1;∴-2=-1.5a+1,解得,a=2;(3)∵0≤x≤5,∴0≥-1.5x≥-7.5,∴1≥-1.5x+1≥-6.5,即-6.5≤y≤1.勾股定理的逆定理一、选择题1.满足下列条件的三角形中,不是直角三角形的是()A.三个内角比为1∶2∶1B.三边之比为1∶2∶5C.三边之比为3∶2∶5D. 三个内角比为1∶2∶32.在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC是直角三角形的是()A.∠B=∠C-∠AB.a2 = (b+c) (b-c)C.∠A:∠B:∠C=5 :4 :3D.a : b : c=5 : 4 : 33.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。

沪教版(上海) 八年级数学(上)学期 第18章 正比例函数与反比例函数 单元测试卷 (含解析)

沪教版(上海) 八年级数学(上)学期 第18章 正比例函数与反比例函数 单元测试卷 (含解析)

八年级(上)数学第18章正比例函数与反比例函数单元测试卷一.选择题(共6小题)1.已知与成反比例,与成正比例,则与的关系是A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是2.下列函数中,随着的增大而减小的是A.B.C.D.3.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称4.已知反比例函数的图象经过点,则这个反比例函数的表达式为A.B.C.D.5.已知点,和点,在反比例函数的图象上,若,则A.B.C.D.6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离(千米)与离家的时间(分钟)之间的函数关系的是A.B.C.D.二.填空题(共12小题)7.在函数中,自变量的取值范围是.8.若函数是正比例函数,则常数的值是.9.请写出一个过第二、四象限的正比例函数的解析式.10.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为(填“常量”或“变量”.11.若正比例函数为常数,且的函数值随着的增大而减小,则的值可以是.(写出一个即可)12.函数中自变量的取值范围是.13.某款宝马汽车的油箱一次加满汽油50升,可行驶千米,设该汽车行驶百公里耗油升,假设汽车能行驶至油用完,则关于的函数解析式为.14.反比例函数的图象如图所示,则的取值范围为.15.已知正比例函数与反比例函数图象的一个交点坐标是,则另一个交点坐标是.16.一天,小明从家里骑自行车到图书馆还书,小明离家的路程(米关于时间(分的函数图象如图所示.若去图书馆时的平均车速为180米分,则从图书馆返回时的平均车速为米分.17.如图,正比例函数,,在同一平面直角坐标系中的图象如图所示.则比例系数,,的大小关系是.(按从大到小的顺序用“”连接)18.如图,在平面坐标系中,点是函数图象上的点,过点作轴的垂线交轴于点,点在轴上,则的面积为.三.解答题(共7小题)19.已知正比例函数的图象经过第一、三象限,且过点,求这个正比例函数的解析式.20.已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.21.已知反比例函数,当时,.(1)求关于的函数表达式.(2)当时,求自变量的值.22.已知正比例函数的图象过点.(1)求这个正比例函数的表达式;(2)已知点,在这个正比例函数的图象上,求的值.23.老李想利用一段5米长的墙(图中,建一个面积为32平方米的矩形养猪圈,另外三面(图中,,需要自己建筑.老李准备了可以修建20米墙的材料(可以不用完).(1)设,,求关于的函数关系式.(2)对于(1)中的函数的值能否取到8.5?请说明理由.24.已知正反比例函数的图象交于、两点,过第二象限的点作轴,点的横坐标为,且,点在第四象限.(1)求这两个函数的解析式;(2)求这两个函数的图象的交点坐标;(3)若点在坐标轴上,联结、,写出当时的点坐标.25.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.参考答案一.选择题(共6小题)1.已知与成反比例,与成正比例,则与的关系是A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是解:与成反比例,与成正比例,设,,故,则,故(常数),则与的关系是:成反比例.故选:.2.下列函数中,随着的增大而减小的是A.B.C.D.解:、中,随着的增大而增大,不符合题意;、中,在每个象限内随着的增大而减小,不符合题意;、中,随着的增大而减小,符合题意;、中,在每个象限内随着的增大而增大,不符合题意;故选:.3.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称解:函数,该函数的图象在第二、四象限,故选项正确;在每个象限内,随的增大而增大,故选项错误;函数的图象与坐标轴没有交点,故选项正确;函数的图象关于原点对称,故选项正确;故选:.4.已知反比例函数的图象经过点,则这个反比例函数的表达式为A.B.C.D.解:设该反比例函数的解析式为:.把代入,得,解得.则该函数解析式为:.故选:.5.已知点,和点,在反比例函数的图象上,若,则A.B.C.D.解:反比例函数的图象分别在第一、三象限,在每一象限,随的增大而减小,而,点,和点,在第一象限,.故选:.6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离(千米)与离家的时间(分钟)之间的函数关系的是A.B.C.D.解:小李距家3千米,离家的距离随着时间的增大而增大,途中在文具店买了一些学习用品,中间有一段离家的距离不再增加,综合以上符合,故选:.二.填空题(共12小题)7.在函数中,自变量的取值范围是.解:由题意得,,解得.故答案为:.8.若函数是正比例函数,则常数的值是.解:依题意得:,解得:.9.请写出一个过第二、四象限的正比例函数的解析式(答案不唯一).解:正比例函数的图象经过第二、四象限.故答案为:(答案不唯一).10.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量(填“常量”或“变量”.解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为:常量.11.若正比例函数为常数,且的函数值随着的增大而减小,则的值可以是.(写出一个即可)解:正比例函数为常数,且的函数值随着的增大而减小,,则.故答案为:.12.函数中自变量的取值范围是且.解:由题意得,且,解得且.故答案为:且.13.某款宝马汽车的油箱一次加满汽油50升,可行驶千米,设该汽车行驶百公里耗油升,假设汽车能行驶至油用完,则关于的函数解析式为.解:汽车行驶每100千米耗油升,升汽油可走千米,.故答案为:14.反比例函数的图象如图所示,则的取值范围为.解:反比例函数的图象在第二象限,,.故答案为:.15.已知正比例函数与反比例函数图象的一个交点坐标是,则另一个交点坐标是.解:正比例函数与反比例函数图象都是关于原点对称的,另一个交点与一个交点也关于原点对称,另一个交点坐标为,故答案为:16.一天,小明从家里骑自行车到图书馆还书,小明离家的路程(米关于时间(分的函数图象如图所示.若去图书馆时的平均车速为180米分,则从图书馆返回时的平均车速为200米分.解:根据去图书馆时的平均车速为180米分,可得:从家里到图书馆的距离为米;所以从图书馆返回时的平均车速为米分,故答案为:20017.如图,正比例函数,,在同一平面直角坐标系中的图象如图所示.则比例系数,,的大小关系是.(按从大到小的顺序用“”连接)解:正比例函数,的图象在一、三象限,,,的图象比的图象上升得快,,的图象在二、四象限,,,故答案为:.18.如图,在平面坐标系中,点是函数图象上的点,过点作轴的垂线交轴于点,点在轴上,则的面积为.解:设点的坐标为、,点是函数图象上,,则的面积,故答案为:.三.解答题(共7小题)19.已知正比例函数的图象经过第一、三象限,且过点,求这个正比例函数的解析式.解:正比例函数的图象经过第一、三象限,把代入得,整理得,解得,,,这个正比例函数的解析式为.20.已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.解:根据题意,设,、.,,当时,,,.,..21.已知反比例函数,当时,.(1)求关于的函数表达式.(2)当时,求自变量的值.解:(1)根据题意,得,解得,;该反比例函数的解析式是;(2)由(1)知,该反比例函数的解析式是,当时,,即.22.已知正比例函数的图象过点.(1)求这个正比例函数的表达式;(2)已知点,在这个正比例函数的图象上,求的值.解:(1)把代入正比例函数,得,,所以正比例函数的解析式为;(2)把点,代入得,,解得.23.老李想利用一段5米长的墙(图中,建一个面积为32平方米的矩形养猪圈,另外三面(图中,,需要自己建筑.老李准备了可以修建20米墙的材料(可以不用完).(1)设,,求关于的函数关系式.(2)对于(1)中的函数的值能否取到8.5?请说明理由.解:(1)依题意,得:,.(2)当时,,解得:,.又,对于(1)中的函数的值不能取到8.5.24.已知正反比例函数的图象交于、两点,过第二象限的点作轴,点的横坐标为,且,点在第四象限.(1)求这两个函数的解析式;(2)求这两个函数的图象的交点坐标;(3)若点在坐标轴上,联结、,写出当时的点坐标.解:(1)如图,点的横坐标为,且轴,,,,则点,将点代入得:,则正比例函数解析式为;将点代入得:,则反比例函数解析式为;(2)由得:或,所以点坐标为.(3)若点在轴上,设,由可得,解得:或,此时点坐标为或;若点在轴上,设,由可得,解得:或,此时点坐标为或;综上,点的坐标为或或或.25.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.解:(1)直线与双曲线交于、两点,,解得,;(2)双曲线经过点,,双曲线的上点的纵坐标为8,点的坐标为,如图,作轴于,轴于,.。

人教版数学八年级下册《正比例函数》提升练习题

人教版数学八年级下册《正比例函数》提升练习题

正比例函数一、选择题(每小题4分,共12分)1.正比例函数y=2x的图象所过的象限是( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.函数y=2x,y=-3x,y=-x的共同特点是( )A.图象位于同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图象都过原点3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )A.k<1B.k>1C.k≤1D.k≥1二、填空题(每小题4分,共12分)4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y随x的增大而(增大或减小).6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.三、解答题(共26分)7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x 的增大而增大?【拓展延伸】9.(10分)正比例函数y=2x的图象如图所示,点A的坐标为(2,0),y=2x的函数图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.答案解析1.【解析】选A.∵正比例函数y=2x中,k=2>0,∴此函数的图象经过第一、三象限.2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.4.【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).答案:y=x(答案不唯一)5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3,解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小.答案:减小6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.答案:一、三7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1= k·(-3),所以k=.8.【解析】因为此函数是正比例函数,所以|m|-2=1,所以m=±3,因为正比例函数y随x的增大而增大,所以m-1>0,所以m=-3不合题意,应舍去所以m=3时,正比例函数y随x的增大而增大.9.【解析】因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n,y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n,y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4),综上所述,存在点P的坐标为(2,4)或(-2,-4).。

2020-2021学年人教版八年级下册数学19.2.1正比例函数 同步练习(含解析)

2020-2021学年人教版八年级下册数学19.2.1正比例函数 同步练习(含解析)

19.2.1正比例函数同步练习一.选择题1.下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系2.已知函数y=3x|m﹣2|是关于x的正比例函数,则常数m的值为()A.3或1B.3C.±1D.13.已知y是x的正比例函数,当x=3时,y=﹣6,则y与x的函数关系式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x4.已知正比例函数y=kx,当x每增加2时,y减少3,则k的值为()A.﹣B.C.﹣D.5.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例6.关于直线y=﹣2x,下列结论正确的是()A.图象必过点(1,2)B.图象经过第一、三象限C.与y=﹣2x+1平行D.y随x的增大而增大7.已知函数y=(m+1)x,y随x的增大而增大,则m的取值范围在数轴上表示正确的是()A.B.C.D.8.已知直线y=k1x,y=k2x,y=k3x的图象如图,则k1、k2、k3的大小关系为()A.k1>k2>k3B.k1>k3>k2C.k3>k2>k1D.k2>k1>k39.关于正比例函数y=﹣2x,下列说法正确的是()A.y随x的增大而增大B.图象是经过第一、第二象限的一条直线C.图象向上平移1个单位长度后得到直线y=﹣2x+1D.点(1,2)在其图象上10.已知正比例函数y=(2t﹣1)x的图象上一点(x1,y1),且x1y1<0,那么t的取值范围是()A.t<0.5B.t>0.5C.t<0.5或t>0.5D.不确定二.填空题11.直线y=x经过第象限.12.某正比例函数的图象经过点(﹣1,2),则此函数关系式为.13.如果正比例函数y=(3k﹣2)x的图象在第二、四象限内,那么k的取值范围是.14.在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为.15.如图,直线l的解析式为y=x,点A的坐标为(﹣2,0),AB⊥l于点B,则△ABO的面积为.三.解答题16.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.17.已知函数y=(k+3)x.(1)k为何值时,函数为正比例函数;(2)k为何值时,函数的图象经过一,三象限;(3)k为何值时,y随x的增大而减小?(4)k为何值时,函数图象经过点(1,1)?18.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A 的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.2.解:∵函数y=3x|m﹣2|是关于x的正比例函数,∴|m﹣2|=1,解得:m=3或1,故选:A.3.解:设y与x之间的函数关系式是y=kx,把x=3,y=﹣6代入得:﹣6=3k,解得:k=﹣2,∴y与x的函数关系式为y=﹣2x,故选:B.4.解:根据题意得:y﹣3=k(x+2),y﹣3=kx+2k,而y=kx,所以2k=﹣3,解得k=﹣.故选:C.5.解:A、∵y=3x﹣1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B、∵y=﹣,∴y与x成正比例,故本选项正确;C、∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D、∵y=x+3,不符合正比例函数的定义,故本选项错误.故选:D.6.解:A、∵(1,2)不能使y=﹣2x左右相等,因此图象不经过(1,2)点,故此选项错误;B、∵k=﹣2<0,∴图象经过第二、四象限,故此选项错误;C、∵两函数k值相等,∴两函数图象平行,故此选项正确;D、∵k=﹣2<0,∴y随x的增大而减小,故此选项错误;故选:C.7.解:∵一次函数y=(m+1)x,y随x的增大而增大,∴m+1>0,解得,m>﹣1,在数轴上表示为:.故选:C.8.解:由题意得:k1为正数,k2>k3,∴k1,k2,k3的大小关系是k1>k2>k3.故选:A.9.解:A、k=﹣2,y随x的增大而减小,不符合题意;B、图象是经过第二、第四象限的一条直线,不符合题意;C、图象向上平移1个单位长度后得到直线y=﹣2x+1,符合题意;D、当x=1时,y=﹣2,所以点(1,2)不在其图象上,不符合题意;故选:C.10.解:因为x1y1<0,所以该点的横、纵坐标异号,即图象经过二、四象限,则2t﹣1<0,t<.故选:A.二.填空题11.解:由正比例函数y=x中的k=>0知函数y=x的图象经过第一、三象限.故答案是:一、三.12.解:设此函数的解析式为y=kx(k≠0),∵点(﹣1,2)在此函数图象上,∴﹣k=2,解得k=﹣2,∴此函数的关系式为y=﹣2x.故答案为:y=﹣2x.13.解:正比例函数y=(3k﹣2)x的图象经过第二、四象限,∴3k﹣2<0,解得,k<.故答案是:k<.14.解:∵函数y=x的y随x的增大而增大,∴当x=50时,y=×50=120.当x=75时,y=×75=180.则120≤y≤180.故答案是:120≤y≤180.15.解:∵直线l的解析式为y=x,∴∠AOB=45°,设B(a,a),∵AB⊥l于点B,∴△AOB是等腰直角三角形,∴AB=OB=OA,∵点A的坐标为(﹣2,0),∴OA=2,∴AB=OB=,∴△ABO的面积==1,故答案为:1.三.解答题16.解:(1)∵y与x成正比例,∴设y=kx,∵当x=3时,y=4,∴4=3k,解得k=,∴y与x之间的函数关系式为y=x;(2)把x=﹣1代入y=x得y=﹣;17.解:(1)根据题意得k+3≠0,解得k≠﹣3;(2)根据题意得k+3>0,解得k>﹣3;(3)根据题意得k+3<0,解得k<﹣3;(4)把(1,1)代入y=(k+3)x得k+3=1,解得k=﹣2,即k为﹣2时,函数图象经过点(1,1).18.解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),则S△AOP=|a|×|﹣2|=5,解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).。

八年级数学(下)《正比例函数》检测题(含答案)

八年级数学(下)《正比例函数》检测题(含答案)

八年级数学(下)《正比例函数》检测题(含答案)一、选择题(每小题4分,共12分)1.正比例函数y=2x的图象所过的象限是( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.函数y=2x,y=-3x,y=-x的共同特点是( )A.图象位于同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图象都过原点3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )A.k<1B.k>1C.k≤1D.k≥1二、填空题(每小题4分,共12分)4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y随x的增大而(增大或减小).6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.三、解答题(共26分)7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x的增大而增大?【拓展延伸】9.(10分)正比例函数y=2x的图象如图所示,点A的坐标为(2,0),y=2x的函数图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.答案解析1.【解析】选A.∵正比例函数y=2x中,k=2>0,∴此函数的图象经过第一、三象限.2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.4.【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).答案:y=x(答案不唯一)5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3, 解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小.答案:减小6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.答案:一、三7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1=k·(-3),所以k=.8.【解析】因为此函数是正比例函数,所以|m|-2=1,所以m=±3,因为正比例函数y随x的增大而增大,所以m-1>0,所以m=-3不合题意,应舍去.所以m=3时,正比例函数y随x的增大而增大.9.【解析】因为点A的坐标为(2,0),所以OA=2, 设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n,y=m=4代入y=2x,得4=2n, 所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n,y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4),综上所述,存在点P的坐标为(2,4)或(-2,-4).。

八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)

八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)

八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)一、选择题1.已知函数y=(k-1)2k x为正比例函数,则()A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x的大致图像是()x图像上的两点,下列判断中,正确的4.P1(x1,y1),P2(x2,y2)是正比例函数y=-12是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25.(易错题)已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1B.a>1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2)B.(-1,-2)C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是()A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为()A.y=-12-x B.y=12xC.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y=32x经过第________象限,经过点(1,________),y随x 增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y=13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。

【初中数学】人教版八年级下册第1课时 正比例函数的概念(练习题)

【初中数学】人教版八年级下册第1课时 正比例函数的概念(练习题)

人教版八年级下册第1课时正比例函数的概念(379)1.若函数y=(m+1)x是关于x的正比例函数,则m.2.若函数y=(m−1)x|m|是关于x的正比例函数,则m=.3.若函数y=(4m−3)x2−x(m为常数)是正比例函数,则()A.m>34B.m=34C.m=13D.m<134.已知y与x成正比例,且当x=1时,y=2.(1)试确定y与x之间的函数解析式;(2)当x=3时,求y的值.5.已知y−1与x成正比例,且当x=−1时,y=3.求:(1)y与x之间的函数解析式;(2)当y=−7时,求x的值.6.某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,且当x=4时,y=100.(1)求正比例函数解析式及自变量的取值范围;(2)求当x=10时,函数y的值;(3)求当y=500时,自变量x的值.7.下列各项中,成正比例关系的有()A.人的身高与体重B.正三角形的面积与它的边长C.买同一种练习本所需的钱数和所买的本数D.从甲地到乙地,所用的时间和行驶的速度8.下列函数中,是正比例函数的是()A.y=−6xB.y=−6x+1C.y=x2D.y=−6x9.对于关系式y=−12x,下列说法不正确的是()A.y是x的函数B.y是x的正比例函数C.正比例函数的比例系数是12D.正比例函数的比例系数是−1210.若函数y=x+m−1是关于x的正比例函数,则m=.参考答案1.【答案】:≠−12.【答案】:−13.【答案】:B4(1)【答案】解:设y=kx,把x=1,y=2代入,得2=k×1,解得k=2∴y与x之间的函数解析式为y=2x(2)【答案】把x=3代入y=2x,得y=2×3=6.5(1)【答案】解:设y−1=kx,把x=−1,y=3代入,得3−1=k×(−1)解得k=−2所求y与x之间的函数解析式为y=−2x+1(2)【答案】把y=−7代入y=−2x+1,得−2x+1=−7解得:x=46(1)【答案】解:设y=kx,把x=4,y=100代入y=kx,得4k=100,解得k=25,所以正比例函数的解析式为y=25x(x为正整数).(2)【答案】把x=10代入y=25x,得y=25×10=250.(3)【答案】把y=500代入y=25x,得25x=500,解得x=20.7.【答案】:C8.【答案】:A9.【答案】:C10.【答案】:1。

正比例函数的概念(分层作业)-八年级数学下册(人教版)解析版)

 正比例函数的概念(分层作业)-八年级数学下册(人教版)解析版)

人教版初中数学八年级下册19.2.1正比例函数的概念分层作业夯实基础篇一、单选题:1.下列函数中,属于正比例函数的有()①1y x ;②y x ;③1y x ④13r x ;⑤2s r ;⑥3x yA .2个B .3个C .4个D .5个2.在(1)k y k x 中,若y 是x 的正比例函数,则k 值为()A .1B .1 C .1 D .无法确定3.小王每天记忆10个英语单词,x天后他记忆的单词总量为y个,则y与x之间的函数关系式是()A.y=10+x B.y=10x C.y=100x D.y=10x+10【答案】B【分析】根据总数=每份数×份数列式即可得答案.【详解】∵每天记忆10个英语单词,∴x天后他记忆的单词总量y=10x,故选:B.【点睛】本题考查根据实际问题列正比例函数关系式,找到所求量的等量关系是解决问题的关键.4.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.立方体的体积y(立方厘米)和它棱长x(厘米)的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米【答案】A【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;5.若 44y m x m 是正比例函数,则点 2,2m m 所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据求正比例函数的定义求出m 的值,即可判断点 2,2m m 所在的象限.【详解】解∶∵ 44y m x m 是正比例函数,∴40m 且40m ,∴4m ,∴ 2,2m m 即为 6,2 ,∴ 6,2 在第四象限.故选:D .【点睛】本题考查了正比例函数的定义,各象限内点的特征:第一象限中的点的横坐标 x 大于0,纵坐标 y 大于0;第二象限中的点的横坐标 x 小于0,纵坐标 y 大于0;第三象限中的点的横坐标 x 小于0,纵坐标 y )小于0;第四象限中的点的横坐标 x 大于0,纵坐标 y 小于0.根据正比例函数的定义求出m 的值是解题的关键.二、填空题:6.形如_________的函数叫做正比例函数.其中_______叫做比例系数.【答案】y kx (k 是常数,0k )k【分析】根据正比例函数的定义直接填空即可.【详解】形如y kx (k 是常数,0k )的函数叫做正比例函数.其中k 叫做比例系数.故答案为:y kx (k 是常数,0k );k【点睛】本题考查了正比例函数的定义,理解正比例函数的定义是解题的关键.7.下列函数:①3y x ;②31y x ;③3y x ;④2y x ;⑤3x y .其中,y 是x 的正比例函数的有______个.8.经过点 2,1A 的正比例函数解析式是______.9.当m _______时,函数 2221m y m x是正比例函数.10.已知y 与x 成正比例,如果2x 时,1y ,那么3x 时,y _____.11.在函数 224y m x m 中,当m ______时,y 是x 的正比例函数.【答案】-2【分析】根据正比例函数的定义得20m ,且240m ,进而即可求解.【详解】解:由题意得:20m ,且240m ,解得:2m .故答案为:-2.【点睛】本题主要考查正比例函数的定义,掌握正比例函数形式: 0y kx k 是关键.三、解答题:12.陕西某旅游景点的门票收费标准是:每人30元.某公司计划组织员工去该景点旅游,写出总门票费y (元)与人数x (人)之间关系式,并判断y 是x 的正比例函数吗?【答案】30y x ;y 是x 的正比例函数.【分析】由总门票费等于单价乘以人数可得函数关系式,再结合正比例函数的定义可得答案.【详解】解:总门票费y (元)与人数x (人)之间关系式为:30y x ;∴y 是x 的正比例函数.【点睛】本题考查的是列函数关系式,正比例函数的定义,理解题意,列出正确的函数关系式是解本题的关键.13.列式表示下列问题中的y 与x 的函数关系,并指出哪些是正比例函数.(1)正方形的边长为cm x ,周长为cm y ;(2)某人一年内的月平均收入为x 元,他这年(12个月)的总收入为y 元;(3)一个长方体的长为2cm ,宽为1.5cm ,高为cm x ,体积为3cm y .【答案】(1)4y x ,是正比例函数;(2)12y x ,是正比例函数;(3)3y x ,是正比例函数.【分析】(1)根据正方形的周长等于边长的4倍,即可求解;(2)根据总收入等于月平均收入乘以时间,即可求解;(3)根据长方体的体积等于长乘以宽乘以高,即可求解.【详解】解:(1)y 与x 的函数关系式为4y x ,是正比例函数;(2)y 与x 的函数关系式为12y x ,是正比例函数;(3)y 与x 的函数关系式为3y x ,是正比例函数.【点睛】本题主要考查了列函数关系式,正比例函数的定义,根据题意列出函数关系式是解题的关键.14.已知函数2(2)4y m x m 是关于x 的正比例函数,求当2x 时y 的值.【答案】8【分析】利用正比例函数的定义得出m 的值,继而得到函数解析式,代入x 的值,即可解答.【详解】解:∵函数2(2)4y m x m 是关于x 的正比例函数∴220,40m m ,解得:2m 4y x当2x 时,8y .【点睛】本题考查正比例函数的定义,解题的关键是熟练掌握正比例函数的定义:正比例函数y kx 条件是k 为常数且0k ,自变量的次数为1.15.如果3y +与2x -成正比例,且1x 时,1y .求出y 与x 之间的函数关系式.【答案】45y x 【分析】设 32y k x ,把1x ,1y 代入,求出4k ,再将4k 代入 32y k x ,即可求解.【详解】设 32y k x ,把1x ,1y 代入得 1213k ,解得4k ,所以 342y x ,所以y 与x 之间的函数关系式为45y x 【点睛】本题考查一次函数的关系式,解题的关键是求出正比例函数中k 的值.16.已知关于x 的函数||1(2)5m y m x n ,当m ,n 为何值时,它是正比例函数?【答案】当2m ,5n 时,函数||1(2)5m y m x n 是正比例函数.【分析】根据正比例函数的定义,形如y =kx ,k ≠0是正比例函数即可求解.【详解】解:||1(2)5m y m x n ∵是正比例函数,20m 且||11m 且50n ,解得2m ,5n .即当2m ,5n 时,函数||1(2)5m y m x n 是正比例函数.【点睛】本题考查正比例函数定义,解绝对值方程,解一元一次方程,掌握正比例函数定义是解题关键.能力提升篇一、单选题:1.设点A (a ,b )是正比例函数32y x图象上的任意一点,则下列等式一定成立的是()A .2a +3b =0B .2a −3b =0C .3a −2b =0D .3a +2b =0【答案】D3a=2b 2.已知函数 2322my m x n ,(m ,n 是常数)是正比例函数,+m n 的值为()A .4 或0B .2C .0D .4 【答案】D 【分析】按正比例函数的定义解答,正比例函数的定义是形如=y kx (k 是常数,)的函数,叫做正比例函数.【详解】∵函数 2322my m x n ,(m ,n 是常数)是正比例函数,∴23=120+2=0m m n ①②③,解得,=22=2m m n,∴=2=2m n,∴4m n .故选:D .【点睛】本题主要考查了正比例函数等,解决问题的关键是熟练掌握正比例函数的定义,解方程或不等式.3.对于正比例函数y kx ,当自变量x 的值增加2时,对应的函数值y 减少6,则k 的值为()A .3B .2C .3D .0.5 【答案】C【分析】当自变量为 2x 时,函数值为 6y ,代入解析式化简计算即可.【详解】∵正比例函数y kx ,当自变量x 的值增加2时,对应的函数值y 减少6,∴ 62y k x ,∴62y kx k ,∴26k ,解得:3k .故选:C .【点睛】本题考查了正比例函数的性质及其解析式的确定,熟练掌握性质是解题的关键.二、填空题:4.下列问题,①某登山队大本营所在地气温为4℃,海拔每升高1km 气温下降6℃,登山队员由大本营向上登高km x ,他们所在位置的气温是y ℃;②铜的密度为38.9g/cm ,铜块的质量g y 随它的体积3cm x 的变化而变化;③圆的面积y 随半径x 的变化而变化.其中y 与x 的函数关系是正比例函数的是______(只需填写序号).【答案】②【分析】分别写出对应函数解析式,再与正比函数定义比较,判断是什么函数即可.【详解】①46y x ,是一次函数;②8.9y x ,是正比例函数;③2y x ,是二次函数故填:②.【点睛】本题考查正比例函数的定义,正确理解定义是解题的关键.5.已知2y 和21x 成正比例,且2x 时,7y ,则y 与x 之间的函数表达式为_________.【答案】65y x 【分析】根据题意设出函数解析式,把当x =-2时,y =-7代入解析式,便可求出未知数的值,从而求出其解析式.【详解】解:∵2y 和21x 成正比例,∴设2(21)y k x当x =-2时,y =-7代入解析式得,72[2(2)1]k 解得,3k ∴23(21)y x 整理得,65y x 故答案为:65y x 【点睛】本题考查待定系数法求一次函数解析式,注意掌握待定系数法的运用.三、解答题:6.已知:y =y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成正比例,当x =1时,y =0;当x =3时,y =4.(1)求y 与x 之间的关系式;(2)当x =﹣1时,求y 的值.【答案】(1)22y x (2)4【分析】(1)根据题意分别设出y 1,y 2,代入y =y 1+y 2,表示出y 与x 的解析式,将已知两对值代入求出k 与b 的值,确定出解析式;(2)将x =-1代入计算即可求出值.【详解】(1)设y 1=ax ,y 2=k (x ﹣2),∴y =ax +k (x ﹣2)由当x =1时,y =0.当x =3时,y =4可得,0124332a k a k,解得:11a k,∴y 与x 之间的关系式为:y =2x ﹣2;(2)当x =﹣1时,2124y =﹣=﹣.【点睛】本题考查了待定系数法求函数解析式,解题关键是熟练掌握待定系数法.7.已知:函数23(2)by b x 且y 是x 的是正比例函数,5a +4的立方根是4,c的整数部分.(1)求a ,b ,c 的值;(2)求2a ﹣b +c 的平方根.所以2a﹣b+c的平方根是 5.【点睛】本题考查的是正比例函数的定义,立方根的含义,平方根的含义,无理数的整数部分,熟悉以上基础知识是解题的关键.。

人教版数学八年级下册19.2.1《正比例函数》精选练习 (含答案)

人教版数学八年级下册19.2.1《正比例函数》精选练习 (含答案)

19.2.1《正比例函数》精选练习一、选择题1.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高2.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.53.已知是正比例函数,则m的值是( )A.8B.4C.±3D.34.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-125.下列式子中,表示y是x的正比例函数的是()A.y=x2B.C.D.y2=3x6.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是()A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限7.正比例函数y=kx(k>0)的图象大致是()A. B. C. D.8.正比例函数y=kx的图象如图所示,则k的值为( )A. B. C. D.9.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A. B. C. D.10.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线D.它的图象经过第一、三象限11.在正比例函数y=–3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在y=(k+1)x+k 2-1中,若y 是x 的正比例函数,则k 值为( )A.1B.-1C.±1D.无法确定二、填空题13.已知函数y=(m ﹣1)x+m 2﹣1是正比例函数,则m=_____.14.若是正比例函数,则(a-b)2020的值是________.15.已知y 与x 成正比例,并且x=-3时,y=6,则y 与x 的函数关系式为________.16.若k>0,x>0,则关于函数y=kx 的结论:①y 随x 的增大而增大;②y 随x 的增大而减小;③y 恒为正值;④y 恒为负值.正确的是________.(直接写出正确结论的序号)17.已知正比例函数y=kx(k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤31,且y 随x 的减小而减小,则k 的值为________.18.已知正比例函数的图像经过点M(-2,1)、A(x 1,y 1)、B(x 2,y 2),如果x 1<x 2,那么y 1____y 2.(填“>”、“=”、“<”)三、解答题19.已知y 与x 成正比例函数,当x=1时,y=2.求:(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)如果当y 的取值范围是0≤y ≤5,求x 的取值范围.20.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a ,8),求点A 的坐标.21.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.23.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.24.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.参考答案1.答案为:C2.答案为:C3.答案为:D4.答案为:B5.答案为:C6.答案为:A7.答案为:D8.答案为:B9.答案为:C10.答案为:B11.答案为:B12.答案为:A13.答案为﹣1.14.答案为:1.15.答案为:y=-2x.16.答案为:①③.17.答案为:18.答案为:>.19.解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=-1时,y=2×(-1)=-2;(3)∵0≤y≤5,∴0≤x≤5,解得:0≤x≤2.5;20.解:(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).21.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则-2k=4或-2k=-4,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.22.解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.23.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.24.解:(1)正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA+1,OD=3∴C(3,2),将C(3,2)代入y=kx中,得3k=2,解得.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,.将代入y=kx中,得,解得,∴k值不会发生变化.。

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题学校:___________姓名:___________班级:_______________一、填空题1.像y =0.5x +10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.2.若函数y =(m ﹣2)x +5﹣m 是关于x 的正比例函数,则m =_____. 3.对于正比例函数y=1m mx -,若图像经过第一,三象限,则m=____. 4.已知y 与2x -成正比例,且当1x =时,1y =,则y 与x 之间的函数关系式为______________.5.若两个变量x ,y 间的对应关系可以表示成____的形式,则称y 是x 的一次函数.特别地,当____时,称y 是x 的正比例函数,即____.6.在下列函数中,x 是自变量,y 是因变量,则一次函数有___,正比例函数有___.(将代号填上即可)①1y =+;①22y x x =+;①5y x =;①14y x =-;①1y x= 二、单选题7.下列问题中,两个变量之间成正比例关系的是( ) A .圆的面积S (cm 2)与它的半径r (cm )之间的关系B .某水池有水15m 3,现打开进水管进水,进水速度为5m 3/h ,x h 后这个水池有水y m 3C .三角形面积一定时,它的底边a (cm )和底边上的高h (cm )之间的关系D .汽车以60km/h 的速度匀速行驶,行驶路程y 与行驶时间x 之间的关系 8.下列说法正确的是( )A .面积一定的平行四边形的一边和这边上的高成正比例B .面积一定的平行四边形的一边和这边上的高成反比例C .周长一定的等腰三角形的腰长与它底边的长成正比例D .周长一定的等腰三角形的腰长与它底边的长成反比例 9.正比例函数3y x =-的图象经过( ). A .第一、第二象限 B .第一、第三象限 C .第二、第四象限 D .第三、第四象限10.正比例函数13y x =的图像大致是( )A .B .C .D .11.在同一平面直角坐标系中,函数()20y ax bx a =+≠与y ax b =+的图象可能是( )A .B .C .D .12.下列函数中,正比例函数有( ).(1)2y x =-(2)y =3)1yx =-(4)v =5)213y x =-(6)2y r π=(7)22y x =A .1个B .2个C .3个D .4个三、解答题 13.函数问题:(1)作出y 与x 的函数2y x =的图象①自变量x 的取值范围是____________; ①列表并画出函数图象:①当自变量x 的值从1增加到2时,则函数y 的值增加了____________.(2)在一个变化的过程中,两个变量x 与y 之间可能是函数关系,也可能不是函数关系: 下列各式中, y 是x 的函数的是____________. ①1x y +=; ①1x y +=; ①1xy =; ①221x y +=; 14.用适当的符号表示下列关系: (1)x 的3倍与8的和比x 的5倍大; (2)2x 是非负数;(3)地球上海洋面积大于陆地面积; (4)老师的年龄比你年龄的2倍还大; (5)铅球的质量比篮球的质量大.15.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L .环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L )与时间x (天)的变化规律如图所示,其中线段AC 表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L .从第3天起,所排污水中硫化物的浓度y 与时间x 满足下面表格中的关系:(1)在整改过程中,当0≤x <3时,硫化物的浓度y 与时间x 的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?参考答案:1.解析式 【解析】略 2.5【分析】直接利用正比例函数的定义进而得出答案.【详解】解:①函数y =(m ﹣2)x +5﹣m 是关于x 的正比例函数, ①50m -= ,20m -≠ , 解得:m =5. 故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键. 3.2【分析】根据正比例函数自变量x 的指数为1,且系数不为0即可求出m 的值,再根据图像经过第一、三象限进而舍去不符合要求的m 值即可.【详解】解:由题意可知:110m m ⎧-=⎨≠⎩,解得:2m =±,又图像经过第一、三象限, ①2m =, 故答案为:2.【点睛】本题考查了正比例函数的定义,正比例函数(0)y kx k =≠要求自变量的指数为1,且自变量前面的系数不为0. 4.2y x =-+##2y x =-【分析】根据题意,可设()()20y k x k =-≠ ,将1x =时,1y =,代入即可求解. 【详解】解:根据题意,可设()()20y k x k =-≠ , ①当1x =时,1y =,①()121k -= ,解得:1k =- ,①y 与x 之间的函数关系式为()22y x x =--=-+ . 故答案为:2y x =-+【点睛】本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意()()20y k x k =-≠ 是解题的关键.5. y =k x +b (k ,b 是常数,k ≠0) b =0 y =kx (k ≠0) 【解析】略 6. ①①① ①【分析】根据一次函数及正比例函数的定义,即可一一判定.【详解】解:①1y =+是一次函数,不是正比例函数; ①22y x x =+不是一次函数;①5y x =是正比例函数,因为正比例函数一定是一次函数,所以还是一次函数; ①14y x =-是一次函数;①1y x= 故答案为:①①①,①.【点睛】本题考查了一次函数及正比例函数的定义,熟知正比例函数是一次函数的特例是解决本题的关键. 7.D【分析】分别列出每个选项的解析式,根据正比例函数的定义判断即可. 【详解】解:A 选项,S =πr 2,故该选项不符合题意; B 选项,y =15+5x ,故该选项不符合题意; C 选项,①12ah =S , ①a =2Sh,故该选项不符合题意; D 选项,y =60x ,故该选项符合题意; 故选:D .【点睛】本题考查了正比例函数的定义,掌握形如y =kx (k ≠0)的函数是正比例函数是解题的关键. 8.B【分析】利用正比、反比的性质进行判断即可.【详解】解:面积一定的平行四边形的一边和这边上的高成反比例,故A 错误,B 正确; 周长一定的等腰三角形的腰长与它底边的长成一次函数,故C 、D 错误. 故选:B .【点睛】本题考查了正比、反比的性质,平行四边形的面积公式,等腰三角形的腰、底、周长的关系,解决本题的关键是明确正比与反比的意义. 9.C【分析】根据正比例函数y =k x (k ≠0)k 的符号即可确定正比例函数y =-3x 的图象经过的象限.【详解】解:在正比例函数y =-3x 中, ①k =-3<0,①正比例函数y =-3x 的图象经过第二、四象限, 故选:C【点睛】本题主要考查了正比例函数的性质,熟记“当k <0时,正比例函数y =kx (k ≠0)的图象经过第二、四象限”是解决问题的关键. 10.A【分析】根据正比例函数的图像和性质,即可得出正确选项.【详解】因为正比例函数是一条经过原点的直线,且k >0,经过一三象限,故排除C 、D 选项;当x =1时,13y =,故选A .【点睛】本题考查了正比例函数的图像和性质,熟练掌握性质和图像是本题的关键. 11.A【分析】根据二次函数和一次函数图象的性质依次进行判断即可.【详解】解:函数()20y ax bx a =+≠经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误; 当02ba->时,b >0, y ax b =+经过一、二、四象限,则C 错误; 当a >0,02ba->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意. 故选:A .【点睛】本题考查二次函数与一次函数的综合,熟练掌握函数图象的性质是解决问题的关键. 12.C【分析】利用正比例函数定义分析即可.【详解】解:(1)2y x =-是正比例函数,(2)y =x 次数不是1,不是正比例函数,(3)1yx =-是反比例函数,不是正比例函数,(4)=v 是正比例函数,(5)213y x =-是一次函数,不是正比例是函数,(6)2y r π=正比例是函数,(7)22y x =是二次函数,不是正比例函数,所以共3个 故选:C .【点睛】此题主要考查了正比例函数定义,关键是掌握形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数.13.(1)①全体实数;①4,2,0,2,4;图见解析;①2 (2)①①【分析】(1)①根据2y x =求出x 的取值范围即可;①根据解析式填出列表,并在坐标系中描出各点,画出函数图象即可; ①把自变量x 的值从1增加到2时,代入函数解析式中求解即可; (2)根据函数的关系式的定义来求解即可. (1)解:①在函数2y x =中,x 的取值范实为全体实数, 故答案为:全体实数; ①列表如下:函数2y x =变形为2y x =或2y x =-,画图如下:①当1x =时,2y =,当2x =时,4y =,所以当自变量x 的值从1增加到2时,则函数y 的值增加了2; (2)解:在①1x y +=,①1x y +=,①1xy =,①221x y +=中,①①中对于x 的每一个值,y 都有唯一确定的值与它对应,①①中对于x 的每一个值,y 都有两个值与它对应,所以①①中y 是x 的函数,①①中y 不是x 的函数. 故答案为:①①.【点睛】本题主要考查了函数关系式,自变量取值范围,函数图象的画法,理解相关知识是解答关键.14.(1)385x x +>;(2)20x ≥;(3)12S S >(1S 表示地球上的海洋面积,2S 表示陆地面积);(4)2x y >(x 表示老师的年龄,y 表示你的年龄);(5)12m m >(1m 表示铅球的质量,2m 表示篮球的质量)【分析】(1)直接利用已知关系得出不等式;(2)直接利用非负数的定义(大于或等于0的数是非负数)得出不等式; (3)利用未知数表示出海洋与陆地面积进而得出答案; (4)利用未知数表示出老师与自己的年龄进而得出答案; (5)利用未知数表示出铅球与篮球的质量进而得出答案. 【详解】解:(1)由题意可得:3x +8>5x ; (2)由题意可得:x 2≥0;(3)设地球上海洋面积为1S ,陆地面积为2S ,根据题意可得:1S >2S ; (4)设老师的年龄为x ,我年龄为y ,根据题意莪哭的:x >2y ; (5)设铅球的质量为1m ,篮球的质量为2m ,根据题意可得:1m >2m .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键. 15.(1)线段AC 的函数表达式为:y =﹣2.5x +12(0≤x <3); (2)y =13.5x(x ≥3); (3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg /L ,理由见解析.【分析】(1)设线段AC 的函数表达式为:y =k x +b ,把A 、C 两点坐标代入求出k 、b 的值即可;(2)设函数的表达式为:y =kx,把C 点坐标代入,求出k 的值即可;(3)根据(2)所得表达式,求出x =15时,y 的值与硫化物浓度允许的最高值比较即可. (1)解:由前三天的函数图像是线段,设函数表达式为:y =kx +b把(0,12)(3,4.5)代入函数关系式,得124.53bk b =⎧⎨=+⎩ , 解得:k =﹣2.5,b =12①当0≤x <3时,硫化物的浓度y 与时间x 的函数表达式为:y =﹣2.5x +12; (2)解:当x ≥3时,设y =kx,把(3,4.5)代入函数表达式,得4.5=3k,解得k =13.5,①当x ≥3时,硫化物的浓度y 与时间x 的函数表达式为:y =13.5x; (3)解:能,理由如下: 当x =15时,y =13.515=0.9, 因为0.9<1,所以该企业所排污水中硫化物的浓度,能在15天以内不超过最高允许的1.0mg /L . 【点睛】本题考查一次函数和反比例函数,熟练掌握根据坐标确定解析式的一次项系数和常数项是解题关键.。

八年级数学下册正比例函数的计算练习题

八年级数学下册正比例函数的计算练习题

八年级数学下册正比例函数的计算练习题正比例函数是数学中一个重要的概念,它在实际生活中有许多应用。

八年级数学下册正比例函数的计算练习题是一种常见的练习形式,通过解答这些练习题,学生可以加深对正比例函数的理解和掌握。

1. 题目一:已知正比例函数 y = kx,当 x = 3 时,y = 6。

求 k 的值及当 x = 5 时,y 的值。

解答:根据题意,代入已知条件得到 6 = 3k,解方程可得 k = 2。

当x = 5 时,代入函数表达式可得 y = 2 * 5 = 10。

2. 题目二:已知正比例函数 y = 4x,当 x = 2 时,y = 8。

求当 y = 20 时,x 的值。

解答:根据题意,代入已知条件得到 8 = 4 * 2,解方程可得 x = 2。

当 y = 20 时,代入函数表达式可得 20 = 4 * x,解方程可得 x = 5。

3. 题目三:已知正比例函数 y = 0.5x,当 x = 6 时,y = 3。

求当 y = 1.5 时,x 的值。

解答:根据题意,代入已知条件得到 3 = 0.5 * 6,解方程可得 x = 6。

当 y = 1.5 时,代入函数表达式可得 1.5 = 0.5 * x,解方程可得 x = 3。

4. 题目四:已知正比例函数 y = 3x,当 x = 5 时,y = 15。

求当 y =60 时,x 的值。

解答:根据题意,代入已知条件得到 15 = 3 * 5,解方程可得 x = 5。

当 y = 60 时,代入函数表达式可得 60 = 3 * x,解方程可得 x = 20。

通过以上的计算练习题,我们可以发现正比例函数的计算方法很简单,只需要将已知条件带入函数表达式,进行代入计算即可得到未知数的值。

这种形式的计算练习题能够帮助学生巩固对正比例函数的理解,并且培养他们运用正比例函数解决实际问题的能力。

需要注意的是,在解答正比例函数的计算练习题时,我们要注意问题中给出的已知条件,将其代入函数表达式进行计算。

八年级数学(下)第十九章《正比例函数》同步练习题(含答案)

八年级数学(下)第十九章《正比例函数》同步练习题(含答案)

八年级数学(下)第十九章《正比例函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数y=(k-1)2k x为正比例函数,则A.k≠±1B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1,故选C.2.若y=x+2-b是正比例函数,则b的值是A.0 B.-2 C.2 D.-0.5【答案】C【解析】因为y=x+2-b是正比例函数,所以2-b=0,所以b=2,故选C.3.下列问题中,两个变量成正比例的是A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长【答案】D【解析】A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确,故选D.4.关于函数y=2x,下列结论中正确的是A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图象不经过(2,1),故错误;B:k=2>0,∴函数图象经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误,故选C.5.正比例函数y=(k-3)x的图象经过一、三象限,那么k的取值范围是A.k>0 B.k>3 C.k<0 D.k<3【答案】B【解析】由正比例函数y=(k-3)x的图象经过第一、三象限,可得:k-3>0,则k>3,故选B.6.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随x的增大而增大,∴-3m>0,解得m<0,∴P(m,5)在第二象限,故选B.7.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y=kx(k≠0)中得,k=2>0,∴函数图象经过原点,且经过第一、三象限,故选C.8.如图,三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】首先根据图象经过的象限,得a>0,b>0,c<0,再根据直线越陡,|k|越大,则b>a>c.故选C.二、填空题:请将答案填在题中横线上.9.已知正比例函数y =(4m +6)x ,当m __________时,函数图象经过第二、四象限.【答案】<-1.5【解析】∵函数经过第二、四象限,∴4m +6<0,即m <-1.5,故答案为:m <-1.5.10.已知直线y =(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是__________.【答案】m >23【解析】∵直线y =(2-3m )x 经过点A (11x y ,)、B (22x y ,),当12x x <时,有12y y >,∴此函数是减函数,∴2-3m <0,解得m >23,故答案为:m >23. 三、解答题:解答应写出文字说明、证明过程或演算步骤.11.已知y =(k -3)x +2k -9是关于x 的正比例函数,求当x =-4时,y 的值.【解析】当290k -=且30k -≠时,y 是x 的正比例函数,故当k =-3时,y 是x 的正比例函数,∴6y x =-,当x =-4时,y =-6×(-4)=24.12.已知4y +3m 与2x -5n 成正比例,证明:y 是x 的一次函数.【解析】由题意,设4y +3m =k (2x -5n )(k ≠0), ∴1(35)24k y x m kn =⋅-+. ∵k 是不为0的常数.∴2k ,1(35)4m kn -+为常数,且02k ≠, ∴y 是x 的一次函数.13.已知正比例函数y =(2m +4)x ,求:(1)m 为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【解析】(1)∵函数图象经过第一、三象限,∴2m +4>0,∴m >-2.(2)∵y 随x 的增大而减小,∴2m +4<0,∴m <-2.(3)依题意得(2m+4)×1=3,解得12m=-.14.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【解析】(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为-2,点A的坐标为(3,-2),∵正比例函数y=kx经过点A,∴3k=-2解得k=-23,∴正比例函数的解析式是y=-23 x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5,∴点P的坐标为(5,0)或(-5,0).。

八年级数学:正比例函数练习(含解析)

八年级数学:正比例函数练习(含解析)

八年级数学:正比例函数练习(含解析)1.下列函数中,是正比例函数的是( A )①y =-x 6;②y =3x;③y =1+5x ;④y =x 2-5x ;⑤y =2x . A .①⑤B .①②C .③⑤D .②④ 解析:②中y =3x关于自变量x 的式子不是整式;③中y =1+5x 不符合y =kx (k 是常数,k ≠0)的形式;④中y =x 2-5x 关于自变量x 的式子不是一次单项式,所以②③④都不是正比例函数,而①⑤符合正比例函数y =kx (k 是常数,k ≠0)的定义条件,是正比例函数.故选A.2.下列问题中,两个变量成正比例的是( B )A .圆的面积S 与它的半径rB .正方形的周长C 与它的边长aC .三角形面积S 一定时,它的底边a 和底边上的高hD .路程s 不变时,匀速通过全程所需要的时间t 与运动的速度v解析:A.圆的面积S =πr 2,S 与r 不成正比例.故本选项错误;B.正方形的周长C =4a ,C 与a 成正比例,故本选项正确;C.三角形面积S 一定时,它的底边a 和底边上的高h 的关系为S =12ah ,即a =2S h,a 与h 不成正比例,故本选项错误;D.路程为s ,则依题意得s =vt ,则v 与t 的关系为v =s t ,t 与v 不成正比例,故本选项错误.故选B.3.函数y =-32x 的比例系数是-32,当y =75时,x =-50. 解析:函数y =-32x 的比例系数是-32, 当y =75时,75=-32x ,解得x =-50. 4.梯形的上底是3 cm,下底是5 cm,则梯形的面积y (cm 2)与高x (cm)之间的函数关系式是y =4x ,自变量x 的取值范围是x >0.解析:y =12×(3+5)x =4x .5.如图,一个矩形推拉窗,窗高1.5 m,则活动窗扇的通风面积A (m 2)与拉开长度b (m)的关系式是A =1.5b .6.邮购某种图书,每册定价为20元,另加图书总价的5%作邮费,当购书x 册时,需付款y 元,则y 与x 之间的函数关系式为y =21x ,当购书5册时,需付款105元.解析:y =20x ·(1+5%)=21x .当x =5时,y =105.7.已知关于x 的函数y =(3-k )x -2k 2+18为正比例函数,求k 的值.解:因为这个函数是正比例函数,所以⎩⎨⎧ 18-2k 2=0,3-k ≠0.解得k =-3,所以k 的值为-3.8.已知y -3与x 成正比例,且x =2时,y =7.(1)写出y 与x 之间的函数关系式;(2)当x =4时,求y 的值;(3)当y =4时,求x 的值.解:(1)因为y -3与x 成正比例,所以设y 与x 之间的函数关系式为y -3=kx ,把x =2,y =7代入y -3=kx 中,得7-3=2k ,所以k =2,所以y 与x 之间的函数关系式为y -3=2x ,即y =2x +3.(2)当x =4时,y =2×4+3=11.(3)当y =4时,y =2x +3=4,x =12.9.一个小球由静止开始沿如图所示的斜坡向下滚动,其滚动速度每秒增加310m,到达坡底时,小球的速度达到6 m/s.(1)求小球的速度v(m/s)与时间t(s)之间的函数关系式,如果这个函数是正比例函数,指出比例系数;(2)求t的取值范围;(3)求当t=4时小球的速度.解:(1)v=310t,这个函数是正比例函数,比例系数为310.(2)∵6 310=20,∴t的取值范围是0≤t≤20.(3)当t=4时,小球的速度为310×4=1.2(m/s).10.设有三个变量x,y,z,且y是x的正比例函数,x是z的正比例函数,若x=5时,y=7.5,z =4.(1)求y与z之间的函数表达式,并判断是否为正比例函数;(2)当z=8时,求y的值.解:(1)设y=k1x,把x=5,y=7.5代入,得7.5=5k1,解得k1=32,∴y=32x.设x=k2z,把x=5,z=4代入,得5=4k2,解得k2=54,∴x=54z,∴y与z之间的函数表达式为y=32×⎝⎛⎭⎪⎫54z=158z,y是z的正比例函数.(2)当z=8时,y=158×8=15.。

北师大版八年级数学上册第正比例函数的图象和性质测试卷

北师大版八年级数学上册第正比例函数的图象和性质测试卷

北师大版八年级数学测试卷(考试题)北师大版8年级数学试题4.3 一次函数的图象第1课时正比例函数的图象和性质一、填空题(1)一次函数的图象经过点(-1,2),且函数y的值随自变量x的增大而减小,请你写出一个符合上述条件的函数关系式________.(2)你能根据下列一次函数y=kx+b的草图,得到各图中k和b的符号吗?(3)若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.二、选择题(1)一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q(m3)与放水时间t(时)的函数关系用图表示为()(2)两个受力面积分别为S A(米2)、S B(米2)(S A、S B为常数)的物体A、B,它们所受压强p(帕)与压力F(牛)的函数关系图象分别是射线l A、l B,则S A与S B的大小关系是()A.S A>S BB.S A<S BC.S A=S BD.不能确定(3)早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校走去,且v1>v2,则表示小强从家到学校的时间t(分钟)与路程S(千米)之间的关系是()北师大版8年级数学试题三、已知一次函数y=-2x-2(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求△AOB的面积.(5)利象求当x为何值时,y≥0.参考答案一、(1)y=-x+1,y=-2x,y=-3x-1等,必须使k<0(2)①>>②><③<>④<<(3)m>2,m<0二、(1)D (2)B (3)A三、(1)如右图(2)A(-1,0)B(0,-2)(3)|AB|=5(4)S△AOB=1(5)x≤-1附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。

八年级数学《正比例函数》测试题

八年级数学《正比例函数》测试题

八年级数学《正比例函数》测试题 班级 姓名、填空题(每小题2分,共20分)1已知正比例函数 y=2x,当x=3时,函数值y= ___________ 。

1 y 二一一x 2、已知正比例函数 _ ,当y=-3时,自变量x 的值是 3、已知正比例函数 y=kx ,当自变量x 的值为-4时,函数值y=20,则比例系数k= 4、 大连市区与庄河两地之间的距离是 车距庄河的路程 s(km)与行驶的时间 5、 已知一个正比例函数的图像经过点 160km,若汽车以每小时 80 km 的速度匀速从庄河开往大连,则汽 t(h)之间的函数关系式为 ___________ • (-2,4),则这个正比例 。

6、函数y 二上空 1中自变量x 的取值范围是 。

x_17如果函数y =2mx ・3_m 是正比例函数,则 m= ____________ 8、 已知正比例函数 y =(1—2a)x 如果y 的值随x 的值增大而减小,那么 a 的取值范圆是 __________________ 9、 结合正比例函数 y =4x 的图像回答:当x 1时,y 的取值范围是 _______________ 。

210、若x ,y 是变量,且函数 y =(k • 1)x k 是正比例函数,则 k = ____________二、选择题(每小题 3分,共18分) 11、 下列函数中,y 是x 的正比例函数的是( 2A . y=4x+1B . y=2x C12、 已知函数y=-9x,则下列说法错误的是() A .函数图像经过第二,四象限。

B C.原点在函数的图像上。

D y 的值随x 的增大而增大。

y 的值随x 的增大而减小13、下列说法不成立的是() A 、在y =3x -1中y • 1与x 成正比例 B C 在y=2 ( x+1 )中y 与x 1成正比例; D 1 、在y x 中y 与x 成正比例;2 、在y=x ,3中y 与x 成正比例;14、 若函数y=(2m 6)x 2 3 (^m)x 是正比例函数,则 m 的值是( ) A m =-3 B 、m =1 C 、m =3 D 、m >-3 15、 已知(x 「yj 和(X 2, y 2)是直线y - -3x 上的两点,且 为• x ?,则力与y 的大小关系是() A y-i > y 2 B 、y 1 < y 2 C 16.下列关系中的两个量成正比例的是( A.从甲地到乙地,所用的时间和速度; C .买同样的作业本所要的钱数和作业本的数量; 三、解答题(共62分)、y 1 = y 2 D 、以上都不可能 )B .正方形的面积与边长 D .人的体重与身高17、(6分)写出下列各题中x 与y 的关系式,并判断 y 是否是x 的正比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《正比例函数》测试题
班级 姓名
一、填空题(每小题2分,共20分)
1、已知正比例函数y=2x,当x=3时,函数值y= 。

2、已知正比例函数,当y=-3时,自变量x 的值是 。

3、已知正比例函数y=kx ,当自变量x 的值为-4时,函数值y=20,则比例系数k= 。

4、大连市区与庄河两地之间的距离是160km ,若汽车以每小时80 km 的速度匀速从庄河开往大连,则汽车距庄河的路程s(km)与行驶的时间t(h)之间的函数关系式为 .
5、已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式是 。

6、函数1
y x =
-中自变量x 的取值范围是 。

7如果函数23y mx m =+-是正比例函数,则m = 。

8、已知正比例函数(12)y a x =-如果y 的值随x 的值增大而减小,那么a 的取值范圆是 。

9、结合正比例函数4y x =的图像回答:当1x >时,y 的取值范围是 。

10、若x ,y 是变量,且函数2
(1)k y k x =+是正比例函数,则k = 。

二、选择题(每小题3 分,共18分)
11、下列函数中,y 是x 的正比例函数的是( )
A .y=4x+1
B .y=2x 2
C .y=-
x D .y=
12、已知函数y=-9x, 则下列说法错误的是( )
A .函数图像经过第二,四象限。

B .y 的值随x 的增大而增大。

C .原点在函数的图像上。

D .y 的值随x 的增大而减小
13、下列说法不成立的是( )
A 、在31y x =-中1y +与x 成正比例
B 、在1
2y =-x 中y 与x 成正比例;
C 、在y=2(x+1)中y 与1x +成正比例;
D 、在3y x =+中y 与x 成正比例;
14、若函数2(26)(1)y m x m x =++-是正比例函数,则m 的值是( )
A 、m =-3
B 、m =1
C 、m =3
D 、m >-3
15、已知11(,)x y 和22(,)x y 是直线3y x =-上的两点,且12x x >,则1y 与2y 的大小关系是( )
A 、1y >2y
B 、1y <2y
C 、1y =2y
D 、以上都不可能
16.下列关系中的两个量成正比例的是( )
A .从甲地到乙地,所用的时间和速度;
B .正方形的面积与边长
C .买同样的作业本所要的钱数和作业本的数量;
D .人的体重与身高
三、解答题 (共62分)
17、(6分)写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数。

(1)广告设计收费标准是每个字 元,广告费y (元)与字数x (个)之间的函数关系;
(2)地面气温是28℃,如果每升高1km 气温下降5℃,气温x (℃)与高度y (km )的关系;
(3) 圆面积y (cm 2 )与半径x (cm)的关系。

18、(6分)已知y 与x 成正比例,当x=2时,y=8.
(1)写出y 与x 之间的函数关系式。

(2)当x=-2时,求函数值y 。

(3)当y=6,求自变量x 的值。

19、(8分)已知y+3和2x-1成正比例,且x=2时,y=1。

(1)写出y 与x 的函数解析式。

(2)当0≤x ≤3 时,y 的最大值和最小值分别是多少
20、(10分)在水管放水的过程中,放水的时间x (min)与流出的水量y (m 3)是两个变量,已知水管
每分钟流出的水量是 m 3 ,放水的过程持续10 min ,写出y 与x 之间的函数解析式,
并指出函数的取值范围,再画出这个函数的图像·
21、(7分)在函数3y x =-的图像上取一点P ,过P 点作PA ⊥x 轴A 为垂足,己知P 点的横坐标为- 2,求ΔPOA 的面积(O 为坐标原点)。

22、(8分)根据下列条件求函数的解析式。

(1) y 与2x 成正比例,且x =-2时,12y =。

(2)函数22(4)(1)y k x k x =-++是正比例函数。

且y 随x 的增大而减小。

23、(8分)已知12y y y =+,其中1y 与2x 成正比例,2y 与x 成反比例,并且当12
x =时5y =,当1x =时1y =-,求y 与x 之间的函数关系式。

24.(9分)已知y-3与x成正比例,且x=4时,y=7。

(1)写出y与x之间的函数解析式。

(2)计算x=9时,y的值。

(3)计算y=2时,x的值。

相关文档
最新文档