27173概率论与数理统计课后答案第7章 答案
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=,等值.习题5在假设检验中,如何理解指定的显著水平α解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,(单位:kg).现抽测了9包,其质量为:,,,,,,,,.问这天包装机工作是否正常将这一问题化为假设检验问题. 写出假设检验的步骤(α=.解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯,H0成立时, U∼N(0,1);(3)α=,uα/2=,拒绝域W={∣u∣>};(4)x¯≈,∣u∣=.因∣u∣<uα/2=,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N,.现在测定了9炉铁水,其平均含碳量为.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为(α=解答:本问题是在α=下检验假设H0:μ=,H1:μ≠.由于σ2=已知,所以可选取统计量U=X¯在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯这里u=显然∣u∣=<=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=下确定这批元件是否合格设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=,故用u检验法. 对于显著性水平α=,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得=.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=.因为<,故在α=下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=解答:本问题是在α=下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈(8)=.显然∣t∣=<=(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈,n=9,t=(x¯-μ0)sn==,α=,(8)=.因∣t∣<(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为,在α=的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=,n=36,查表得(36-1)=,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=36≈>,习题6某种导线的电阻服从正态分布N(μ,.今从新生产的一批导线中抽取9根,测其电阻,得s=Ω,对于α=,能否认为这批导线电阻的标准差仍为解答:本问题是在α=下检验假设H0:σ2=,H1:σ2≠.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2==×=,χ(8)=,χ(8)=.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈,χ2=8×s216≈,α=,χ(8)=.因χ2<χ(8)=,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=,试在显著性水平α=下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=,n-1=19,s=,χ(19)=.拒绝域为W={χ2<}.计算χ2值χ2=(20-1)×≈.因为>,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=水平下检验假设:H0:σ≥%,H1:σ<%.解答:在α=下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ(9)=.计算得(n-1)s2σ02=(10-1)×\per)2\per)2≈>,未落入拒绝域,故接受H0.双正态总体的假设检验习题1制造厂家宣称,线A的平均张力比线B至少强120N,为证实其说法,在同样情况下测试两种线各50条.线A的平均张力x¯=867N,标准差为σ1=;而线B的平均张力为y¯=778N,标准差为σ2=.在α=的显著性水平下,试检验此制造厂家的说法.解答:H0:μ1-μ2=120,H1:μ1-μ2<120.假设两总体均服从方差相同的正态分布,试在显著性水平α=下检验此种血清是否有效解答:设μ1,μ2分别为老鼠接受和未接受血清的平均存活年限。
概率论与数理统计第七章习题答案
解:(1)已知ξ ~N (µ, σ 2 ),取统计量U = ξ − µ ,则有U ~ N (0,1),于给定的置信概率1−α ,
n
σ/ n
可求出uα
+ (4 − 0.8)2 ×1] = 0.831.
14.设ξ1,ξ2,……,ξn是取自总体ξ的一个样本,n ≥ 2,ξ ~ B(1, p),其中p为未知,0 < p < 1, 求证:
(1)ξ12是p的无偏估计; (2)ξ12不是p2的无偏估计;
(3) ξ1ξ2是p2的无偏估计。
证明:(1)Eξ
2 1
tα /2 (4) = 2.78, S = 11.937, n = 5代入(*),求得µ的置信区间为(1244.185,1273.815).
20.假定到某地旅游的一个游客的消费额ξ~N (µ,σ 2 ),且σ = 500元,今要对 该地每一个游客的平均消费额µ进行估计,为了能以不小于95%的置信概率 确信这估计的绝对误差小于50元,问至少需要随机调查多少个游客?
乐山师范学院化学学院
1.设总体ξ 有分布律
第七章 参数估计部分习题答案
ξ
−1
0
2
p
2θ
θ
1-3θ
其中 0 < θ < 1 为待估参数,求θ 的矩估计。 3
解:总体一阶矩为Eξ = (−1) × 2θ + 0×θ + 2× (1− 3θ ) = −8θ + 2.
用样本一阶矩代替总体一阶矩得ξ = -8θˆ + 2,则θˆ = 1 (2 − ξ ). 8
《概率论与数理统计》习题及答案 第七章
《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。
概率论与数理统计第七章练习题与答案详解
概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
概率论与数理统计(茆诗松)第二版课后第七章习题参考答案
⎧ X − µ 2.6 − 3 ⎫ < = −1.79⎬ = Φ (−1.79) = 0.0367 ; ⎩ 1 n 1 20 ⎭
⎧ X − µ 2 .6 − 3 ⎫ (2)因 β = P{ X < 2.6 | µ = 3} = P ⎨ < = −0.4 n ⎬ = Φ (−0.4 n ) ≤ 0.01 , 1 n ⎩1 n ⎭
则 Φ(0.4 n ) ≥ 0.99 , 0.4 n ≥ 2.33 ,n ≥ 33.93,故 n 至少为 34;
⎧ X − µ 2 .6 − 2 ⎫ (3) α = P{ X ≥ 2.6 | µ = 2} = P ⎨ ≥ = 0 .6 n ⎬ = 1 − Φ ( 0 .6 n ) → 0 ( n → ∞ ) , 1 n ⎩1 n ⎭
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p
(2)在 p = 0.05 时犯第二类错误的概率
β = P ⎨∑ X i ∉ W | p = 0.05⎬ = ∑ ⎜ ⎜
⎩ i=1 ⎭
⎧ 20
⎫
⎛ 20 ⎞ ⎟ × 0.05k × 0.9520−k = 0.2641 . ⎟ k =2 ⎝ k ⎠
6 6 ⎛ 20 ⎞ ⎛ 20 ⎞ k 20−k 20−k k ⎟ ⎜ g ( 0 .2 ) = 1 − ∑ ⎜ g × 0 . 2 × 0 . 8 = 0 . 1559 , ( 0 . 3 ) = 1 − = 0.3996 , ∑ ⎜k⎟ ⎜k⎟ ⎟ × 0.3 × 0.7 k =2 ⎝ k =2 ⎝ ⎠ ⎠
α = P{ X ∈W | H 0 } = P{ X ≥ 2.6 | µ = 2} = P ⎨
犯第二类错误的概率为
⎧ X − µ 2.6 − 2 ⎫ ≥ = 2.68⎬ = 1 − Φ (2.68) = 0.0037 , ⎩ 1 n 1 20 ⎭
概率论与数理统计习题及答案第七章
习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X L 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ:, 其中θ>0为未知参数, 又12,,,n X X X L 为来自总体X 的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).2. 设总体X 的分布律为其中0<θ<12n , 试求θ的矩估计量.解 因为E (X )=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令15X θ-=得到θ的矩估计量为ˆ15X θ-=. 3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 5. 设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<=-⎧⎪⎨⎪⎩,≤≤,其它,其中θ(0<θ<1)是未知参数. X 1, X 2, …, X n 为来自总体的简单随机样本, 记N 为样本值12,,,n x x x L 中小于1的个数. 求: (1) θ的矩估计量; (2) θ的极大似然估计量.解 (1) 1213()d (1)d 2X E X x x x x θθθ==+-=-⎰⎰, 所以32X θ=-矩.(2) 设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:x (1) ≤ x (2) ≤…≤ x (N ) <1≤ x (N +1)≤ x (N +2)≤…≤x (n ) .似然函数为(1)(2)()(1)(2)(1),1()0,,N n N N N N n x x x x x x L θθθ-++-<=⎧⎨⎩L L ≤≤≤≤≤≤≤其它.考虑似然函数非零部分, 得到ln L (θ ) = N ln θ + (n − N ) ln(1−θ ),令d ln ()0d 1L N n N θθθθ-=-=-, 解得θ的极大似然估计值为ˆN nθ=. 习题7-21. 选择题: 设总体X 的均值μ与方差2σ都存在但未知, 而12,,,n X X X L 为X 的样本, 则无论总体X 服从什么分布, ( )是μ和2σ的无偏估计量.(A) 11nii X n=∑和211()nii X X n=-∑. (B)111nii X n =-∑和211()1nii X X n =--∑.(C)111nii X n =-∑和211()1nii X n μ=--∑. (D)11nii X n=∑和211()nii X nμ=-∑.解 选(D).2. 若1X ,2X ,3X 为来自总体2(,)X N μσ:的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.3. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X的样本, 试证:2121()2X X -为2σ的无偏估计.证 因为22212112211[()][(2)]22E X X E X X X X -=-+2222112212[()2()()]22E X E X X E X σσ=-+==,所以2121()2X X -为2σ的无偏估计.习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ). (A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==, 220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====.假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.5. 某商场为了了解居民对某种商品的需求, 调查了100户, 得出每户月平均需求量为10公斤, 方差为9 . 如果这种商品供应10000户, 取置信水平为0.99.(1) 取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计; (2) 问最少要准备多少这种商品才能以99%的概率满足需要? 解 (1) 每户居民的需求量的置信区间为2222((1),(1))()(10 2.575,10 2.575)(9.2275,10.7725).,x n x n x z x αααα-+-≈+=-=10000户居民对此种商品月需求量的置信度为0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要.。
概率论与数理统计课后习题答案第7章习题详解
习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
概率论习题答案 第7章答案
θˆ = −1 −
n
n ln xi
i =1
从而θ 的极大似然估计量为
θˆ = −1 − n n
∑ ln X i
i =1
(2) 设 x1, x2 ,", xn 是相应于 X 1, X 2 ,", X n 的样本,则似然函数为
n
∏ L( p) =
n
p(1 −
p) xi −1
=
p n (1 −
∑ xi −n p) i=1
5. (1)
E(X ) = E(eZ ) =
∫ 1
+∞
− ( z−μ )2
e z e 2σ 2 dz
2π σ −∞
∫ =
1
∞
exp{−
1
(z 2 − (2μ + 2σ 2 )z + (μ + σ 2 )2 − 2μσ 2 − σ 4 )}dz
2π σ −∞
2σ 2
∫ = exp{μ + 1 σ 2} 2
=
1 mn
n i =1
xi
=
1 m
x
第 7 章习题答案 总 11 页第 4 页
∑ 所以 p 的极大似然估计量为
pˆ
=
1 mn
n i =1
Xi
=
1 m
X
4 (1)已知, λ 的极大似然估计值为 λˆ = x ,又 P{X = 0} = e−λ ,所以根据极大似然估计的性
质, P{X = 0}的极大似然估计值为 e−x
∏ L(σ ) =
n i =1
f
(xi ,σ )
=
1σ 2
e ∑ −n
−1 σ
n i =1
概率论与数理统计第七章参数估计习题答案
æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q
概率论与数理统计课后习题答案第七章金治明 李永乐版
第七章3.设总体X 具有密度函数22(),0(:)0,x x f x θθθθ⎧-<<⎪=⎨⎪⎩其它 12,,,n X X X 是其样本,求θ的矩估计.解 122()2(1)3EX xx dx t t dt θθθθθ=-=-=⎰⎰,由矩法令3X θ=,解得3X θ=. 4.设12~(,),01,,,,n X b N p p X X X << 为其样本.求N 和p 的矩估计. 解 因 ,()(1)EX Np D X Np p ==-,由例7-1,令2,(1)n X N p S N p p ==- 解得 21,n S X p NXp=-= 5.设总体X 的密度函数(或分布律)为12(;),,,,n f x X X X θ 为其样本,求下列情况下θ的极大似然估计.(2)似然函数为1111()()nnn ii i i L XX θθθθθ--====∏∏似然方程为1l n ()ln 0ni i L nX θθθ=∂=+=∂∑ 解得 111(ln )nii Xnθ-==-∑.(4)似然函数为1111()()()(())irnrnnX r r ii ni i L XeX er r θθθθθ----====ΓΓ∏∏似然方程为 l n ()0L n rnX θθθ∂=-=∂解得 r Xθ=.6.设总体X 的密度为(;)(1),01f x x x βββ=+<<其中1β>-未知,12,,,n X X X 为其样本,求β的矩估计和极大似然估计.今得样本观察值0.30,0.80,0.27,0.35,0.62,0.55,求β的矩估计值和极大似然估计值.解101(1)2EX x x dx ββββ+=+=+⎰,由矩法令12X ββ+=+,解得矩估计121MXβ=--,矩估计值为 0.07Mβ=-.似然函数为11()(1)(1)()nnni i i i L X X βββββ===+=+∏∏似然方程为1l n ()ln 01ni i L nX βββ=∂=+=∂+∑ 解得极大似然估计 1111ln nLi i X nβ-=⎡⎤=--⎢⎥⎣⎦∑,极大似然估计值 0.234Lβ=. 9.设总体X 具有密度函数1(;),2xf x ex σσσ-=-∞<<∞其中0σ>未知,12,,,n X X X 为其样本.求σ的极大似然估计.解 似然函数为11111()22nX iii nX nni L eeσσσσσ=--=∑==∏似然方程为21l n ()10ni i L n X σσσσ=∂=-+=∂∑解得 11ni i X nσ==∑.10.设总体X 有密度函数(),(;)0,x e x f x x θθθθ--⎧>=⎨≤⎩其中θ-∞<<∞未知,12,,,n X X X 为其样本.求θ的矩估计和极大似然估计.解 1E X θ=+,令1X θ=+,解得矩估计 1M X θ=-. 似然函数为(1)()()(1)1()(1)(),,i nX n X i n X L eeX eX θθθθθ----=--==>≤>∏故θ的极大似然估计为 (1)L X θ=. 11.设总体212~(,),,,,n X N X X X μσ 为其样本.(1) 求k ,使 122111()n i i i X X kσ-+==-∑为2σ的无偏估计;(2) 求k ,使 11ni i X X kσ==-∑为σ的无偏估计.解 (1) 21(0,2)i i X X N σ+- ,2211()()2i i i i E X X D X X σ++-=-=122221111()2(1)n i i i E E X X n kkσσσ-+==-=-∑故2(1)k n =-.(2) 2111(1)(0,)i i j j in X X X X N nnnσ≠--=--∑2212i n E X X xx dx n σ∞-∞-⎧⎫-=-⎨⎬⎩⎭⎰220122n xx dx n σ∞-⎧⎫=-=⎨⎬⎩⎭⎰111ni i E EX X kkσσ==-===∑所以k =12.设 θ是参数θ的无偏估计,且有 ()0,D θ>证明 2θ不是2θ的无偏估计.解 2222()[]()E D E D θθθθθθ=+=+>. 13.设从均值为μ,方差为20σ>的总体中,分别抽取容量为12,n n 的两个独立样本.1X 和2X 分别是两样本的均值.试证,对于任意,(1),a b a b +=12Y aX bX =+都是μ的无偏估计,并确定常数,a b 使()D Y 达到最小.解 1212()()EY E aX bX aEX bEX a b a b μμμμ=+=+=+=+=2222222121212()()()abD Y D aX bX abn n n n σσσ=+=+=+即在条件1a b +=下,求2212abn n +的最小值.令2212(1)()aa L a n n -=+,求导得12()22(1)0dL a a a da n n -=-解得112n a n n =+,212n b n n =+.14.设分别自总体21(,)N μσ和22(,)N μσ中抽取容量为12,n n 的两个独立样本.其样本方差分别2212,S S .试证,对于任何常数2212,(1),a b a b Z aS bS +==+都是2σ的无偏估计,并确定常数,a b 求求()D Z 达到最小.解 22222212()EZ aES bES a b a b σσσσ=+=+=+=.利用222(1)(1),1,2i ii n S n i χσ--=得422(),1,21ii D S i n σ==-,所以22222241212()()()2()11abD Z a D S b D S n n σ=+=+--即在1a b +=下,求221211abn n +--的最小值,求得11212n a n n -=+-,21212n b n n -=+-.15.设总体X 的密度函数为 16.设总体X 的密度函数为1,0(0)(;)0,x f x θθθθ⎧<<>⎪=⎨⎪⎩其它123,,X X X 为其样本,试证(3)43X 及(1)4X 都是参数θ的无偏估计,问哪个较有效?解 考虑一般情形,设12,,,n X X X 为样本,比较()1n n X n+和(1)(1)n X +.(1)X 的密度为11(),0(;)0,n nn x x f x θθθθ-⎧-<<⎪=⎨⎪⎩其它 ()n X 的密度为1,0(;)0,n n n nx x f x θθθ-⎧<<⎪=⎨⎪⎩其它由此算得(1)()1,11nnE X E Xn n θθ==++(1)()1((1)),()n n E n X E X nθθ++== 又有2222(1)()2,(1)(2)2n nE X E X n n nθθ==+++22222(1)(1)(1)(1)((1))(1)()(1)[()]2nD nX n D X nE X E X n θ+=+=+-=+ 22222()()()()221(1)(1)1()()[()](2)n n n n n n n D X D X EX EX nnnn n θ+++==-=+故()1n n X n+较(1)(1)n X +有效,实际上()1n n X n+是θ的最小方差无偏估计.17.设总体X 服从指数分布,其密密函数为,0(;)0,0x e x f x x λλλ-⎧≥=⎨<⎩ (0)λ>12,,,n X X X 为其样本(2)n ≥.(1) 求λ的极大似然估计 λ; (2) 求k ,使 k λλ*=为λ的无偏估计; (3) 求1θλ=的置信水平为1α-的双侧置信区间.解 (1) 似然函数为1()inX n nXi L eeλλλλλ--===∏似然方程为ln ()0L nnX λλλ∂=-=∂解得 1Xλ=.(2) 22(2)Y nX n λχ=121(1)121111()2()2(1)112()2(1)2(1)y n nyn n nn E yedyY y n n y edy n n n ∞---∞----=ΓΓ-==ΓΓ--⎰⎰1112()2()21n E kE kE k n E nk E kXn XY n λλλλλλλ======-*由此得1n k n-=.(3) 因22(2)nXn χθ,由222212{(2)(2)}1nXP n n ααχχαθ-<<=-得的置信水平为1α-的双侧置信区间为2222122(,)(2)(2)nXnXααχαχα-.18.随机地从一批零件中抽取16个,测得长度(单位:cm)为2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11设零件长度的分布为正态,试求总体均值μ的90%的置信区间:(1)若0.01σ=;(2)若σ未知.解 设X为零件长度,则2(,)X N μσ .(1) 当0.01σ=已知时,μ的90%的置信区间为2211(,)(2.125 1.65,2.125 1.65)(2.121,2.129)X X αα---+=-+=(2) 当σ未知时,μ的90%的置信区间为2211((15),(15))(2.125 1.7531,2.125 1.753(2.1175,2.1325)X X αα---+=-+=22.随机地从A 批导线中抽取4根,并从B 批导线中抽取5根测得其电阻Ω为设测试数据分别服从正态分布21(,)N μσ和22(,)N μσ,且它们相互独立,又2σ未知,试求12μμ-的0.95置信区间.解 12μμ-的0.95置信区间为A 批导线 0.143 0.142 0.143 0.137B 批导线0.140 0.142 0.136 0.138 0.14022121211()(2)()(2)w wX Y t n n S X Y t n n S αα--⎛--+--++- ⎝经计算得2626121234,5,0.14125,8.2510,0.1392, 5.2102.5510w n n X S Y S S ---====⨯==⨯==⨯查表得 2120.9751(2)(7) 2.3646t n n t α-+-==,最后算得区间是(0.002,0.006)-.。
概率论与数理统计教程第七章答案
、 第七章 假设检验7、1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些就是简单假设,哪些就是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=、解:(1)就是简单假设,其余位复合假设7、2 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 就是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显著性水平为0、05 解:因为(,9)N ξμ~,故9(,)25N ξμ~ 在0H 成立的条件下,00053(||)(||)53521()0.053cP c P c ξμξμ-≥=-≥⎡⎤=-Φ=⎢⎥⎣⎦55()0.975,1.9633c cΦ==,所以c =1、176。
7、3 设子样1225,,,ξξξL 取自正态总体2(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0、05,20σ=0、004,α=0、05,n=9,求μ=0、65时不犯第二类错误的概率。
解:(1)在0H 成立的条件下,200(,)nN σξμ~,此时00000()P c P ξαξ=≥=所以10αμ-=,由此式解出010c αμμ-=+在1H 成立的条件下,20(,)nN σξμ~,此时10100010()(P c P αξβξμ-=<==Φ=Φ=Φ-由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。
(2)不犯第二类错误的概率为100.9511(0.650.51(3)0.21(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ-=-Φ-=Φ= 7、6 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。
概率论与数理统计第七章参数估计习题答案
3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
n
-q
-q xi
i=1
i =1
i =1
0 < x < 1, 其他.
n
g = ln L = n lnq -q å xi
i =1
由 dg
å å dq
=
d ln L dq
=n q
-
n i =1
xi
= 0知qˆ
=
n
n
xi
所以q的极大似然估计量为qˆ = 1 . i=1
X
大学数学云课堂
3028703.设总体X
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
ta
/2
(n
-1)
=
t0.025
(19)
=
2.093,
c2 a /2
(n
-1)
=
c2 0.025
(19)
=
32.852,
c2 0.975
(19)
=
8.907
i =1
n
ln L = n lnq + (q -1) ln Õ xi
i =1
概率论与数理统计及其应用课后答案(浙大版)第7章 假设检验
第7章 假设检验1,解:这是一个方差已知的正态总体的均值检验,属于右边检验问题,检验统计量为nx Z /18σ-=。
代入本题具体数据,得到8665.19/62.418874.20=-=Z 。
检验的临界值为645.105.0=Z 。
因为645.18665.1>=Z ,所以样本值落入拒绝域中,故拒绝原假设0H ,即认为该工人加工一工件所需时间显著地大于18分钟。
2,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /4.38-=。
代入本题具体数据,得到0844.115/5.74.385.40=-=t 。
检验的临界值为1448.2)14(025.0=t 。
因为1448.20844.1<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为平均摄取量显著地为38.4%。
3,解:这是一个方差未知的正态总体的均值检验,属于左边检验问题,检验统计量为ns x t /42.8-=。
代入本题具体数据,得到4.149/025.042.83.8-=-=t 。
检验的临界值为8965.2)8(01.0-=-t 。
因为8965.24.14-<-=t (或者说8965.24.14>=t ),所以样本值落入拒绝域中,故拒绝原假设0H ,即认为铜含量显著地小于8.42%。
4,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /64.72-=。
代入本题具体数据,得到0134.016/338.864.72668.72=-=t 。
检验的临界值为1315.2)15(025.0=t 。
因为1315.20134.0<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为该地区成年男子的平均体重为72.64公斤。
5,解:这是一个方差未知的正态总体的均值检验,属于右边检验问题,检验统计量为ns x t /200-=。
概率与数理统计第7章参数估计习题及答案
第7章参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10P ,n X X X 21,是其一个样本,那么矩估计量pX N.2、设总体)p ,1(B ~X ,其中未知参数01p, X X X n 12,,是X 的样本,则p 的矩估计为_n1i iX n1_,样本的似然函数为_iiX 1n1i X )p 1(p __。
3、设12,,,n X X X 是来自总体),(N ~X 2的样本,则有关于及2的似然函数212(,,;,)n L X X X _2i2)X (21n1i e21__。
二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ,其中1是未知参数,n X X X ,,21为一个样本,试求参数的矩估计和极大似然估计.解:因10101α1α1αdxxdxx x X E a)()()(2α1α2α1α12|a x令2α1α)(XX E XX112α为的矩估计因似然函数1212(,,;)(1)()nn n L x x x x x x ni i X n L 1α1αln )ln(ln ,由ni iX n L 101ααln ln 得,的极大似量估计量为)ln (ni iX n11α2、设总体X 服从指数分布,0()0,xe xf x 其他,n X X X ,,21是来自X 的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)由于1()E X ,令11XX,故的矩估计为1X(2)似然函数112(,,,)nii x nn L x x x e111ln lnln 0nii nini ii L n x d Lnnx dx 故的极大似然估计仍为1X。
3、设总体2~0,X N ,12,,,n X X X 为取自X 的一组简单随机样本,求2的极大似然估计;[解] (1)似然函数222112i x ni Le2212222ni i x ne于是2221ln ln 2ln222ni i x n n L22241ln 122n ii d L n x d,令2ln 0d L d,得2的极大似然估计:2211nii X n.4、设总体X 服从泊松分布()P , 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)令()E X XX ,此为的矩估计。
概率论与数理统计第七章参数估计习题答案
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
D( X1)
+
æ çè
1 ö2 3 ÷ø
D( X 2 )
=
4 9
Xs
2
=
5s 2 9
,
D(mˆ2
)
=
æ çè
1 4
ö2 ÷ø
D(
X1)
+
æ çè
3 4
ö2 ÷ø
D(
X
2
)
=
5s 8
2
,
D(mˆ3 )
=
æ çè
1 2
ö2 ÷ø
(
D(
X1)
+
D(
X
2
))
=
s2 2
大学数学云课堂
028708.某车间生产的螺钉,其直径X ~ N(m,s 2),由过去的经验知道s 2 = 0.0
3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
ïî 0,
其他.
X1,X 2,L,X n为其样本,试求参数q的矩法估计.
概率论与数理统计(茆诗松)第二版课后第七章习题参考答案
第七章 假设检验习题7.11. 设X 1 , …, X n 是来自N (µ , 1) 的样本,考虑如下假设检验问题H 0:µ = 2 vs H 1:µ = 3,若检验由拒绝域为}6.2{≥=x W 确定. (1)当n = 20时求检验犯两类错误的概率;(2)如果要使得检验犯第二类错误的概率β ≤ 0.01,n 最小应取多少? (3)证明:当n → ∞ 时,α → 0,β → 0. 解:(1)犯第一类错误的概率为0037.0)68.2(168.220126.21}2|6.2{}|{0=Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=∈=n X P X P H W X P µµα,犯第二类错误的概率为0367.0)79.1(79.120136.21}3|6.2{}|{1=−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=∉=n X P X P H W X P µµβ;(2)因01.0)4.0(4.0136.21}3|6.2{≤−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n X P X P µµβ,则99.0)4.0(≥Φn ,33.24.0≥n ,n ≥ 33.93,故n 至少为34;(3))(0)6.0(16.0126.21}2|6.2{∞→→Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=n n n n n X P X P µµα,)(0)4.0(4.0136.21}3|6.2{∞→→−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n n X P X P µµβ. 2. 设X 1 , …, X 10是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p = 0.4,取拒绝域为}5.0{≥=x W ,求该检验犯两类错误的概率. 解:因X ~ b(1, p ),有),10(~10101p b X X i i =∑=,则0328.08.02.0}2.0|510{}2.0|5.0{}|{10510100=⋅⋅==≥==≥=∈=∑=−k k k kC p X P p X P H W X P α,6331.06.04.0}4.0|510{}4.0|5.0{}|{410101=⋅⋅==<==<=∉=∑=−k k k kC p X P p X P H W X P β.3. 设X 1 , …, X 16是来自正态总体N (µ , 4) 的样本,考虑检验问题H 0:µ = 6 vs H 1:µ ≠ 6,拒绝域取为}|6{|c x W ≥−=,试求c 使得检验的显著性水平为0.05,并求该检验在µ = 6.5处犯第二类错误的概率.解:因05.0)]2(1[22162162}6||6{|}|{0=Φ−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=≥−==≥−=∈=c c c X P c X P H W X P µµα,则Φ (2c ) = 0.975,2c = 1.96,故c = 0.98;故}5.6|48.05.648.1{}5.6|98.0|6{|}|{1=<−<−==<−=∉=µµβX P X P H W X P83.0)96.2()96.0(96.01625.696.2=−Φ−Φ=⎭⎬⎫⎩⎨⎧<−<−=X P .4. 设总体为均匀分布U (0, θ ),X 1 , …, X n 是样本,考虑检验问题H 0:θ ≥ 3 vs H 1:θ < 3,拒绝域取为}5.2{)(≤=n x W ,求检验犯第一类错误的最大值α ,若要使得该最大值α 不超过0.05,n 至少应取多大?解:因均匀分布最大顺序统计量X (n ) 的密度函数为θθ<<−Ι=x nn n nx x p 01)(,则nn n n nn n n x dx nx X P H W X P ⎟⎠⎞⎜⎝⎛=====≤=∈=∫−6535.233}3|5.2{}|{5.205.201)(0θα, 要使得α ≤ 0.05,即05.065≤⎟⎠⎞⎜⎝⎛n,43.16)6/5ln(05.0ln =≥n ,故n 至少为17.5. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?答:若检验结果是接受原假设,当原假设为真时,是正确的决策,未犯错误;当原假设不真时,则犯了第二类错误.若检验结果是拒绝原假设,当原假设为真时,则犯了第一类错误;当原假设不真时,是正确的决策,未犯错误.6. 设X 1 , …, X 20是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p ≠ 0.2,取拒绝域为⎭⎬⎫⎩⎨⎧≤≥=∑∑==17201201i i i i x x W 或,(1)求p = 0, 0.1, 0.2, …, 0.9, 1的势并由此画出势函数的图;(2)求在p = 0.05时犯第二类错误的概率.解:(1)因X ~ b(1, p ),有),20(~201p b X i i ∑=,势函数∑∑=−=−⎟⎟⎠⎞⎜⎜⎝⎛−=⎭⎬⎫⎩⎨⎧∈=6220201)1(201)(k kk i i p p k p WX P p g , 故110201)0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3941.09.01.0201)1.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g , 1559.08.02.0201)2.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3996.07.03.0201)3.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,7505.06.04.0201)4.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,9424.05.05.0201)5.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g , 9935.04.06.0201)6.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,9997.03.07.0201)7.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 999998.02.08.0201)8.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g11.09.0201)9.0(6220≈××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 101201)1(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g ; (2)在p = 0.05时犯第二类错误的概率2641.095.005.02005.0|6220201=××⎟⎟⎠⎞⎜⎜⎝⎛=⎭⎬⎫⎩⎨⎧=∉=∑∑=−=k kk i i k p W X P β. 7. 设一个单一观测的样本取自密度函数为p (x )的总体,对p (x )考虑统计假设: H 0:p 0(x ) = I 0 < x < 1 vs H 1:p 1(x ) = 2x I 0 < x < 1.若其拒绝域的形式为W = {x : x ≥ c },试确定一个c ,使得犯第一类,第二类错误的概率满足α + 2β 为最小,并求其最小值.解:当0 < c < 1时,α = P {X ∈ W | H 0} = P {X ≥ c | X ~ p 0(x )} = 1 − c ,且20112)}(~|{}H |{c xdx x p X c X P W X P c==<=∉=∫β,则2224128721161287212⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛+−+=+−=+c c c c c βα,故当41=c 时,α + 2β 为最小,其最小值为87. 8. 设X 1, X 2, …, X 30为取自柏松分布P (λ)的随机样本.(1)试给出单侧假设检验问题H 0:λ ≤ 0.1 vs H 1:λ > 0.1的显著水平α = 0.05的检验; (2)求此检验的势函数β (λ)在λ = 0.05, 0.2, 0.3, …, 0.9时的值,并据此画出β (λ)的图像.解:(1)因)30(~3021λP X X X X n +++=L ,假设H 0:λ ≤ 0.1 vs H 1:λ > 0.1, 统计量)30(~λP X n ,当H 0成立时,设)3(~P X n ,其p 分位数)3(p P 满足∑∑=−−=−≤<)3(031)3(03e !3e !3p p P k k P k k k p k 显著水平α = 0.05,可得P 1−α (3) = P 0.95 (3) = 6,右侧拒绝域}7{≥=x n W ;(2)因∑=−−=≥=∈=630e!)30(1}|7{}|{)(k k k X n P W X n P λλλλλβ, g故0001.0e !5.11)05.0(605.1=−=∑=−k k k β,3937.0e !61)2.0(606=−=∑=−k k k β,7932.0e !91)3.0(609=−=∑=−k k k β,9542.0e !121)4.0(6012=−=∑=−k k k β,9924.0e !151)5.0(6015=−=∑=−k k k β,9990.0e !181)6.0(6018=−=∑=−k k k β,9999.0e !211)7.0(6021=−=∑=−k kk β, 1e !241)8.0(6024≈−=∑=−k k k β,1e !271)9.0(6027≈−=∑=−k k k β.习题7.2说明:本节习题均采用拒绝域的形式完成,在可以计算检验的p 值时要求计算出p 值. 1. 有一批枪弹,出厂时,其初速率v ~ N (950, 1000)(单位:m /s ).经过较长时间储存,取9发进行测试,得样本值(单位:m /s )如下:914 920 910 934 953 945 912 924 940.据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可认为这批枪弹的初速率有显著降低(α = 0.05)?解:设枪弹经储存后其初速率X ~ N (µ , 1000),假设H 0:µ = 950 vs H 1:µ < 950,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因928=x ,µ = 950,σ = 10,n = 9, 则W u ∈−=−=6.6910950928,并且检验的p 值p = P {U ≤ −6.6} = 2.0558 × 10−11 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这批枪弹的初速率有显著降低. 2. 已知某炼铁厂铁水含碳量服从正态分布N (4.55, 0.1082 ).现在测定了9炉铁水,其平均含碳量为4.484,如果铁水含碳量的方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α = 0.05)? 解:设现在生产的铁水含碳量X ~ N (µ , 0.1082 ),假设H 0:µ = 4.55 vs H 1:µ ≠ 4.55,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因484.4=x ,µ = 4.55,σ = 0.108,n = 9, 则W u ∉−=−=8333.19108.055.4484.4,并且检验的p 值p = 2P {U ≤ −1.8333} = 0.0668 > α = 0.05,β (故接受H 0,拒绝H 1,即可以认为现在生产的铁水平均含碳量仍为4.55. 3. 由经验知某零件质量X ~ N (15, 0.05 2 ) (单位:g ),技术革新后,抽出6个零件,测得质量为14.7 15.1 14.8 15.0 15.2 14.6.已知方差不变,问平均质量是否仍为15 g (取α = 0.05)?解:设技术革新后零件质量X ~ N (µ , 0.05 2 ),假设H 0:µ = 15 vs H 1:µ ≠ 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9.14=x ,µ = 15,σ = 0.05,n = 6, 则W u ∈−=−=8990.4605.0159.14,并且检验的p 值p = 2P {U ≤ −4.8990} = 9.6326 × 10−7 < α = 0.05,故拒绝H 0,接受H 1,即不能认为平均质量仍为15 g . 4. 化肥厂用自动包装机包装化肥,每包的质量服从正态分布,其平均质量为100 kg ,标准差为1.2 kg .某日开工后,为了确定这天包装机工作是否正常,随机抽取9袋化肥,称得质量如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5.设方差稳定不变,问这一天包装机的工作是否正常(取α = 0.05)? 解:设这天包装机包装的化肥每包的质量X ~ N (µ , 1.22 ),假设H 0:µ = 100 vs H 1:µ ≠ 100,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9778.99=x ,µ = 100,σ = 1.2,n = 9, 则W u ∉−=−=0556.092.11009778.99,并且检验的p 值p = 2P {U ≤ −0.0556} = 0.9557 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这一天包装机的工作正常. 5. 设需要对某正态总体的均值进行假设检验H 0:µ = 15, H 1:µ < 15.已知σ 2 = 2.5,取α = 0.05,若要求当H 1中的µ ≤ 13时犯第二类错误的概率不超过0.05,求所需的样本容量.解:设该总体X ~ N (µ , 2.5 ),假设H 0:µ = 15 vs H 1:µ < 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因µ = 15,σ 2 = 2.5,有nx u 5.215−=,当µ ≤ 13时犯第二类错误的概率为⎭⎬⎫⎩⎨⎧≤−+−>−=⎭⎬⎫⎩⎨⎧≤−>−=13|5.21565.15.213|65.15.215µµµµβn n X P n X P 05.0)2649.165.1(15.2131565.15.2≤+−Φ−=⎭⎬⎫⎩⎨⎧−+−>−≤n n nX P µ,则95.0)2649.165.1(≥+−Φn ,即65.12649.165.1≥+−n ,6089.2≥n ,n ≥ 6.8064, 故样本容量n 至少为7.6. 从一批钢管抽取10根,测得其内径(单位:mm )为:100.36 100.31 99.99 100.11 100.64 100.85 99.42 99.91 99.35 100.10.设这批钢管内直径服从正态分布N (µ , σ 2),试分别在下列条件下检验假设(α = 0.05).H 0:µ = 100 vs H 1:µ > 100.(1)已知σ = 0.5; (2)σ 未知.解:设这批钢管内直径X ~ N (µ , σ 2),假设H 0:µ = 100 vs H 1:µ > 100,(1)已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 因104.100=x ,µ = 100,σ = 0.5,n = 10, 则W u ∉=−=6578.0105.0100104.100,并且检验的p 值p = P {U ≥ 0.6578} = 0.2553 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100. (2)未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (9) = 1.8331,右侧拒绝域W = {t ≥ 1.8331}, 因104.100=x ,µ = 100,s = 0.4760,n = 10, 则W t ∉=−=6910.0104760.0100104.100,并且检验的p 值p = P {T ≥ 0.6910} = 0.2535 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100.7. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解:设这次考试考生的成绩X ~ N (µ , σ 2 ),假设H 0:µ = 70 vs H 1:µ ≠ 70,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (35) = 2.0301,双侧拒绝域W = {| t | ≥ 2.0301}, 因5.66=x ,µ = 70,s = 15,n = 36, 则W t ∉−=−=4.13615705.66,并且检验的p 值p = 2P {T ≤ −1.4} = 0.1703 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这次考试全体考生的平均成绩为70分. 8. 一个小学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8 h 电视.”她认为她所在学校的学生看电视的时间明显小于该数字.为此她在该校随机调查了100个学生,得知平均每周看电视的时间5.6=x h ,样本标准差为s = 2 h .问是否可以认为这位校长的看法是对的(取α = 0.05)? 解:设学生看电视的时间X ~ N (µ , σ 2 ),假设H 0:µ = 8 vs H 1:µ < 8,未知σ 2,选取统计量)1(~−−=n t nS X T µ,n = 100,大样本,有)1,0(~N n S X T &µ−=,显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因5.6=x ,µ = 8,s = 2,n = 100, 则W t ∈−=−=5.7100285.6,并且检验的p 值p = P {T ≤ −7.5} = 3.1909 × 10−14 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这位校长的看法是对的.9. 设在木材中抽出100根,测其小头直径,得到样本平均数2.11=x cm ,样本标准差为s = 2.6 cm ,问该批木材小头的平均直径能否认为不低于12 cm (取α = 0.05)? 解:设该批木材小头的直径X ~ N (µ , σ 2 ),假设H 0:µ = 12 vs H 1:µ < 12,未知σ 2,选取统计量)1(~−−=n t n S X T µ,n = 100,大样本,有)1,0(~N nS X T &µ−=, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因2.11=x ,µ = 12,s = 2.6,n = 100, 则W t ∈−=−=0769.31006.2122.11,并且检验的p 值p = P {T ≤ −3.0769} = 0.0010 < α = 0.05,故拒绝H 0,接受H 1,即不能认为这批木材小头的平均直径不低于12 cm .10.考察一鱼塘中鱼的含汞量,随机地取10条鱼测得各条鱼的含汞量(单位:mg )为:0.8 1.6 0.9 0.8 1.2 0.4 0.7 1.0 1.2 1.1.设鱼的含汞量服从正态分布N (µ , σ 2),试检验假设H 0:µ = 1.2 vs H 1:µ > 1.2(取α = 0.10). 解:设鱼的含汞量X ~ N (µ , σ 2 ),假设H 0:µ = 1.2 vs H 1:µ > 1.2,未知σ 2,选取统计量)1(~−−=n t nSX T µ,显著性水平α = 0.1,t 1 − α (n − 1) = t 0.9 (9) = 1.3830,右侧拒绝域W = {t ≥ 1.3830}, 因97.0=x ,µ = 1.2,s = 0.3302,n = 10, 则W t ∉−=−=2030.2103302.02.197.0,并且检验的p 值p = P {T ≥ −2.2030} = 0.9725 > α = 0.10,故接受H 0,拒绝H 1,即不能认为µ > 1.2 . 11.如果一个矩形的宽度w 与长度l 的比618.0)15(21≈−=l w ,这样的矩形称为黄金矩形.下面列出某工艺品工厂随机取的20个矩形宽度与长度的比值.0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630.设这一工厂生产的矩形的宽度与长度的比值总体服从正态分布,其均值为µ ,试检验假设(取α = 0.05)H 0:µ = 0.618 vs H 1:µ ≠ 0.618.解:设这一工厂生产的矩形的宽度与长度的比值X ~ N (µ , σ 2 ),假设H 0:µ = 0.618 vs H 1:µ ≠ 0.618,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930},因6620.0=x ,µ = 0.618,s = 0.0918,n = 20, 则W t ∈=−=1422.2200918.0618.06620.0,并且检验的p 值p = 2P {T ≥ 2.1422} = 0.0453 < α = 0.05,故拒绝H 0,接受H 1,即不能认为µ = 0.618.12.下面给出两种型号的计算器充电以后所能使用的时间(h )的观测值型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9;型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6.设两样本独立且数据所属的两总体的密度函数至多差一个平移量.试问能否认为型号A 的计算器平均使用时间明显比型号B 来得长(取α = 0.01)?解:设两种型号的计算器充电以后所能使用的时间分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 > µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.01,t 1 − α (n 1 + n 2 − 2) = t 0.99 (21) = 2.5176,右侧拒绝域W = {t ≥ 2.5176}, 因5.5=x ,3667.4=y ,s x = 0.5235,s y = 0.4677,n 1 = 11,n 2 = 12,4951.0214677.0115235.0102)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4844.51211114951.03667.45.5,并且检验的p 值p = P {T ≥ 5.4844} = 9.6391 × 10 −6 < α = 0.01,故拒绝H 0,接受H 1,即可以认为型号A 的计算器平均使用时间明显比型号B 来得长.13.从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:1337.0,230.0211==s x ;西支:1736.0,269.0222==s x .若东、西两支矿脉的含锌量都服从正态分布且方差相同,问东、西两支矿脉含锌量的平均值是否可以看作一样(取α = 0.05)?解:设东、西两支矿脉的含锌量分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~11212121−++−=n n t n n S X X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (15) = 2.1314,双侧拒绝域W = {| t | ≥ 2.1314},因1736.0,269.0,1337.0,230.0222211====s x s x ,n 1 = 9,n 2 = 8,3903.0151736.071337.082)1()1(21222211=×+×=−+−+−=n n s n s n s w ,则W t ∉−=+×−=2056.081913903.0269.0230.0,并且检验的p 值p = 2P {T ≤ −0.2056} = 0.8399 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为东、西两支矿脉含锌量的平均值是一样的.14.在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量指标)的影响.为了比较70°C与80°C 的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N ):70°C 时的强力:20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2, 80°C 时的强力:17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1.根据经验,温度对针织品断裂强力的波动没有影响.问在70°C 时的平均断裂强力与80°C 时的平均断裂强力间是否有显著差别?(假设断裂强力服从正态分布,α = 0.05)解:设在70°C 和80°C 时的断裂强力分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S Y X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (14) = 2.1448,双侧拒绝域W = {| t | ≥ 2.1448}, 因4.20=x ,375.19=y ,s x = 0.9411,s y = 0.8876,n 1 = 8,n 2 = 8,9148.0148876.079411.072)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=2410.281819148.0375.194.20,并且检验的p 值p = 2P {T ≥ 2.2410} = 0.0418 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为70°C 时的平均断裂强力与80°C 时的平均断裂强力间有显著差别. 15.一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出需检验假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2.此处µ 1 , µ 2分别是服用原有止痛片和服用新止痛片后至开始起作用的时间间隔的总体的均值.设两总体均为正态分布且方差分别为已知值2221,σσ,现分别在两总体中取一样本X 1 , …, X n 和Y 1 , …, Y m ,设两个样本独立.试给出上述假设检验问题的检验统计量及拒绝域.解:设服用原有止痛片和新止痛片后至开始起作用的时间间隔分别为),(~211σµN X ,),(~222σµN Y ,因X 1 , …, X n 和Y 1 , …, Y m 分别X 和Y 为来自的样本,且两个样本独立,则),(~211n N X σµ,,(~222mN Y σµ,且X 与Y 独立,有4,2(~2222121m n N Y X σσµµ+−−, 标准化,得)1,0(~4)2()2(222121N mnY X σσµµ+−−−,假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2,已知2221,σσ,选取统计量)1,0(~422221N mnYX U σσ+−=,显著性水平α ,右侧拒绝域W = {u ≥ u 1 − α}.16.对冷却到−0.72°C 的样品用A 、B 两种测量方法测量其融化到0°C 时的潜热,数据如下:方法A :79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.0080.02,方法B :80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97.假设它们服从正态分布,方差相等,试检验:两种测量方法的平均性能是否相等?(取α = 0.05).解:设用A 、B 两种测量方法测量的潜热分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1−α /2 (n 1 + n 2 − 2) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930}, 因0208.80=x ,9787.79=y ,s x = 0.0240,s y = 0.0.314,n 1 = 8,n 2 = 8,0269.0190314.070240.0122)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4722.3811310269.09787.790208.80,并且检验的p 值p = 2P {T ≥ 3.4722} = 0.0026 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测量方法的平均性能不相等.17.为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水样本,每个水样均用这两种方法测定氯气含量(单位:mg /l ),具体数据如下:水样号 方法一(x ) 方法二(y ) 差(d = x − y ) 1 0.36 0.39 −0.03 2 1.35 0.84 0.51 3 2.56 1.76 0.80 4 3.92 3.35 0.57 5 5.35 4.69 0.66 6 8.33 7.70 0.63 7 10.70 10.52 0.18 8 10.91 10.92 −0.01设总体为正态分布,试比较两种测定方法是否有显著差异.请写出检验的p 值和结论(取α = 0.05).解:设用这两种测定方法测定的氯气含量之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.05,t 1−α /2 (n − 1) = t 0.975 (7) = 2.3646,双侧拒绝域W = {| t | ≥ 2.3646}, 因4138.0=d ,s d = 0.3210,n = 8, 则W t ∈==6461.383210.04138.0,并且检验的p 值p = 2P {T ≥ 3.6461} = 0.0082 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测定方法有显著差异.18.一工厂的;两个化验室每天同时从工厂的冷却水取样,测量水中的含气量(10−6)一次,下面是7天的记录:室甲:1.15 1.86 0.75 1.82 1.14 1.65 1.90, 室乙:1.00 1.90 0.90 1.80 1.20 1.70 1.95.设每对数据的差d i = x i − y i (i = 1, 2, …, 7)来自正态总体,问两化验室测定结果之间有无显著差异?(α = 0.01)解:设两个化验室测定的含气量数据之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.01,t 1−α /2 (n − 1) = t 0.995 (6) = 3.7074,双侧拒绝域W = {| t | ≥ 3.7074}, 因0257.0−=d ,s d = 0.0922,n = 7, 则W t ∉−=−=7375.070922.00257.0,并且检验的p 值p = 2P {T ≤ −0.7375} = 0.4886 > α = 0.05,故接受H 0,拒绝H 1,可以认为两化验室测定结果之间没有显著差异.19.为比较正常成年男女所含红血球的差异,对某地区156名成年男性进行测量,其红血球的样本均值为465.13(104/mm 3),样本方差为54.802;对该地区74名成年女性进行测量,其红血球的样本均值为422.16,样本方差为49.202.试检验:该地区正常成年男女所含红血球的平均值是否有差异?(取α = 0.05)解:设该地区正常成年男女所含红血球分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,大样本场合,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著水平α = 0.05,u 1−α /2 = u 0.975 = 1.96,双侧拒绝域W = {| t | ≥ 1.96},因222220.49,16.422,80.54,13.465====y x s y s x ,n 1 = 156,n 2 = 74,则W u ∈=+−=9611.57420.4915680.5416.42213.46522,并且检验的p 值p = 2P {U ≥ 5.9611} = 2.5055 × 10−9 < α = 0.05,故拒绝H 0,接受H 1,可以认为该地区正常成年男女所含红血球的平均值有差异.20.为比较不同季节出生的女婴体重的方差,从去年12月和6月出生的女婴中分别随机地抽取6名及10名,测其体重如下(单位:g ):12月:3520 2960 2560 2960 3260 3960,6月:3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季的比夏季的小(取α = 0.05)?解:设12月和6月出生的女婴体重分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ<,选取统计量)1,1(~2122−−=n n F S S F yx,显著水平α = 0.05,21.077.41)5,9(1)9,5()1,1(95.005.021====−−F F n n F α,左侧拒绝域W = { f ≤ 0.21},因225960.491=x s ,225217.306=y s ,则W f ∉==5721.25217.3065960.49122,并且检验的p 值p = P {F ≤ 2.5721} = 0.8967 > α = 0.05,故接受H 0,拒绝H 1,新生女婴体重的方差冬季的不比夏季的小.21.已知维尼纶纤度在正常条件下服从正态分布,且标准差为0.048.从某天产品中抽取5根纤维,测得其纤度为1.32 1.55 1.36 1.40 1.44问这一天纤度的总体标准差是否正常(取α = 0.05)?解:设这一天维尼纶纤度X ~ N (µ , σ 2),假设H 0:σ 2 = 0.0482 vs H 1:σ 2 ≠ 0.0482,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4844.0)4()1(2025.022/==−χχαn ,1433.11)4()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 0.4844或χ 2 ≥ 11.1433}, 因σ 2 = 0.0482,s 2 = 0.08822,n = 5,则W ∈=×=5069.13048.00882.04222χ,并且检验的p 值p = 2P {χ 2 ≥ 13.5069} = 0.0181 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这一天纤度的总体方差不正常.22.某电工器材厂生产一种保险丝.测量其熔化时间,依通常情况方差为400,今从某天产品中抽取容量为25的样本,测量其熔化时间并计算得24.62=x ,s 2 = 404.77,问这天保险丝熔化时间分散度与通常有无显著差异(取α = 0.05,假定熔化时间服从正态分布)? 解:设这天保险丝熔化时间分散度X ~ N (µ , σ 2),假设H 0:σ 2 = 400 vs H 1:σ 2 ≠ 400,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4012.12)24()1(2025.022/==−χχαn ,3641.39)24()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 12.4012或χ 2 ≥ 39.3641}, 因σ 2 = 400,s 2 = 404.77,n = 25,则W ∉=×=2862.2440077.404242χ,并且检验的p 值p = 2P {χ 2 ≥ 24.2862} = 0.8907 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这天保险丝熔化时间分散度与通常没有显著差异. 23.某种导线的质量标准要求其电阻的标准差不得超过0.005(Ω).今在一批导线中随机抽取样品9根,测得样本标准差s = 0.007(Ω),设总体为正态分布.问在显著水平α = 0.05下,能否认为这批导线的标准差显著地偏大?解:设这批导线的电阻X ~ N (µ , σ 2),假设H 0:σ 2 = 0.005 2 vs H 1:σ 2 > 0.005 2,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,5073.15)8()1(295.021==−−χχαn ,右侧拒绝域W = {χ 2 ≥ 15.5073},因σ 2 = 0.005 2,s 2 = 0.007 2,n = 9,则W ∈=×=68.15005.0007.08222χ,并且检验的p 值p = P {χ 2 ≥ 15.68} = 0.0472 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这批导线的标准差显著地偏大.24.两台车床生产同一种滚珠,滚珠直径服从正态分布.从中分别抽取8个和9个产品,测得其直径为甲车床:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;乙车床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8.比较两台车床生产的滚珠直径的方差是否有明显差异(取α = 0.05).解:设两台车床生产的滚珠直径分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,2041.09.41)7,8(1)8,7()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (7, 8) = 4.53,双侧拒绝域W = {F ≤ 0.2041或F ≥ 4.53},因223091.0=x s ,221616.0=y s ,则W F ∉==6591.31616.03091.022,并且检验的p 值p = 2P {F ≥ 3.6591} = 0.0892 > α = 0.05,故接受H 0,拒绝H 1,即可以认为两台车床生产的滚珠直径的方差没有明显差异. 25.有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量为m = 14和n = 12的样本,测得部件质量的样本方差分别为46.1521=s ,66.922=s ,设两样本相互独立,试在显著性水平α = 0.05下检验假设H 0:2221σσ= vs H 1:2221σσ>.解:设两台机器生产金属部件质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ>,选取统计量)1,1(~2221−−=n m F S S F ,显著性水平α = 0.05,F 1 − α (m − 1, n − 1) = F 0.95 (13, 11) = 2.7614,右侧拒绝域W = {F ≥ 2.7614},因46.1521=s ,66.922=s ,则W F ∉==6004.166.946.15,并且检验的p 值p = P {F ≥ 1.6004} = 0.2206 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为2221σσ=.26.测得两批电子器件的样品的电阻(单位:Ω)为A 批(x ) 0.140 0.138 0.143 0.142 0.144 0.137;B 批(y ) 0.135 0.140 0.142 0.136 0.138 0.140.设这两批器材的电阻值分别服从),(211σµN ,),(222σµN ,且两样本独立.(1)试检验两个总体的方差是否相等(取α = 0.05)? (2)试检验两个总体的均值是否相等(取α = 0.05)?解:设两批电子器件样品的电阻分别为),(~211σµN X ,),(~222σµN Y ,(1)假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,1399.015.71)5,5(1)5,5()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (5, 5) = 7.15,双侧拒绝域W = {F ≤ 0.1399或F ≥ 7.15},因22002805.0=x s ,22002665.0=y s ,则W F ∉==1080.1002665.0002805.022,并且检验的p 值p = 2P {F ≥ 1.1080} = 0.9131 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的方差相等; (2)假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (10) = 2.2281,双侧拒绝域W = {| t | ≥ 2.2281}, 因1407.0=x ,1385.0=y ,s x = 0.002805,s y = 0.002665,n 1 = 6,n 2 = 6,002736.010002665.05002805.052)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∉=+×−=3718.16161002736.01385.01407.0,并且检验的p 值p = 2P {T ≥ 1.3718} = 0.2001 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的均值相等.27.某厂使用两种不同的原料生产同一类型产品,随机选取使用原料A 生产的样品22件,测得平均质量为2.36(kg ),样本标准差为0.57(kg ).取使用原料B 生产的样品24件,测得平均质量为2.55(kg ),样本标准差为0.48(kg ).设产品质量服从正态分布,两个样本独立.问能否认为使用原料B 生产的产品质量较使用原料A 显著大(取α = 0.05)?解:设两种原料生产的产品质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ 1 = µ 2 vs H 1:µ 1 < µ 2 ,未知2221,σσ,大样本,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W ≈ {u ≤ −1.645}, 因36.2=x ,55.2=y ,s x = 0.57,s y = 0.48,n 1 = 22,n 2 = 24, 有W u ∉−=+−=2171.12448.02257.055.236.222,并且检验的p 值p = P {U ≤ −1.2171} = 0.1118 > α = 0.05,故接受H 0,拒绝H 1,即可以认为使用原料B 生产的产品质量较使用原料A 不是显著大.习题7.31. 从一批服从指数分布的产品中抽取10个进行寿命测试,观测值如下(单位:h ): 1643 1629 426 132 1522 432 1759 1074 528 283根据这批数据能否认为其平均寿命不低于1100 h (取α = 0.05)? 解:设这批产品的寿命X ~ Exp (1/θ ),假设H 0:θ = 1100 vs H 1:θ < 1100,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,8508.10)20()2(205.02==χχαn ,左侧拒绝域W = {χ 2 ≤ 10.8508},因8.942=x ,n = 10,θ = 1100,则W ∉=××=1418.1711008.9421022χ,并且检验的p 值p = P {χ 2 ≤ 17.1418} = 0.3563 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命不低于1100 h .2. 某厂一种元件平均使用寿命为1200 h ,偏低,现厂里进行技术革新,革新后任选8个元件进行寿命试验,测得寿命数据如下:2686 2001 2082 792 1660 4105 1416 2089假定元件寿命服从指数分布,取α = 0.05,问革新后元件的平均寿命是否有明显提高? 解:设革新后元件的寿命X ~ Exp (1/θ ),假设H 0:θ = 1200 vs H 1:θ > 1200,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,2962.26)16()2(295.021==−χχαn ,右侧拒绝域W = {χ 2 ≥ 26.2962},因875.2103=x ,n = 8,θ = 1200,则W ∈=××=0517.281200875.2103822χ,并且检验的p 值p = P {χ 2 ≥ 28.0517} = 0.0312 < α = 0.05,故拒绝H 0,接受H 1,即可以认为革新后元件的平均寿命有明显提高.3. 有人称某地成年人中大学毕业生比例不低于30%,为检验之,随机调查该地15名成年人,发现有3名大学毕业生,取α = 0.05,问该人看法是否成立?并给出检验的p 值.解:设该地n 名成年人中大学毕业生人数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.3 vs H 1:p < 0.3, 选取统计量),(~p n b X n ,显著性水平α = 0.05,n = 15,p = 0.3, 有1268.07.03.005.00353.07.03.021515101515=⋅⋅<<=⋅⋅∑∑=−=−k k k kk kkkC C ,左侧拒绝域}1{≤=x n W ,因W x n ∉=3,并且检验的p 值2969.07.03.0}3{31515=⋅⋅=≤=∑=−k k k kC X n P p ,故接受H 0,拒绝H 1,即可以认为该人看法成立.4. 某大学随机调查120名男同学,发现有50人非常喜欢看武侠小说,而随机调查的85名女同学中有23人喜欢,用大样本检验方法在α = 0.05下确认:男女同学在喜爱武侠小说方面有无显著差异?并给出检验的p 值. 解:设n 1名男同学中有∑==111n i i X X n 人喜欢看武侠小说,n 2名女同学中有∑==212n j j Y Y n 人喜欢看武侠小说,有),(~111p n B X n ,),(~222p n B Y n ,大样本,有⎟⎟⎠⎞⎜⎜⎝⎛−1111)1(,~n p p p N X &,⎟⎟⎠⎞⎜⎜⎝⎛−2222)1(,~n p p p N Y &, 则⎟⎟⎠⎞⎜⎜⎝⎛−+−−−22211121)1()1(,~n p p n p p p p N Y X &,即)1,0(~)1()1()()(22211121N n p p n p p p p Y X &−+−−−−,当p 1 = p 2 = p 但未知时,此时用总频率2121ˆn n Yn X n p++=作为p 的点估计替换p ,在大样本场合,有)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,假设H 0:p 1 = p 2 vs H 1:p 1 ≠ p 2, 大样本,选取统计量)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96},因n 1 = 120,n 2 = 85,501=x n ,232=y n ,有3561.0851202350ˆ2121=++=++=n n y n x n p,则W u ∈=+−×−=1519.28511201)3561.01(3561.0852312050,并且检验的p 值p = 2P {U ≥ 2.1519} = 0.0314 < α = 0.05,故拒绝H 0,接受H 1,可以认为男女同学在喜爱武侠小说方面有显著差异.5. 假定电话总机在单位时间内接到的呼叫次数服从泊松分布,现观测了40个单位时间,接到的呼叫次数如下:0 2 3 2 3 2 1 0 2 2 1 2 2 1 3 1 1 4 1 1 5 1 2 2 3 3 1 3 1 3 4 0 6 1 1 1 4 0 1 3.在显著性水平0.05下能否认为单位时间内平均呼叫次数不低于2.5次?并给出检验的p 值. 解:设电话总机在单位时间内接到的呼叫次数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 2.5 vs H 1:λ < 2.5, 大样本,选取统计量)1,0(~N nX U &λλ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因975.1=x ,n = 40,λ = 2.5, 则W u ∈−=−=1.2405.25.2975.1,并且检验的p 值p = P {U ≤ −2.1} = 0.0179 < α = 0.05,故拒绝H 0,接受H 1,不能认为单位时间内平均呼叫次数不低于2.5次;6. 通常每平方米某种布上的疵点数服从泊松分布,现观测该种布100 m 2,发现有126个疵点,在显著性水平0.05下能否认为该种布每平方米上平均疵点数不超过1个?并给出检验的p 值. 解:设每平方米该种布上的疵点数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 1 vs H 1:λ > 1, 大样本,选取统计量)1,0(~N nX U &λλ−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645},因26.1=x ,n = 100,λ = 1, 则W u ∈=−=6.21001126.1,并且检验的p 值p = P {U ≥ 2.6} = 0.0047 < α = 0.05, 故拒绝H 0,接受H 1,不能认为该种布每平方米上平均疵点数不超过1个; 7. 某厂的一批电子产品,其寿命T 服从指数分布,其密度函数为p (t ; θ ) = θ −1exp{− t /θ } I t > 0,从以往生产情况知平均寿命θ = 2000 h .为检验当日生产是否稳定,任取10件产品进行寿命试验,到全部失效时停止.试验得失效寿命数据之和为30200.试在显著性水平α = 0.05下检验假设H 0:θ = 2000 vs H 1:θ ≠ 2000.解:假设H 0:θ = 2000 vs H 1:θ ≠ 2000,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,5908.9)20()2(2025.022/==χχαn ,1696.34)20()2(2975.022/1==−χχαn ,双侧拒绝域W = {χ 2 ≤ 9.5908或χ 2 ≥ 34.1696},因30201030200==x ,n = 10,θ = 2000, 则W ∉=××=20.30200030201022χ,并且检验的p 值p = P {χ 2 ≥ 30.20} = 0.0667 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命等于2000 h . 8. 设X 1, X 2, …, X n 为取自两点分布b (1, p )的随机样本.(1)试求单侧假设检验问题H 0:p ≤ 0.01 vs H 1:p > 0.01的显著水平α = 0.05的检验; (2)若要这个检验在p = 0.08时犯第二类错误的概率不超过0.10,样本容量n 应为多大? 解:(1)假设H 0:p = 0.01 vs H 1:p > 0.01,若为小样本,选取统计量),(~1p n b X X n ni i ∑==,显著性水平α = 0.05,p = 0.01,取⎭⎬⎫⎩⎨⎧≥⋅⋅=⎭⎬⎫⎩⎨⎧≤⋅⋅=∑∑−=−=−95.099.001.0min 05.099.001.0min 102c k k n k k n n c k kn k k n C C c ,当n ≤ 5时,c 2 = 1;当6 ≤ n ≤ 35时,c 2 = 2;当36 ≤ n ≤ 82时,c 2 = 3;当83 ≤ n ≤ 137时,c 2 = 4; 右侧拒绝域}{2c x n W ≥=, 根据x n ,作出决策; 若为大样本,选取统计量)1,0(~)1(N np p pX U &−−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 计算u ,作出决策;(2)在p = 0.08时,)08.0,(~1n b X X n ni i ∑==,则犯第二类错误的概率10.092.008.0}08.0|{}08.0|{1022≤⋅⋅==<==∉=∑−=−c k k n k kn C p c X n P p W X n P β,当n ≤ 5时,c 2 = 1,β = 0.92n ≥ 0.6591;当6 ≤ n ≤ 35时,c 2 = 2,2184.092.008.01≥⋅⋅=∑=−k k n k kn C β;当36 ≤ n ≤ 82时,c 2 = 3, 若n = 64,1050.092.008.02=⋅⋅=∑=−k kn kknC β;若n = 65,0991.092.008.02=⋅⋅=∑=−k k n k kn C β;故n ≥ 65.9. 有一批电子产品共50台,产销双方协商同意找出一个检验方案,使得当次品率p ≤ p 0 = 0.04时拒绝的概率不超过0.05,而当p > p 1 = 0.30时,接受的概率不超过0.1,请你帮助找出适当的检验方案. 解:设这批电子产品中的次品数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.04 vs H 1:p > 0.04, 小样本,选取统计量),(~p n b X n , 显著性水平α = 0.05,p = 0.04,。
概率论与数理统计第七章课后习题及参考答案
5.设总体 X 的概率密度为
f
(x,
)
(
1) x
,0
x
1,
0, 其他.
其中 1是未知参数, X1 , X 2 ,…, X n 是来自 X 的一个样本.试求参数
2
的矩估计和极大似然估计.现有样本观测值 0.1 ,0.2 ,0.9 ,0.8 ,0.7 及 0.7 ,
求参数 的矩估计值和极大似然估计值.
1 2 2 c 2 2 ( 1 c) 2 ,
n
n
取 c 1 即可. n
14.设总体 X 的均值为 ,方差为 2 ,从总体中抽取样本 X1 , X 2 , X 3 ,证明
(
x,
,
2
)
1
1
1
e 2 2
(ln x )2
,
x
0,
2 x
0,
x 0.
其中 , 0 为未知参数, X1 , X 2 ,…, X n 是取自该总体的一
个样本,求参数 , 2 的极大似然估计.
解: xi 时,似然函数为
L(, 2 )
(
1 2 )n
1 x1x2 xn
exp{
dL
d
n exp{
n i 1
( xi
)}
0,
所以 L( ) 是 的单调增函数,从而对满足条件 xi 的任意 ,有
n
n
L( ) exp{ i1 (xi )} exp{ i1 (xi m1iinn{xi})} ,
即 L( ) 在 m1iinn{xi} 时取最大值, 故 的极大似然估计值为ˆ m1iinn{xi} . 7.(1) 设总体 X 具有分布律
ˆ1 X1 ;
ˆ2
《概率论与数理统计1—7章》答案详解
第一章 基本概念记录检查结果。
件产品也就停止检查,者查满件次品就停止检查,或如果查出“次品”,正品”,不合格的盖上行检查,合格的盖上“对某工厂生产的产品进取的次数;次品全部取出,记录抽只),直到将取一只(取出后不放回只是次品,每次从中任只产品中有个球;,从中同时取出、、、、分别为个外形相同的球,编号一个口袋中有掷一颗骰子;出一个样本空间:试对下列随机试验各写42)4(3310)3(3543215)2()1(.1件产品这两种情况件是次品和查满样本空间包括查出=代表次品代表正品,数字)用数字(个是次品部抽出,总能抽出只产品全抽取的次数是把取出的都是次品;最多最少抽取的次数是每次,,,,,,,=)(种=个球进行组合,有个球中选=)(=)解:(42)}1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(014310}109876543{31035)}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(2}6,5,4,3,2,1{135ΩΩΩΩC (4) 漏一点 ( 0,1,1,1)集表示。
个事件用样本空间的子这出厂”、“不予出厂”“再作检查”、“降级出厂”、样本空间,并将“正常厂。
试写出这一试验的件以上次品就不允许出级后出厂;若有件次品则将这批产品降查;若有件次品就再作进一步检有批产品正常出厂;若件产品全合格就允许这件产品来做检查,若任意取出批产品中检查方法,约定,从这前的最后检查,用抽样工厂对一批产品作出厂422144.2)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{()}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{()}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{()}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{()}1,1,1,1{(01=⋃⋃⋃=Ω===DC B AD C B A D C B A ==“不予出厂”=“降级出厂”;=“再作检查”;=“正常出厂”;设代表次品代表正品,数字解:用数字个发生。
{精品}27173概率论与数理统计课后答案第7章答案
习题7.11.设总体X服从指数分布f(x;λ)={λe−λx,x≥0,λ>0;0, x<0.试求λ的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取18个电子元件,测得寿命数据如下(单位:小时):16, 19, 50, 68, 100, 130, 140, 270, 280, 340, 410, 450, 520, 620, 190, 210, 800, 1100.求λ的估计值.解:似然函数为L(λ)=∏λe−λx ini=1=λn e−λ∑x ini=1lnL(λ)=nlnλ−λ∑x ini=1令d lnL(λ)dλ=nλ−∑x ini=1=0得λ̂=n∑x ini=1=1x=1118(16+19+,⋯,1100)=13182.设总体X的概率密度为f(x)={θxθ−1,0<x<1;0, 其他.θ>0试求(1) θ的矩估计θ̂1; (2)θ的极大似然估计θ̂2.解:(1)E(X)=∫xf(x)dx+∞−∞=∫x∙θxθ−1dx1=∫θxθdx1=θθ+1E(X)=x=θθ+1θ的矩估计θ̂1=x 1−x(2)似然函数为L(θ)=∏θx iθ−1ni=1=θn(x1,x2,⋯x n)θ−1lnL(θ)=nlnθ+(θ−1)[lnx1+lnx2,⋯lnx n]=nlnθ+(θ−1)∑lnx ini=1令d lnL(θ)dθ=nθ+∑x ini=1=0解得θ̂2=−n ∑x i ni=13.设总体X服从参数为λ(λ>0)的泊松分布,试求λ的矩估计λ̂1和极大似然估计λ̂2.(可参考例7-8)解:由X服从参数为λ的泊松分布∴E(X)=λ由矩法,应有x=λ∴λ̂1=x似然函数为L(λ)=∏λi x ini=1e−λ=λ∑x ix1!x2!⋯x n!e−nλlnL(λ)=(∑x i)lnλ−nλ−ln (x1!x2!⋯x n!)d lnL(λ)dλ=∑x iλ−n=0解得λ的极大似然估计为λ̂2=1n∑x ini=1=X习题7.21.证明样本均值x是总体均值μ的相合估计.证:∵E(x)=μ,D(x)=σ2n→0(n→∞)∴由定理7−1知x是μ的相合估计.2.证明样本的k阶矩A k=1n ∑x i kni=1是总体k阶矩E(x k)的相合估计量.证:∵E(A k)=E(1n∑x i kni=1)=E(x k), D(A k)=D(1n∑x i kni=1)=1n2∑D(x i k)ni=1→0(n→0)∴A k=1n∑x i kni=1是E(x k)的相合估计.3.设总体X~N(μ,1),−∞<μ<∞,(x1,x2,x3)为其样品.试证下述三个估计量:(1)μ̂1=15x1+310x2+12x3;(2)μ̂2=13x1+14x2+512x3;(3)μ̂3=13x1+16x2+12x3都是μ的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:∵E(μ̂1)=15E(x1)+310E(x2)+12E(x3)=15μ+310μ+12μ=μE(μ̂2)=13E(x1)+14E(x2)+512E(x3)=13μ+14μ+512μ=μE(μ̂3)=13E(x1)+16E(x2)+12E(x3)=13μ+16μ+12μ=μ∴μ̂1,μ̂2,μ̂3都是μ的无偏估计.D(μ̂1)=125D(x1)+9100D(x2)+14D(x3)=125+9100+14=1950D(μ̂2)=19D(x1)+116D(x2)+25144D(x3)=19+116+25144=2572D(μ̂3)=19D(x1)+136D(x2)+14D(x3)=19+136+14=718故μ̂2的方差最小.4.设总体X~u(θ,2θ),其中θ>0是未知参数,又x1,x2,⋯x n为取自该总体的样品,x为样品均值.(1)证明θ̂=23x是参数θ的无偏估计和相合估计;(2)求θ的极大似然估计.(1)证:E(θ̂)=E(23x)=23E(x)=23∗32θ=θ∴θ̂=23x 是参数θ的无偏估计 又D(θ̂)=D (23x)=49D (x )=49∗θ212n =θ227n →0(n →∞)∴θ̂=23x 是参数θ的相合估计.(2) X~u (θ,2θ)故其分布密度为f (x )={1θ, 0≤x ≤2θ (θ>0)0, 其他似然函数L (θ)={1θn , 0≤x i ≤2θ (i =1,2,⋯n)0, 其他因对所有x i 有0≤x i ≤2θ (i =1,2,⋯n ) ∴0≤max{x 1,x 2,⋯x n }≤2θ习题7.31. 土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度X~N (μ,0.22).现从中抽取容量为6的样本测得样本观测值并算的x =8.54,求μ的置信度0.9的置信区间. 解:α=1−0.9=0.1,u 0.05=1.64 置信度为0.9的置信区间是[x −σx+σ=[8.54−1.64∗0.2√68.54+1.64∗0.2√6]≈[8.41,8.67]2. 设轮胎的寿命X 服从正态分布,为估计某种轮胎的平均寿命,随机地抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.68 4.85 4.32 4.85 4.615.02 5.20 4.60 4.58 4.72 4.38 4.7 试求平均寿命μ的0.95的置信区间.(例7-21, σ未知时μ的置信区间)解: x =4.7092,S 2=0.0615.α=1−0.95=0.05,查t 分布表知t 0.025(11)=2.2010平均寿命μ的0.95的置信区间为:[x −t α2(n −1)s√nx +t α2(n −1)s√n] =[4.7092−2.2010∗√0.0615√12 4.7092+2.2010∗√0.0615√12]=[4.5516 ,4.8668]3. 两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径X,Y 分别服从N (μ1,σ12),N (μ2,σ22),其中σi 2,μi 未知(i =1,2).现由甲,乙两车床的产品中分别抽出25个和15个,测得s 12=6.38,s 22=5.15.求两总体方差比σ12/σ22的置信度0.90的置信区间.解:此处n 1=25, n 2=15, s 12=6.38, s 22=5.15,α=1−0.90=0.1,α2=0.05σ12/σ22的置信度0.90的置信区间为:[s 12s 22∙1F α2(n 1−1,n 2−1),s 12s 22∙1F 1−α2(n 1−1,n 2−1)]=[6.385.15∙1F 0.05(24,14),6.385.15∙1F 0.95(24,14)] =[1.24∗12.35,1.24∗]4. 某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下: 14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8设滚珠直径服从正态分布,若(1) 已知滚珠直径的标准差σ=0.15毫米; (2) 未知标准差σ.求直径均值μ的置信度0.95的置信区间.解: (1) x =14.91,α=1−0.95=0.05,u 0.025=1.96直径均值μ的置信度0.95的置信区间为:[x −σx+σ=[14.91−1.96∗0.15√914.91+1.96∗0.15√9≈[14.812,15.008](2)x =14.91,S 2=0.041,α=1−0.95=0.05,t 0.025(8)=2.306 置信度0.95的置信区间为:[x −2√nx +2√n] =[14.91−2.306∗√0.041√914.91+2.306∗√0.041√9]=[14.754 ,15.066]5. 设灯泡厂生产的一大批灯泡的寿命X 服从正态分布N (μ,σ2),其中μ,σ2未知.令随机地抽取16个灯泡进行寿命试验,测得寿命数据如下(单位:小时): 1502 1480 1485 1511 1514 1527 1603 1480 1532 1508 1490 1470 1520 1505 1485 1540求该批灯泡平均寿命μ的置信度0.95的置信区间.解: x =1509.5,S 2=1038.5,α=1−0.95=0.05,t 0.025(15)=2.1315 置信度0.95的置信区间为: [x −t α2(n −1)s√nx +t α2(n −1)s√n ] =[1509.5−2.1315∗√1038.5√161509.5+2.1315∗√1038.5√16]=[1492.328 ,1526.672]6. 求上题灯泡寿命方差σ2的置信度0.95的置信区间.解: S 2=1038.5,α=1−0.95=0.05,查表知χ0.0252(15)=27.488,χ0.9752(15)=6.262置信度0.95的置信区间为:[(n −1)s 2χα22(n −1),(n −1)s 2χ1−α22(n −1)]=[15∗1038.527.488,15∗1038.56.262]=[566.702,2487.624]7. 某厂生产一批金属材料,其抗弯强度服从正态分布.现从这批金属材料中随机抽取11个试件,测得它们的抗弯强度为(单位:公斤):42.5 42.7 43.0 42.3 43.4 44.5 44.043.8 44.143.9求(1)平均抗弯强度μ的置信度0.95的置信区间. (2)抗弯强度标准差σ的置信度0.90的置信区间.解: (1) x =43.4,S 2=0.5207,α=1−0.95=0.05,查表知t 0.025(10)=2.2281置信度0.95的置信区间为:[x −2√nx +2√n] =[43.4−√0.5207√1143.4+√0.5207√11]=[42.915,43.885](2) S 2=0.5207,α=1−0.90=0.1,查表知χ0.052(10)=18.307,χ0.952(10)=3.940 σ2置信度0.90的置信区间为:[(n −1)s 2χα22(n −1),(n −1)s 2χ1−α22(n −1)]=[10∗0.520718.307,10∗0.52073.940]=[0.284,1.322]故σ的置信度0.90的置信区间为[0.53,1.15]8. 设两个正态总体N (μ1,σ2),N (μ2,σ2)中分别取容量为10和12的样本,两样本互相独立.经算得x =20, y =24,又两样本的样本标准差s 1=5,s 2=6.求μ1−μ2的置信度0.95的置信区间. 解:S w =√(n 1−1)s 12+(n 2−1)s 22n 1+n 2−2=√9∗25+11∗3610+12−2=5.572α=1−0.95=0.05,查表知t 0.025(20)=2.086 故μ1−μ2的置信度0.95的置信区间为:[x −y −t α2(n 1+n 2−2)√1n 1+1n 1S w ,x −y +t α2(n 1+n 2−2)√1n 1+1n 1S w ]=[20−24−2.086∗√110+112∗5.572,20−24+2.086∗√110+112∗5.572]=[−8.975,0.975]9. 为了估计磷肥对农作物增产的作用,现选20块条件大致相同的土地.10块不施磷肥,另外10块施磷肥,得亩产量(单位:公斤)如下: 不施磷肥的 560 590 560 570 580 570 600 550 570 550施磷肥的 620 570650600630580570600600580设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均亩产之差作区间估计(α=0.05).解: x =570,y =600,S x 2=64009,S y 2=24009α=0.05,查表知t 0.025(18)=2.1009S w =√(n 1−1)s 12+(n 2−1)s 22n 1+n 2−2=√44009=22.11[x −y −t α2(n 1+n 2−2)√1n 1+1n 1S w ,x −y +t α2(n 1+n 2−2)√1n 1+1n 1S w ]=[600−570−2.1009∗√110+110∗22.11,600−570+2.1009∗√110+110∗22.11]=[9.23,50.77]10. 有两位化验员A,B 独立地对某种聚合的含氮量用同样的方法分别进行10次和11次测定,测定的方差分别为s 12=0.5419,s 22=0.6065.设A,B 两位化验员测定值服从正态分布,其总体方差分别为σ12,σ22.求方差比σ12/σ22的置信度0.9的置信区间. 解:α=1−0.9=0.1,查表知F 0.05(9,10)=3.02,F 0.95(9,10)=1F 0.05(10,9)=13.14=0.318故σ12/σ22的置信度0.9的置信区间为: [s 12s 22⁄F α2(n 1−1,n 2−1),s 12s 22⁄F 1−α2(n 1−1,n 2−1)] =[0.54190.6065⁄3.02,0.54190.6065⁄0.318]=[0.295,2.81] 自测题7 一、填空题设总体X~N (μ,σ2)x 1,x 2,x 3是来自X 的样本,则当常数a =12时,μ̂=13x 1+ax 2+ 16x 3是未知参数μ的无偏估计.解: μ̂=13x 1+ax 2+ 16x 3是未知参数μ的无偏估计 则E (μ̂)=13E (x 1)+aE (x 2)+ 16E (x 3)=13μ+aμ+ 16μ∴a =12二、一台自动车床加工零件长度X(单位:厘米)服从正态分布N (μ,σ2).从该车床加工的零件中随机抽取4个,测得长度分别为:12.6,13.4,12.8,13.2. 试求: (1)样本方差S 2;(2)总体方差σ2的置信度为95%的置信区间.(附:u 0.025=1.96,u 0.05=1.645,χ0.0252(3)=9.348,χ0.9752(3)=0.216,χ0.0252(4)=11.143, χ0.9752(4)=0.484)解: (1)x =12.6+13.4+12.8+13.24=13S 2=1n −1∑(x i −x )2n i=1=0.43(2)σ2置信度0.90的置信区间为:[(n −1)s 2χα22(n −1),(n −1)s 2χ1−α22(n −1)]=[3∗0.439.348,3∗0.430.216]=[0.04,1.85]三、设总体X~N (μ,σ2),抽取样本x 1,x 2⋯x n ,x =1n ∑x i n i=1为样本均值.(1) 已知σ=4,x =12,n =144,求μ的置信度为0.95的置信区间;(2) 已知σ=10,问:要使μ的置信度为0.95的置信区间长度不超过5,样本容量n 至少应取多大?(附u 0.025=1.96,u 0.05=1.645) 解: (1) μ的置信度为0.95的置信区间为:[x −σx +σ=[12−1.96∗4√14412+1.96∗4√144=[11.347,12.653](2) μ的置信度为0.95的置信区间为[x−x +故区间长度为2u α2√n∴σ≤5,解得n ≥61.5≈62四、某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高(单位:厘米)后,算的x =175.9,y =172.0;S 12=11.3,S 22=9.1.假设两市新生身高分别服从正态分布: X~N (μ1,σ2),Y~N (μ2,σ2),其中σ2未知.试求μ1−μ2的置信度为0.95的置信区间.(附: t 0.025(9)=2.2622, t 0.025(11)=2.2010) 解:S w =√(n 1−1)s 12+(n 2−1)s 22n 1+n 2−2=√90.79=3.17[x −y −t α2(n 1+n 2−2)√1n 1+1n 1S w ,x −y +t α2(n 1+n 2−2)√1n 1+1n 1S w ]=[175.9−172−2.2622∗0.61∗3.17,175.9−172+2.2622∗0.605∗3.17] =[−0.474,8.274]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:此处n1
=
25,
n2
=
15,
s12
=
6.38,
s22
=
5.15, α
=
1
−
0.90
=
0.1, α
2
=
0.05
σ12/σ22的置信度 0.90 的置信区间为:
[ss1222
∙
Fα(n1
2
−
1 1,
n2
−
1)
,
s12 s22
∙
F1−α2 (n1
1 − 1,
n2
−
1)]
6.38
1
6.38
1
= [5.15 ∙ F0.05(24,14) , 5.15 ∙ F0.95(24,14)]
∴ λ̂1 = x
似然函数为
L(λ)
=
n
∏
i=1
λi xi
e−λ
=
x1!
λ ∑ xi x2! ⋯
xn!
e−nλ
lnL(λ) = (∑ xi) lnλ − nλ − ln(x1! x2! ⋯ xn!)
d
lnL(λ) dλ
=
∑ xi λ
−
n
=
0
解得λ 的极大似然估计为
λ̂2
=
1n n∑
xi
=
X
i=1
习题 7.2
1
1
5
11 5
E(μ̂2) = 3 E(x1) + 4 E(x2) + 12 E(x3) = 3 μ + 4 μ + 12 μ = μ
E(μ̂ 3)
=
1 3
E(x1)
+
1 6
E(x2)
+
1 2
E(x3)
=
1 3
μ
+
1 6
μ
+
1 2
μ
=
μ
∴ μ̂1, μ̂2, μ̂3都是 μ 的无偏估计.
1
9
1
1 9 1 19
(2) 未知标准差σ.
求直径均值μ 的置信度 0.95 的置信区间.
解: (1) x = 14.91, α = 1 − 0.95 = 0.05, u0.025 = 1.96
直径均值μ 的置信度 0.95 的置信区间为:
σ
σ
[x − uα , x + uα ]
2 √n
2 √n
0.15
0.15
= [14.91 − 1.96 ∗ , 14.91 + 1.96 ∗ ]
i=1
令
d lnL(θ) n n dθ = θ + ∑ xi = 0
i=1
解得
θ̂ 2
=
−
n ∑ni=1
xi
3. 设总体 X 服从参数为λ(λ > 0)的泊松分布, 试求 λ 的矩估计λ̂1和极大似然估计 λ̂2.(可参考例 7-8)
解: 由 X 服从参数为 λ 的泊松分布 ∴ E(X) = λ
由矩法,应有x = λ
tα(n − 1)s tα(n − 1)s
[x − 2
,x+ 2
]
√n
√n
2.2281 ∗ √0.5207
2.2281 ∗ √0.5207
= [43.4 −
, 43.4 +
]
√11
√11
= [42.915,43.885]
(2) S2 = 0.5207, α = 1 − 0.90 = 0.1, 查表知χ02.05(10) = 18.307, χ02.95(10) = 3.940
D(x2)
+
1 4
D(x3)
=
1 9
+
1 36
+
1 4
=
7 18
故μ̂ 2 的方差最小. 4. 设总体X~u(θ, 2θ), 其中 θ > 0 是未知参数, 又x1, x2, ⋯ xn为取自该总体的样品
, x为样品均值.
(1) 证明θ̂ = 2 x是参数 θ 的无偏估计和相合估计;
3
(2) 求θ 的极大似然估计. (1) 证:
习题 7.1 1. 设总体 X 服从指数分布
f(x; λ) = {λe−λ0x,,
x ≥ 0, λ > 0; x < 0.
试求λ的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取
18 个电子元件,测得寿命数据如下(单位:小时):
16, 19, 50, 68, 100, 130, 140, 270, 280,
D(μ̂1) = 25 D(x1) + 100 D(x2) + 4 D(x3) = 25 + 100 + 4 = 50
1
1
25
1 1 25 25
D(μ̂2) = 9 D(x1) + 16 D(x2) + 144 D(x3) = 9 + 16 + 144 = 72
D(μ̂ 3 )
=
1 9
D(x1)
+
1 36
−∞
=
1
∫x
0
∙
θxθ−1dx
=
1
∫ θxθdx
0
=
θ
θ +
1
E(X)
=
x
=
θ
θ +
1
θ
的矩估计θ̂1
=
1
x −
x
(2)
n
似然函数为 L(θ) = ∏ θxiθ−1 = θn(x1,x2, ⋯ xn)θ−1
i=1
n
lnL(θ) = nlnθ + (θ − 1)[lnx1 + lnx2, ⋯ lnxn] = nlnθ + (θ − 1) ∑ lnxi
σ2置信度 0.90 的置信区间为:
(n − 1)s2 (n − 1)s2
10 ∗ 0.5207 10 ∗ 0.5207
[χ2α(n
2
−
1)
,
χ12−α2 (n
−
1)]
=
[
18.307
,
3.940
] = [0.284,1.322]
故������的置信度 0.90 的置信区间为[0.53,1.15]
8. 设两个正态总体N(μ1, σ2), N(μ2, σ2)中分别取容量为 10 和 12 的样本,两样本互
x2
+
1 2
x3;
(2)
μ̂ 2
=
1 3
x1
+
1 4
x2
+
5 12
x3
;
(3)
μ̂ 3
=
1 3
x1
+
1 6
x2
+
1 2
x3
都是μ的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
1
3
1
131
∵ E(μ̂1) = 5 E(x1) + 10 E(x2) + 2 E(x3) = 5 μ + 10 μ + 2 μ = μ
解: x = 4.7092, S2 = 0.0615. α = 1 − 0.95 = 0.05, 查 t 分布表知t0.025(11) = 2.2010
平均寿命μ 的 0.95 的置信区间为:
tα(n − 1)s tα(n − 1)s
[x − 2
,x+ 2
]
√n
√n
= [4.7092 − 2.2010 ∗ √0.0615 , 4.7092 + 2.2010 ∗ √0.0615]
0, 其他
似然函数
1 L(θ) = {θn , 0 ≤ xi ≤ 2θ (i = 1,2, ⋯ n)
0, 其他
因对所有xi有 0 ≤ xi ≤ 2θ (i = 1,2, ⋯ n) ∴ 0 ≤ max{x1, x2, ⋯ xn} ≤ 2θ
习题 7.3
1. 土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强
√9
√9
≈ [14.812,15.008]
(2)x = 14.91, S2 = 0.041, α = 1 − 0.95 = 0.05, t0.025(8) = 2.306 置信度 0.95 的置信区间为:
tα(n − 1)s tα(n − 1)s
[x − 2
,x+ 2
]
√n
√n
= [14.91 − 2.306 ∗ √0.041 , 14.91 + 2.306 ∗ √0.041]
340, 410, 450, 520, 620, 190, 210, 800, 1100.
求λ的估计值.
解:
n
似然函数为 L(λ) = ∏ λe−λxi = λne−λ ∑ni=1 xi
i=1
n
lnL(λ) = nlnλ − λ ∑ xi
i=1
令
d lnL(λ) n n dλ = λ − ∑ xi = 0
1 = [1.24 ∗ 2.35 , 1.24 ∗]
4. 某工厂生产滚珠,从某日生产的产品中随机抽取 9 个,测得直径(单位:毫米)如
下:
14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8
设滚珠直径服从正态分布,若
(1) 已知滚珠直径的标准差σ = 0.15毫米;
√12
√12
= [4.5516 , 4.8668]
3. 两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径 X,Y 分别服从