信号与系统第一章答案
信号与系统第一章习题答案
t 0 > 0 函数式的信号的波形如图 1.2(b)所示. 。
3
cos ωt
1 … …
−
5π 2ω
−
3π 2ω
−
π 2ω
-1
π 2ω
(a)
3π 2ω
5π 2ω
t
cos ωtε (t )
1
ε (t )
1
…
π 2ω
3π 2ω
5π 2ω
t
t
(b)
-1 (c ) 图 1.1
cos ωtε (t − t 0 )
1
P = lim
E =∞
1 T → ∞ 2T
1 ∫ [ε (t )] dt = 2
T 2 −T
(2) ε (t ) − ε (t − 1) 是脉冲信号,其为能量信号,能量为:
E = lim
[ε (t ) − ε (t − 1)]2 dt = ∫0 [ε (t ) − ε (t − 1)]2 dt =1 T →∞ ∫−T
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
1 2T
2
∫
T
−T
9
cos 2(ω0 t + θ ) + 1 1 9 9 dt = lim ⋅ ⋅ 2T = T → ∞ 2 2T 2 2
T 2
2ω t 1 − cos 0 1 cos ω0 t + 1 9ω 0t ω t 5 dt = lim + sin − sin 0 + ∫ − T T →∞ 2T 2 20 20 2
信号与系统课后习题答案
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统(应自炉)习题答案第1章 习题解重点
(222222j t k j t j t j k f t k e
e
e
e
f t π
π
π
πππ+++++==⨯==
∴原函数是周期函数,令1k =,则基波周期为2π。
1-2.
求信号( 14sin( 110cos(2--+=t t t f的基波周期。
解:cos(101 t +的基波周期为15
π,s i n (4
1-8.
用阶跃函数写出题图1-8所示各波形的函数表达式。
t
t
t
(a (
bc
题图1-8
解:(a)((((((3[31]2[11]f t t u t u t u t u t =++-+++-- (((3[13]t u t u t +-+---
(((((
(3 3(1 1(1 1(3 3f
t t u t t u t t u t t u t =+++--++-+-+--(b)([( (1]2[(1 (2]4(2 f t u t u t u t u t u t =--+---+-
1 t -的基波周期为
1
2
π二者的最小公倍数为π,故( 14sin( 110cos(2--+=t t t f的基波周期为π。
1-3.
设(3, 0<=tt f ,对以下每个信号确定其值一定为零的t值区间。
(1)(t f -1(2)((t f t f -+-21(3)((t f t f --21(4)(t f 3(5)(f
信号与系统 第一章答案
P lim
所以 x[n] 为非能量信号非功率信号。 (6) x[n] cos( n/ 4)
E
P 1 7 1 cos 2 ( n/ 4) 8 n 0 2
所以 x[n] 为功率信号。 1.4 (1)错误,如指数信号。 (2)错误,一个能量信号与一个功率信号之和为功率信号。 (3)正确。 (4)错误,如 x(t) e , t 0 (5)错误,可能为非能量信号非功率信号。 (6)正确。 1.5
2
x[n] cos 2 ( n/ 8)
cos( n/ 4) 1 2
1
N
2
8
4
所以 x[n] 为周期信号,周期 N 8 。 (4) x[n] cos(n/ 2) cos( n/ 4)
T1 2 4 1 2
所以 x[n] 不是周期信号。 1.3 (1) x(t) e , t 0
2
x(t ) cos 2 t =
1+ cos(2 t) T 2 / 2 2
所以 x(t ) 为周期信号,周期 T 。 (4) x(t ) cos( t ) 2sin( 3 t)
T1 2 / 2 T2 2 / 3 2 / 3
所以 x(t ) 不是周期信号。 1.2 (1) x[n] e
T
1 100 3 50 2 T lim T T 2T 3 3
所以 x(t ) 为非能量信号非功率信号。 (3) x(t) 10cos(5t ) cos(10 t)
x(t) 10cos(5t ) cos(10 t) 5[cos(15 t) cos(5 t)]
E | e2t |2 dt
0 0
信号与系统答案1
∫
∞
e jω0t [δ (t +T) δ (t T)]dt = e jω0 (T ) e jω0 (T )
= 2 j sin(ω0T)
2-5: (4)
x(t)
2 0 2 3 5
t
2 -1 0
x(t+1)
1 2 4
t
2 -3 0
x(t/3+1)
3 6 12
t
2-9:
x(t) = et [u(t 1) u(t 2)] + tδ (t 3), 求 (1) (t), x '(t) x ∵x(t) = et [u(t 1) u(t 2)] + 3δ (t 3)
3-31:
5 1 y[k ] y[k 1] + y[k 2] = x[k ], y(1) = 0, y(2) = 1, 6 6 x[k ] = u[k ]
根据单位脉冲响应的定义,应满足方程 解: (1) 根据单位脉冲响应的定义 应满足方程: 应满足方程 5 1 h[k ] h[k 1] + h[k 2] = δ [k ] 6 6 第一步:求等效初始条件 第一步 求等效初始条件 :
t
3-4 已知离散时间 系统,输入 x1[k ] = δ [k 1] 时,输出 已知离散时间LTI系统 输入 输出; 系统 输出
1 k 1 y1[k ] = ( ) u[k 1], 求当输入x2 [k ] = 2δ [k ] + u[k ]时系统响应y2 [k ]. 2
x2 [k ] = 2 x1[k + 1] +
2-13:(3)
x[3k ]
2 1 1
2
k
-1 0 1 2
2-13:(4)
信号与系统课后习题答案—第1章
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图〔a 〕、〔c 〕、〔d 〕; ② 离散信号:图〔b 〕; ③ 周期信号:图〔d 〕; ④ 非周期信号:图〔a 〕、〔b 〕、〔c 〕; ⑤有始信号:图〔a 〕、〔b 〕、〔c 〕。
1-2 某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1〕可加性不失一般性,设f(t)=f 1(t)+f 2(t),那么y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2〕齐次性由条件,y(t)=T[f(t)]=|f(t)|,那么T[af(t)]=|af(t)|≠a|f(t)|=ay(t) 〔其中a 为任一常数〕即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由条件y(t)=T[f(t)]=|f(t)|,那么y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
信号与系统第一章习题解答
Problems Solution
xn
1
1
0
-4 -3 -2 -1 0 1 2 3 4
n
(a)
xe n
n
x0 n
1
-4 -3 -2 -1 0 1 2 3 4
n
Chapter 1
2
Problems Solution
3
xn
3 xe n
12
-2
12
1
-1 0
7
Chapter 1
Problems Solution
作业: 1.14 1.15 1.16 1.17
1.21 (d) (e) (f)
1.22 (d) (g)
1.23
1.24 (a) (b) 1.26 (a) (b) 1.27 1.31
Chapter 1 1.14
1 , 0 t 1 xt T 2 -2, 1t 2
xt
1
2 1 0
1
xe t
1
t
-2 -1 0 1 2
t
(b)
x t
1
xo t
-2 -1
1/ 2
1
0
1
2
t
1/ 2
0
1 2
t
Chapter 1 1.24 Determine and sketch the even and odd parts of the signals.
1
-2 -1 0 1
Problems Solution
xt
gt
k
t 2k
2
3
2
信号与系统第一、二、三章自测题解答
第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。
3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。
4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。
(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。
答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。
答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。
信号与系统课后习题答案
f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C
−
uC (t) R1C
−
iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
信号与系统智慧树知到课后章节答案2023年下宁波大学
信号与系统智慧树知到课后章节答案2023年下宁波大学宁波大学第一章测试1.下列信号的分类方法不正确的是()A:数字信号和离散信号 B:确定信号和随机信号 C:周期信号和非周期信号 D:连续信号与离散信号答案:数字信号和离散信号2.下列表达式中正确的是()A:δ(2t)=δ(2/t) B:δ(2t)=δ(t) C:δ(2t)=2δ(t) D:δ(2t)=δ(t)/2答案:δ(2t)=δ(t)/23.信号平移、反转和尺度变化的最佳作图顺序是()A:先平移,再尺度变换,最后反折 B:先尺度变换,再平移,最后反折 C:先平移,再反折,最后尺度变换 D:先反折,再尺度变换,最后平移答案:先平移,再尺度变换,最后反折4.差分方程是指由未知输出序列项与输入序列项构成的方程。
未知序列项变量最高序号与最低序号的差数,称为差分方程的阶数。
()A:对 B:错答案:对5.系统y(t)=2(t+1)x(t)+cos(t+1)是因果系统。
()A:对 B:错答案:对第二章测试1.线性系统响应满足以下规律()A:若初始状态为零,则零状态响应为零 B:若系统的零状态响应为零,则强迫响应也为零 C:若系统的起始状态为零,则系统的自由响应为零 D:若初始状态为零,则零输入响应为零。
答案:若初始状态为零,则零输入响应为零。
2.卷积δ(t)*f(t)*δ(t)的结果为()A:δ(t) B:f(2t) C:f(t) D:δ(2t)答案:f(t)3.()A: B: C: D:答案:4.若y(t)=x(t)*h(t),则y(-t)=x(-t)*h(-t)。
()A:对 B:错答案:错5.已知,,则的非零值区间为[0,3]。
()A:错 B:对答案:对第三章测试1.某人每月初在银行存入一定数量的款f(k),月息为β,建立求第k个月初存折上款数的差分方程()。
A: B:C:D:答案:2.ε(k)∙ε(k-5)=()A:ε(k-5) B:ε(k) C:ε(k-4) D:(k-4)ε(k-5)答案:ε(k-5)3.某离散时间系统的差分方程a1y(k+1)+a2y(k)+a3y(k-1)=b1f(k+1)+b2f(k),该系统的阶次为()A:4 B:2 C:3 D:1答案:24.离散系统的零状态响应等于激励信号f(k)与单位样值响应h(k)的卷积()A:对 B:错答案:对5.若y(t)=x(t)*h(t),则y(-t)=x(-t)*h(-t)。
信号与系统第一章答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与系统自测题(第1章 参考答案)
、 f (−at ) 左移 t B、 f ( at ) 右移 t t t C、 f ( at ) 左移 D、 f ( −at ) 右移 a a 注: f (t − at ) = f [−a(t − ta )] 20、 f ( −t + 2) 是下面哪一种运算的结果( B ) 。 B、 f ( −t ) 向右移 2 个单位 A、 f (t ) 向左移 2 个单位 C、 f ( −2t ) 向右移 1 个单位 D、 f (t ) 向右移 2 个单位 注: f (−t + 2) = f [−(t − 2)] 21、 f (2t ) 是下面哪一种运算的结果( C ) 。 A、 f (t ) 向左移 2 个单位 B、 f ( −t ) 向右移 2 个单位 C、 f (t ) 压缩 1 倍 D、 f (t ) 扩展 1 倍 22、已知信号的波形如下图所示,则 f (t ) 的表达式为( C ) 。
A
0 0 0 0 0 0
f (t )
t
、 f (t ) = tu(t ) B、 f (t ) = (t − 1)u (t − 1) C、 f (t ) = tu (t − 1) D、 f (t ) = 2(t − 1)u (t − 1) 注: 23、已知信号 f (t ) 的波形如下图所示,则 f (5 − 2t ) 的波形为( C ) 。
∞ 2 −∞
t
D 2δ (2t ) =
、
1 δ (t ) 2
、 ∫ (t + t )δ (t − 1)dt = 3 D、 tδ ′(t ) = tδ (t ) 6、积分 ∫ (τ − 2)δ (τ )dτ 等于( B ) 。 A、−2δ (t ) B、−2u (t ) C、u (t − 2) 注: ∫ (τ − 2)δ (τ )dτ = (0 − 2)∫ δ (τ )dτ = −2u(t )
[信号与系统作业解答]第一章
1-3、分别求下列各周期信号的周期 T 1) cos(10 t ) cos(30 t) ; 2) e j 10 t ; 4)
(1)n[u(t nT ) u(t nT T )]
n 0
n
(1) [u(t nT ) u(t nT T )]
图(b)表达式为:
f ( t ) u( t ) u( t 1) 2[u( t 1) u( t 2)] 3u( t 2) ; u( t ) u( t 1) u( t 2)
图(c)表达式为: f ( t ) sin
t [u( t ) u( t T )] ; T
C1e1 (t ) C2e2 (t ) sin[C1e1 (t ) C2e2 (t )]u(t ) C1r1 (t ) C2r2 (t )
由于
所以系统是非线性的。
e( t ) r (t ) sin[e( t )]u(t )
而
e(t t0 ) sin[e(t t0 )]u(t ) r (t t0 ) sin[e(t t0 )]u(t t0 )
5)由于 e1 (t ) r1 (t ) e1 (2t ) , e2 (t ) r2 (t ) e2 (2t ) , 而
C1e1 (t ) C2e2 (t ) C1e1 (2t ) C2e2 (2t ) C1r1 (t ) C2r2 (t )
由于
所以系统是线性的。
C1e1 ( t ) C 2e2 ( t ) C1e1 (t ) C 2e2 (t ) C1r1 (t ) C 2r2 (t )
由于
2
所以系统是非线性的。
信号与系统第一章答案
w0 )*m, and m=3. w0 )*m=10
Because
w0 =3 /5, N=(2 /
m/3 ,
it’s not a rational number.
13/37
5 Exercises Answers
1.11 Solution
x[n ] 1 e e
j 4 n 7 j 4 n 7 j 2 n 5
Then,
y[n] 2 x[n 2] 5x[n 3] 2 x[n 4]
16/37
5 Exercises Answers
(b) No. For it’s linearity.
the relationship between
y1 [ n ]
and x 2 [n]
is the same in-out relationship with (a).
2
9/37
5 Exercises Answers
(e) x 2 [n] e
E
j(
) 2n 8 2 j( ) 2n 8
n
e
12
n -
N 1 1 1 P lim E lim 1 lim 2N+1 1 N 2N 1 N 2N 1 N 2N 1 n -N (f) x 2 [n ] cos( 4 n ) n 1 cos 2 E cos2 ( n ) 4 2 n n 1 cos n N 1 1 1 1 2 P lim E lim lim N N 2N 1 N 2N 1 N 2 2N 1 2 n N
段哲民信号与系统课后习题答案
第一章 习题答案1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
解:(1))(1t f 的波形如图1.1(a )所示。
(2) 因t πcos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
(1))42cos(2)(1π-=t t f (2)22)]6[sin()(π-=t t f(3))(2cos 3)(3t tU t f π=解:周期信号必须满足两个条件:定义域R t ∈,有周期性,两个条件缺少任何一个,则就不是周期信号了. (1) 是, s T 32π=; (2))]32cos(1[213)(π--⨯=t t f ,故为周期信号,周期s T ππ==22; (3) 因0<t 时有0)(=t f 故为非周期信号。
1-6 化简下列各式:(1)⎰∞--td ττδ)12(; (2))()]4[cos(t t dt d δπ+; (3)⎰∞∞-tdt t t dt d sin )]([cos δ解:(1) 原式 =)21(21)21(21]21(2[-=-=-⎰⎰∞-∞-t u d d t t ττδττδ(2) 原式 =)('22)](4[cos t t dt d δδπ=∙ (3) 原式 =⎰∞∞-==-=-=-=1|cos )](sin'[sin )('00t t t tdt t δ 1-7 求下列积分:(1)⎰∞--0)]2()3(cos[dt t t δϖ; (2)⎰∞+0)3(dt t e t j δω(3)⎰∞--⨯002)(dt t t e t δ。
解:(1) 原式 = ϖϖϖcos )cos()]302(cos[=-=- (2) 原式 =⎰∞--=⨯=+03300)3(ϖϖδj j e dt t e(3) 原式 =⎰∞---=⨯=-022021)(tt t e e dt t t e δ1-8 试求图题1-8中各信号一阶导数的波形,并写出其函数表达式,其中)]5()([2cos)(3--=t U t U t t f π。
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
信号与系统第一、二、三章自测题解答
第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。
3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。
4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。
(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。
答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。
答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。
信号与系统(郑君里)课后答案 第一章习题解答
1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。
注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。
奥本海姆信号与系统第一章部分习题答案
(e)
x[n], n 1
y[n] 0,
n0
x[n 1], n 1
(e)
x[n], n 1
y[n] 0,
n0
x[n 1], n 1
(g )
y[n] x[4n 1]
+++
1.31 在本题中将要说明线性时不变性质的重要结果之一,即一旦知道了一个线性
1
1
1
2
……
4)因果的,因为当前输出与未来输入无关
5)稳定的,输入有界输出必有界。
(g )
+ + 1.28 对以下离散时间系统确定习题1.27 中所列各个性质哪个成立,哪些不成立,
并陈述你的理由。下例中[]和[]分别为系统的输出和输入。
(a)
y[n] x[n]
(c)
y[n] nx[n]
用xx (t )来表示。
1.37
(b)
0,
1 + 2 < 0
3 () =
1 () + 2 () + 1 ( − 2) + 2 ( − 2), 1 () + 2 () < 0
0,
1 < 0且2 < 0
1 + 2 () = () + ( − 2), () ≥ 0且 () < 0
3 = 1 + 2
2 t = 1 ( − 0 )
1.19判定下列输入-输出关系的系统是否具有线性性质、时不变性质,或两者俱有。
线
性: 3 = 1 + 2
时不变性: 2 = 1 ( − 0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=
(4))(sin )(t t f ε= (5))(sin )(t r t f =
(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为
(2)∞<<-∞=-t e t f t ,)(
(3))()sin()(t t t f επ=
(4))(sin )(t t f ε=
(5))(sin )(t r t f =
(7))(2)(k t f k ε=
(10))(])1(1[)(k k f k ε-+=
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f
(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11))]7()()[6sin()(--=k k k k f εεπ (12)
)]()3([2)(k k k f k ---=εε
解:各信号波形为
(1))2()1(3)1(2)(-+--+=t t t t f εεε
(2)
)2()1(2)()(-+--=t r t r t r t f (5)
)2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11)
)]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε
1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=
解:
1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt
t df )
( (8)dx x f t ⎰∞-)( 解:各信号波形为
(1))()1(t t f ε-
(2)
)1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt t df )
(
(8)dx x f t
⎰∞-)(
1-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。
(1))()2(k k
f ε- (2))2()2(--k k f ε (3))]4()()[2(---k k k f εε (4))2(--k f
(5))1()2(+-+-k k
f ε (6))3()(--k f k f 解:
1-9 已知信号的波形如图1-11所示,分别画出)
(t f 和dt t df )(的波形。
解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得)。
将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。
再将)3(+t f 的波形右移3个单位,就得到了)(t f ,如图1-12(c)所示。
dt
t df )(的波形
如图1-12(d)所示。
1-10 计算下列各题。
(1)[]{})()2sin(cos 22
t t t dt
d ε+ (2))]([)1(t
e dt d t t δ-- (5)dt t t t )2()]4sin([2++⎰∞
∞-δπ (8)dx x x t
)(')1(δ⎰∞--
1-12 如图1-13所示的电路,写出
(1)以)(t u C 为响应的微分方程。
(2)以)(t i L 为响应的微分方程。
1-20 写出图1-18各系统的微分或差分方程。
1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。
(1)⎰+=-t
t dx x xf x e t y 0)(sin )0()( (2)
⎰+=t dx x f x t f t y 0)()0()()( (3)⎰+=t
dx x f t x t y 0)(])0(sin[)( (4))2()()0()5.0()(-+=k f k f x k y k
(5)∑=+=k
j j f kx k y 0)()0()( 1-25 设激励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y 。
判断各系统是否是线性的、时不变的、因果的、
稳定的?
(1)dt t df
t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π=
(4)
)()(t f t y zs -= (5))1()()(-=k f k f k y zs (6))()2()(k f k k y zs -=
(7)∑==k j zs j f k y 0)()( (8))1()(k f k y zs -=
1-28 某一阶LTI 离散系统,其初始状态为)0(x 。
已知当激励为)()(1
k k y ε=时,其全响应为 若初始状态不变,当激励为)(k f -时,其全响应为)(]1)5.0(2[)(2k k y k ε-=
若初始状态为)0(2x ,当激励为)(4k f 时,求其全响应。