九年级数学动点问题课件

合集下载

中考数学复习专题-动点问题ppt

中考数学复习专题-动点问题ppt

230、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。

231、出门走好路,出口说好话,出手做好事。

232、旁观者的姓名永远爬不到比赛的计分板上。

233、怠惰是贫穷的制造厂。

234、莫找借口失败,只找理由成功。(不为失败找理由,要为成功找方法)

235、如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。
为何值时,S最大,并求最大 值。
析-
典 已知:如图①,在Rt△ABC中,∠C=90°,
AC=4cm,BC=3cm,点P由B出发沿BA方向向点A
例 匀速运动,速度为1cm/s;点Q由A出发沿AC方向
向点C匀速运动,速度为2cm/s;连接PQ.若设运 动的时间为t(s),解答下列问题 :
分 ⑷当t为何值时,△APQ是
时, PQ∥BC?”类型的 题目结论变条件,寻找 解题思路;必要时画出
相应的图形。
典 已知:如图①,在Rt△ABC中,∠C=90°,
AC=4cm,BC=3cm,点P由B出发沿BA方向向点A
例 匀速运动,速度为1cm/s;点Q由A出发沿AC方向
向点C匀速运动,速度为2cm/s;连接PQ.若设运 动的时间为t(s),解答下列问题 :

225、积极思考造成积极人生,消极思考造成消极人生。

226、人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。

227、别想一下造出大海,必须先由小河川开始。

228、有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。

229、以诚感人者,人亦诚而应。

初三几何动点问题知识讲解31页PPT

初三几何动点问题知识讲解31页PPT
初三几何动点问题知识讲解
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

60、生活的道路一旦选定,就要勇敢地 Nhomakorabea到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

《中考动点问题》课件

《中考动点问题》课件

常见的动点问题
1 直线运动问题
涉及到速度、时间和距离的计算。
2 相对运动问题
考察两个或多个物体相对运动的速度、时间和相对距离。
3 抛体运动问题
研究抛体在重力作用下的运动轨迹和最大高度等。
动点问题解决方法
理清问题思路
分析题目,明确问题的具体需求, 确定解题思路。
建立数学模型
将问题抽象成数学表达式或方程, 建立数学模型。
与同学合作
和同学一起讨论解题思路和方法, 互相学习和帮助。
与动点问题相关的个人经验分享
1
方法一
尝试将题目中的信息可视化,利用图表和图像辅助计算。
2
方法二
将问题分解为多个小问题,逐步解决每个小问题,最后将结果汇总。
3
方法三
多多练习,熟能生巧。反复做题,培养解题思维和技巧。
动点问题的影响
发展逻辑思维
通过解决动点问学能力
熟练掌握动点问题的解题方法,提高数学成绩。
如何应对动点问题
1 理解数学原理
掌握动点问题的数学概念和原理,深入理解与运动相关的数学知识。
2 创设实际情境
将学习内容与日常生活相结合,创设实际情境,提高解题的兴趣和动力。
3 勤做练习
通过大量练习,掌握不同类型动点问题的解题技巧。
《中考动点问题》PPT课 件
动点问题是中考中常见的考点之一,本课件将详细介绍动点问题的定义、解 决方法,以及个人经验分享,帮助大家更好地应对和解决这一问题。
动点问题介绍
什么是动点问题?
动点问题是数学中一个重要的概念,它涉及到物体运动的速度、时间和距离等因素,并需要 求解未知数。
动点问题的难点
动点问题常常需要将抽象的数学概念与具体的现实情境相结合,提高了解题的难度。

中考总复习动点问题精品PPT教学课件

中考总复习动点问题精品PPT教学课件

E
(P)
D (Q)
F两点,若△BEF与题
(1)中的△APQ相似, 试求a的值.
2020/12/8
(F) C 综上:当a=2或6或12时,
△BEF与△APQ相似 4
3、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,点P从点A开 始沿折线A—B—C—D以4厘米/秒的速度移动,点Q从点C开 始沿CD以1厘米/秒的速度移动,如果点P和Q分别从点A、C 同时出发,当其中一个点到达D点时,另一点也随之停止运 动.设运动时间为t(秒).
厘米的等边三角形,质点P从点A沿AB—
A
BD作匀速运动,质点Q从点D同时出发沿
DC—CB—BA作匀速运动.
3a
Q
(P)
(21)如果问质点题(P、1) Q运中 3a
的 动的质速点度P、分Q别分是别同4厘时米沿/ B F
原 秒路、返5厘回米,/质秒点,请P的说速出 度 经不过变12,秒质后点△QA的PQ速是度哪 3a F 改 一类变三为角a厘形米?/(秒按,角经的过 3大秒小后分,类P)、Q分别到达E、
2020/12/8
1
1、如图,已知正三角形
ABC的高为9厘米,⊙O的
半径为r厘米,当圆心O
A
从点A出发,沿线路AB—
BC—CA运动,回到点A时,
⊙O随着点O的运动而停
止.
B
C
(1)当r=9厘米时,⊙O
在移动过程中与△ABC三
边有几个切点?
当r=9厘米时,⊙O在移动过程
中与△ABC三边有三个切点.
2020/12/8
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载

九年级数学复习专题六 函数与圆中的动点问题 (共21张PPT)

九年级数学复习专题六 函数与圆中的动点问题 (共21张PPT)

6.(导学号 99854186)(2017· 白银)如图,已知二次函数y=ax2+bx+4的 图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连结AC、AB,若点N在线段BC上运动(不与点B、C重合),过点N作 NM∥AC,交AB于点M,当△AMN面积最大时,求点N的坐标;
4.如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,
2为半径的⊙Q上一动点,A(1,0)、B(-1,0),连结PA、PB,
20 则PA2+PB2的最小值是 ___ .
5.(导学号 99854185)如图,在矩形ABCD中,AB=6,BC=8,动点Q从点A 出发,沿着AB方向以1个单位长度/s的速度匀速运动,同时动点P从点B出发,
(3)当点 N 的坐标为(3,0)时,N 为 BC 的中点. ∵MN∥AC,∴M 为 AB 的中点, 1 ∴OM=2AB.∵AB= OA2+OB2=2 5, AC= OC2+OA2=4 5, 1 1 ∴AB=2AC,∴OM=4AC.
7.(导学号 99854187)(2017· 襄阳)如图,矩形OABC的两边在坐标轴上, 点A的坐标为(10,0),抛物线y=ax2+bx+4过B、C两点,且与x轴的一个交
点为D(-2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的表达式; (2)过点P作PE⊥BC,交抛物线于点E,连结BE,当t为何值时,∠PBE=
∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交 BQ于点N,当四边形PMQN为正方形时,请求出t的值.
AM NC 8-n ∵MN∥AC,∴ AB =BC= 10 , S△AMN AM 8-n ∴S = AB = 10 , △ABN 8 -n 1 1 ∴S△AMN= 10 S△ABN=5(8-n)(n+2)=-5(n-3)2+5. 1 ∵-5<0,-2<n<8, ∴当 n=3 时,即点 N 的坐标为(3,0)时,△AMN 的面积最大.

第35讲动点问题专题PPT课件

第35讲动点问题专题PPT课件
③如答图2-35-10,当4≤x<6时,CD=6-x, ∵∠BCE=90°,∠PDC=60°,
④当x≥6时,y=0.
②如答图2-35-5,作DH⊥AB于点H. 在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
在Rt△BDH中, ∴矩形BDEF的面积为
∴当x=3时,y有最小值为
分层训练
A组
3.(202X衢州)如图2-35-3,正方形ABCD的边长为4,点
E是AB的中点,点P从点E出发,沿E→A→D→C移动至终
第35讲 动态专题(1) (动点问题)
近五年广东中考情况
2015年 202X年 202X年 202X年 202X年 (5分) (4分) (5分) (5分) (0分)
双动点问 题
动线问题
的运动中,一些图 形位置、数量关系的“变”与“不变”的问题.常用 的数学思想是方程思想、数学建模思想、函数思想、 转化思想等;常用的数学方法有分类讨论法、数形 结合法等.
(3)在直线l移动过程中,l上是否存在一点Q,使以B, C,Q为顶点的三角形是等腰直角三角形?若存在,直 接写出Q点的坐标;若不存在,请说明理由.
解:(1)在Rt△BOC中,OB=3,
设CO=4k,则BC=5k, ∵BC2=CO2+OB2,∴25k2=16k2+9, ∴k=1或-1(不符,舍去).∴BC=5,OC=4. ∵四边形ABCD是菱形,∴CD=BC=5.∴D(5,4). (2)①如答图2-35-6,当0≤t≤2时,直线l扫过的图形 是四边形OCQP,S=4t.
②如图2-35-2②,当点E在OC的延长线上时, △DCE是等腰三角形,则只有CD=CE, ∠DBC=∠DEC=∠CDE= ∠ACO=15°, ∴∠ABD=∠ADB=75°.∴AB=AD= 综上所述,满足条件的AD的值为2或

中考数学复习课件:动点与函数图像(共26张PPT)

中考数学复习课件:动点与函数图像(共26张PPT)

一、点动
• 1、点在三角形边上动 • 2、点在四边形边上动
答案:B
答案A

2、点在四边形边上动
AB与F,可得DF=BC=4,所以 解析:作DF1 AF=3,FB=CD=2,先看特殊点, 1 当t=2时S= 2x3x4=6,当t=5时,S= 2 x2x5=5,所以A,C错误;B、D的区 别就是第一段不同,所以需要求出第一段的函数关系式,选AP为底, 4t 1 4t AP=1+t,可根据相似求出高为 3 ,S= 2 (1+t) 3 ,可看出是抛物线应开口向上,所以选C
答案:A
答案:A
• 2.如图1,已知A、B是反比例函数(k>0,x>0)图象 上的两点,BC//x轴,交y轴于点C.动点P从坐标原 点O出发,沿O→A→B→C (图中“→”所示路线) 匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴, 垂足分别为M、N.设四边形OMPN的面积为S,P 点运动时间为t,则S关于t的函数图象大致为
B 60 ,动点p以1cm/s的 1、如图,菱形ABCD的边长是4cm,
0
速度自A点出发沿AB方向运动至B点停止,动点Q以2cm/s的速 度自B点出发沿折线BCD运动到D点停止,若P,Q同时出发运动 了t秒,记 BPQ 的面积为S cm2 ,下面图像中能表示S与t之间 函数关系式的是 ( )
3
答案:D
O 图1 图2
x
五、点在一些特殊情况下运动与函数的图像
• 1.如图,菱形 ABCD 中,∠BAD:∠ADC=1:2, 对角线 AC=20cm,点 O 沿 A 点以 1cm/s 的速度 运动到 C 点(不与 C 重合),以点 O 为圆心的 圆始终与菱形的两边相切,设圆 O 的面积为 S, 则 S 与点 O 运动的时 间 t 的函数图像大致是

《数轴动点问题》课件

《数轴动点问题》课件
《数轴动点问题》PPT课件
目 录
• 数轴动点的定义与特性 • 数轴动点的运动规律 • 数轴动点的应用实例 • 数轴动点的解题策略与技巧 • 数轴动点的综合练习题 • 数轴动点问题的反思与总结
01
数轴动点的定义与特性
数轴动点的定义
01
数轴动点是指在数轴上可以移动 的点,这些点通常与某些数学问 题相关联,如追及问题、相遇问 题等。
相遇问题
总结词
相遇问题是数轴动点问题的另一种常见类型,主要研究两个动点在数轴上从两端相向而行直至相遇的 问题。
详细描述
相遇问题需要利用数轴上的距离和速度关系,计算出两个物体相遇所需的时间或距离。这类问题通常 涉及到相对速度的概念,即两个物体相对运动的速度等于各自速度之和或之差。
最大距离与最小距离问题
02
数轴动点问题通常涉及到速度、 时间、距离等概念,是数学中常 见的题型之一。
数轴动点的特性
数轴动点具有连续性
由于动点在数轴上可以连续移动,因 此其位置和状态会随着时间的变化而 变化。
数轴动点具有不确定性
由于动点的位置和状态是随机的,因 此其运动轨迹和结果也是不确定的, 需要根据具体问题进行分析和计算。
匀速运动规律
总结词
描述动点在数轴上以恒定速度进行的直线运动。
详细描述
在数轴上,如果一个动点以恒定的速度沿直线移动,那么它所经过的每一个单位 长度所用的时间都是相等的。匀速运动可以用公式表示为:距离 = 速度 × 时间 。
变速运动规律
总结词
描述动点在数轴上以非恒定速度进行的直线或曲线运动。
详细描述
04
数轴动点的解题策略与技巧
建立数轴模型
总结词
明确问题背景
详细描述

《中考动点问题》PPT课件

《中考动点问题》PPT课件

运动.设运动时间为t(秒).
(2)如果⊙P和⊙Q半径都是2厘米,那么当t为何值时
,⊙P和⊙Q相外切?
D
QC
A
B
P
h
6
2、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,⊙P从点A开
始沿折线A—B—C—D以4厘米/秒的速度移动,⊙Q从点C开
始沿CD以1厘米/秒的速度移动,如果⊙P和⊙Q分别从点A、
C同时出发,当其中一个圆心到达D点时,另一圆也随之停止
运动.设运动时间为t(秒).
(2)如果⊙P和⊙Q半径都是2厘米,那么当t为何值时
,⊙P和⊙Q相外切?
D
QC
A
B
P当t=4秒、2 0 秒、2 8 秒时,⊙P和⊙Q相外切
3
3
h
7
解决这类问题时,要搞清楚图形 的变化过程,正确分析变量与其它量 之间的内在联系,建立它们之间的关 系;要善于探索动点运动的特点和规 律,抓住图形在变化过程中不变的东 西;必要时,多作出几个符合条件的 草图也是解决问题的好办法。
A
从点A出发,沿线路AB—
BC—CA运动,回到点A时,
⊙O随着点O的运动而停
止.
B
C
(1)当r=9厘米时,⊙O
在移动过程中与△ABC三边有几 Nhomakorabea切点?当r=9厘米时,⊙O在移动过程
中与△ABC三边有三个切点.
h
2
(2)当r=2厘米时,⊙O在移动过程中与△ABC
三边有几个切点? 当r=2厘米时,⊙O在移动过程
(1)当t为何值时,四边形APQD为矩形;
D
QC
A
B
P
h
5
2、如图,在矩形ABCD中,AB=20厘米,BC=4厘米,⊙P从点A开

初三几何动点问题ppt课件

初三几何动点问题ppt课件

精选ppt课件
20
一、教学模式
1、课堂教学模式(新授课) ①概念方法习题化(定义、法则、公式、定理、方法和思想等)不直接 叙述概念 ②习题设置题组化 ③题组设计层次化(由易到难从不同角度不同层次进行训练) ④题目处理变式化(不能就题论题采用一题多解或一题多变的形式深入 灵活地强化训练) ⑤问题解决自主化
精选ppt课件
22
三、教学思路
整体设计:时间、内容、单元、知识、方法与技能等 分类设计:知识、方法与技能要体现基础性、针对性、
层次性、典型性、 综合性、发展性,因材施教。 分层设计:以人为本,在课程内容、巩固练习、基本技能、
目标评价、作业布置等方面有梯度。 整体提高:对学困生:不厌其差,不厌其烦,不厌其慢
精选ppt课件
13
四、画龙点睛
5、需要掌握知识 (1)不等式,一元二次方程及其根的判别式 (2)反比例函数、一次函数和二次函数的图象 与性质 (3)三角形、四边形、梯形面积公式 (4)勾股定理及其逆定理 (5)等腰三角形、直角三角形、相似三角形、 (特殊)平行四边形、梯形的判定与性质、特殊 角三角函数
对优秀生:引导激励,自主学习,自我发展
精选ppt课件
23
四、教学设计
精选ppt课件
24
五、课堂教学
引入新课——温故知新 讲授新课——举一反三 巩固新知——趁热打铁 归纳小结——画龙点睛 布置作业——触类旁通
精选ppt课件
25
六、例题教学
源于教材。就是要吃透教材,正确体会新教材编写意图,弄清配备 例题的功能,强化解题的规范性。
整合教材。就是要研究教材,研究不同版本教材,取长补短,择优选 用。
跳出教材。就是要更新教材,把每一个例题当成一个课题去研究,去 探究题目源头,寻找变化规律,拓宽解题思路,总结解题方法,提炼数 学思想。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 则△ AQP~△ABC
5+t D
2t AQ AP AB AC
Q
B
P 5 t 2t
C
10
6
t 15 7
2.在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm, 点P由点A出发 ,沿AC向C运动,速度为2cm/s,同时 点Q由AB中点D出发,沿DB向B运动,速度为1cm/s, 连接PQ,若设运动时间为t(s) (0<t ≤3)
本节课重点来探究动态几何中的第一种类型----动点问 题。
1、如图:已知 ABCD中,AB=7,BC=4,∠A=30° (1)点P从点A沿边AB向点B运动,速度为1cm/s,时间为t(s).
当t为何值时,△PBC为等腰三角形?
D
A 30° P
7
若△PBC为等腰三角形
C
则PB=BC
4 B
∴7-t=4
∴t=3
如图:已知 ABCD中,AB=7,BC=4,∠A=30°
(2)若点P从点A沿射线AB运动,速度仍是1cm/s。
当t为何值时,△PBC为等腰三角形?
D
C
4 P
A
7
B
小组合作交流讨论
D
C
4 P
A
7
B
当BP=BC时
D(钝角)
C
4

30°
A
7
B 23 E
P
当CB=CP时
D
C
4
A
7
B
P
当BP=BC时
D
C
的好助手:
E
数形结合定相似
A
B
P
比例线段构方程
D
C
E
A
B
P
2.在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm,
点P由点A出发
,沿AC向C运动,速度为2cm/s,同时
点Q由AB中点D出发,沿DB向B运动,速度为1cm/s,
连接PQ,若设运动时间为t(s) (0<t ≤3)
(1)当t为何值时,PQ∥BC? 若PQ∥BC
C
5、等腰梯形

化动为静
分类讨论

构建函数模型、方程模型
3、求面积
A
M
D
P
Q
B
C
6、直角三角形
A
B' B
A
B'
B
P D
E' E
E4
A
7
B
P
当CB=CP时
当PB=PC时
∴t=3或11或7+ 4 3或 4 3/3 +7 时 △PBC为等腰三角形
探究动点关键:化动为静,分类讨论,关注全过程
1.如图:已知 ABCD中,AB=7,BC=4,∠A=30°
(3)当t>7时,是否存在某一时刻t,使得线段
DP过线段BC的三等分点? 解决动点问题
(锐角)
D
C
E4
A
7
B
P
当PB=PC时
1、如图:已知 ABCD中,AB=7,BC=4,∠A=30°
(2)若点P从点A沿射线AB运动,速度仍是1cm/s。
当t为何值时,△PBC为等腰三角形?
D
C
D
C
4 P
A
7
B
当BP=BC时
D(钝角)
C
4
A
7
B
P
当BP=BC时
(锐角)
D
C
4

30°
A
7
B 23 E
P
九年级动点问题解析
最后一题并不可怕,更要有信心!
图形中的点、线运动,构成了数学中的一个新问题---动态几何。它通常分为三种类型:动点问题、动线问题、 动形问题。在解这类问题时,要充分发挥空间想象的能力, 不要被“动”所迷惑,而是要在“动”中求“静”,化 “动”为“静”,抓住它运动中的某一瞬间,寻找确定的 关系式,就能找到解决问题的途径。
D
Q

A 在RtABC中,C 90
SinA 8 10
P
QN 8
N
AQ 10
B
C
QN 8
5 t 10
三角函数法
QN 4 4 t 5
y 1 2t 4 4 t
2
5
y 4 t 2 4t 5
2.(3)是否存在某一时刻t,使△ APQ的面积与△ ABC的面积 比为7︰15?若存在,求出相应的t的值;不存在说明理由。
(2)设△ APQ的面积为y(cm2),求y与t之间的函数关系。
A
A
M
D
P
D
P
Q
Q

N
B
CB
C
2.(2)
D
Q
B
相似法

A
∵△AQN∽ △ABC
P
QN AQ
BC
AB
N
QN 5 t
C
8
10
QN 4 4 t
5
y 1 2t 4 4 t
2
5
y 4 t 2 4t 5
2.(2)
A
S ABC
1 86 2
24
D
P
Q
B
C
计算要仔细
y
7
S ABC
15
4 t 2 4t 7 24
5
15
t2 5t 14 0
(t 7)(t 2) 0
t 7(舍去),t 2
∴当t=2时, △ APQ的面积与△ ABC的面积比为7︰15
2.(4)连接DP,得到△QDP,那么是否存在某一时刻t,使得点 D在线段QP的中垂线上?若存在,求出相应的t的值;若不存在, 说明理由。
∴t=7,∴当t=7秒时,四边形PQCD为等腰梯形。
t

E
F┐
3t
5.如图(1):在梯形ABCD中: AD=BC=5cm, AB=4cm, CD=10cm,BE∥AD。 如图(2):若整个△BEC从点E以1cm/s的速度沿射线CD平移,同时,
点P从点D出发,以1cm/s的速度沿DA向点A运动,时间为t(0<t≤4)
tD
Q
B
A
4
3 2t
∟G
P
C
∵点D在线段PQ的中垂线上 ∴DQ=DP
DQ2 DP2
t 2 42 (2t 3)2
3t 2 12t 25 0
∵ △ = —156<0
.
∴方程无解。
即点D都不可能在线段QP的中垂线 上。
4. ( 2009 中 考 ) 例 1 、 如 图 , 已 知 在 直 角 梯 形 ABCD 中 ,
t为何值时,△PDE 为直角三角形?
4
A
B
A
B'
B
5
5
5
P
D4
E
6
C
D
E' E
C
4
A
B
5
5
5
4
D4
E3
பைடு நூலகம்
3C
A
B' B
A
B'
B
tP
4-t D
E' E
t 3 4t 5
C
∴t=1.5
P
t
D4-t E'
E
C
4 t 3 ∴t=2.5
t
5
小结:
积累就是知识
1、比例
D
C
A
B
4、平行四边形
2、平行
A
D
QP
B
1t
3t
26
4(1)解:
要使四边形PQCD为平行四边形,只要QC=PD
∴3t=24-t
∴t=6,
∴当t=6秒时,四边形PQCD为平行四边形
24 1t
3t
26
4.2)解:
由题意,只要PQ=CD,则四边形PQCD为等腰梯形
过P、D分别作BC的垂线交BC于E、F:
则EF=PD,QE=FC=2
∴3t--4=24--t
AD∥BC ,∠B=90°,AD=24cm,BC=26cm,动点P从点A 开始沿AD边向点D,以1cm/秒的速度运动,动点Q从点C开始
沿CB向点B以3厘米/秒的速度运动,P、Q分别从点A点C同时 出发,当其中一点到达端点时,另一点也随之停止运动,设运
动时间为t秒,求: 1)t为何值时,四边形PQCD为平行四边形 2) t为何值时,等腰梯形? 24
相关文档
最新文档