T型截面形心及惯性矩系数

合集下载

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式

§I −1 截面的静矩和形心位置如图I −1所示平面图形代表一任意截面,以下两积分表一任意截面,以下两积分ïþïýü==òòA z S A y S A y Az d d (I −1)分别定义为该截面对于z 轴和y 轴的静矩。

轴的静矩。

静矩可用来确定截面的形心位置。

由静力学中确定物体重心的公式可得心的公式可得ïïþïïýü==òòA A z z A A y y AC ACd d利用公式(I −1),上式可写成,上式可写成ïïþïïýü====òòA S A A z z A SA Ay y y A C z A C d d (I −2) 或þýü==C y C z Az S Ay S (I −3)ïïþïýü==A S z A S y y C z C(I −4)如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对d A C Zz y y y C Z c O 图I −1 Z 同一坐标轴的静矩的代数和。

即:同一坐标轴的静矩的代数和。

即:ïïþïïýü==åå==ni ci i y ni ci i z z A S y A S 11(I −5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。

单图形的个数。

将式(I −5)代入式(I −4),得到组合图形形心坐标的计算公式为ïïïïïþïïïïýü==åååå====ni ini c iic ni ini c i i c AzA z A y A y 1111(I −6)例题I −1 图a 所示为对称T 型截面,求该截面的形心位置。

材料力学第六章 截面的几何性质惯性矩

材料力学第六章 截面的几何性质惯性矩

IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交

惯性矩的计算方法

惯性矩的计算方法

第1节静矩和形心4.1静矩和形心任何受力构件的承载能力不仅与材料性能和加载方式有关.而口与构件截面的几何形状和尺寸有关.如:计算杆的拉伸与压缩变形时用到截面而积A ,计算圆轴扭转变形时用到横截面的极惯性矩I?等.A、1?等是从不同角度反映了截而的几何特性,因此称它们为截而图形的几何性质.4.1静矩和形心设有一任意截而图形如图4 一1所示,其面积为A .选収直角坐标系yoz ,在坐标为(y,z)处取一微小而积dA ,定义微而积dA乘以到y轴的距离z ,沿整个截面的积分,为图形对y轴的静矩S?,其数学表达式(4 -la )同理,图形对z轴的静矩为□4-1图41截面静矩与坐标轴的选取有关•它随坐标轴y、z的不同而不同.所以静矩的数值可能足正,也可能足负或定零.静矩的虽纲为长度的三次方.确定截面图形的形心位置(图4-1中C点):A (4-2b)第1页共30页式中T、"为截而图形形心的坐标值.若把式(4-2)改写成心"•儿,為"•乙(4 3)性质:・若截面图形的静矩等于零,则此坐标轴必定通过截面的形心.・若坐标轴通过截而形心,则截而对此轴的静矩必为零.・山于截而图形的对称轴必定通过截而形心,故图形对其对称轴的静矩恒为零。

4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是山若干简单图形(如矩形、圆形等)组合g而成的.对于这样的组合截而图形,计算静矩(S»‘ r)与形心坐标(y*、z ')时,可用以下公式1-1 2-1式中A— y i , z i分别表示第,个简单图形的面积及其形心坐标值,n为组成组合图形的简单图形个数.即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是山一种简单图形减去另一种简单图形所组成的.例4J己知T形截面尺寸如图4-2所示,试确定此截面的形心坐标值.i-1 i-1 (4-5)图4-2解:(1)选参考轴为y 轴,z 轴为对称轴,(2)将图形分成I 、口两个矩形,则= 20 x 100加朋 S 右=(10 + 140)^^34 = 2Q X 14%/,22 二注型(3)代入公式(4・5)20x100x150+20x140x70 20x100 + 20x140此=°4.2惯性矩、惯性积和惯性半径设任一截面图形(图4-3),其而积为A ・选取直角坐标系yoz ,在坐标为(y 、z)处取一微小面积dA ,定义此微2面积dA 乘以到坐标原点o 的距离的平方Q ,沿整个截面积分,为截而图形的极惯性矩I?.做而积dA 乘以到坐标轴y 的2距离的平方2 ,沿整个截而积分为截面图形对y 轴的惯性矩I 》•极惯性矩、惯性矩常简称极惯矩、惯矩.j.l ~2Z4数学表达式为打=f p^dA极惯性矩“俎(4-6)对y轴惯性矩图4-3山图4-3看到“ =y +Z 9所以有打=\A^dA= £cy2 +/)曲二必+加必即;? (4-8)式(4-8)说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式

§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。

静矩可用来确定截面得形心位置。

由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。

即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。

将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。

解:建立直角坐标系zOy ,其中y 为截面得对称轴。

因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。

将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。

现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。

现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。

由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。

另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。

截面的静矩和形心位置和惯性矩的计算

截面的静矩和形心位置和惯性矩的计算

二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
惯性积。
组合截面的惯性矩,惯性积
n
I x I xi i1
n
I y I yi i1
n
I xy I xyi i 1
例 3 -1 求梯形截面对其形心轴 yc 的惯性矩。
解:将截面分成两个矩形截面。
截面的形心必在对称轴 zc 上。 取过矩形 2 的形心且平行 于底边的轴作为参考轴, 记作 y 轴 。
97.3 104 mm4
2 I xy
tg2 0 (
Ix
) 1.093 Iy
Ix Iy 2α 0 在第三象限 2α 0 227.60
0
113.80
形心主惯性轴 x0 , y0 分别由 x 轴和 y 轴绕 C点 逆时针转 113.80 得出。
形心主惯形矩为
I x0 I x I y 1
形心主惯性矩—— 截面对形心主惯性轴的惯性矩。
主惯性轴的位置:设 为主惯性轴与原坐标轴 之间的夹角,
则有 由此
I I x I y 2 sin 2 0 xy cos 2 0 0
tg 20
2I xy
Ix Iy
求出后,主惯性轴的位置就确定出来了。
主惯性矩的计算公式
I x0
I y0
Ix
y 0
截面对 y ,z 轴的惯性矩分别为

惯性矩、静矩、截面抵抗矩计算

惯性矩、静矩、截面抵抗矩计算

惯性矩和对Y轴的惯性矩。
y
解:
100
1)求出A1和A2分别对自身形心 2
轴的惯性矩
0
I x1
b1h13 12
100 203 12
66.67 103
100
A1 •Ⅱ•ຫໍສະໝຸດ A2Ⅰx1
xc a2 30 x
Ix2
b2h23 12
20 100 3 12
16.67 105
2 0
2)求对整个截面形心X轴的惯性矩
截面对x轴的惯性矩:
I x y2dA
量纲:L4 y
A
截面对y轴的惯性矩: I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
x
dA
y r
x
3)惯性矩的单位为m4;
2、惯性半径(回转半径)
截面对x轴的惯性半径: ix I x / A 截面对y轴的惯性半径: iy I y / A
二、常见截面的惯性矩和惯性半径
形心轴:通过截面形心的坐标轴 ➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性矩。
y
对x轴的惯性矩
x
Ix
1 12
bh3
h 对y轴的惯性矩:
b
Iy
1 12
hb3
➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性半径。
y
对x轴的惯性半径
x
h
ix
Ix A
1/12bh3 h
截面的几何性质
知识点:截面惯性矩和静矩的计算 一、截面惯性矩的定义及计算 二、常见截面的惯性矩和惯性半径 三、组合截面的概念 四、惯性矩的平行移轴公式 五、静矩的概念及公式 六、常见截面的静矩

各种截面下极惯性矩

各种截面下极惯性矩
A
y
dA
y2dA z2dA I z I y
o
A
A
z
y
图形对任一对相互垂直的坐标系的惯性矩之和恒等于此图形对该两轴交点的极惯性矩。
四、惯性半径(Radius of gyration of the area)
iy
Iy A
iz
Iz A
I y I yi
I z I zi
I yz I yizi
(1)两平行轴中,必须有一轴为形心轴,截面对任意两平行轴 的惯性矩间的关系,应通过平行的形心轴惯性矩来换算;
(2)截面图形对所有平行轴的惯性矩中,以对通过形心轴的惯 性矩最小.

6、惯性矩与极惯性矩的关系:
z
I p
2dA
A
( y2 z2 )dA
各种截面下惯性矩,极惯性矩
1.规则图形
d
⑴ 圆形截面:
实心(直径 D)
Iz
Iy
1 D4
64
空心(外径 D,内径 d)——
Iz
Iy
1 (D4
64
d 4)
⑵ 矩形截面:
z y
I y
z2dA
A
b
2 b
2
z 2 hdA
1 12
hb3
Iz
y2dA
A
h
2 h
2
y 2bdy
1 bh3 12
实心圆截面 W I z πd 4 / 64 πd 3 d / 2 d / 2 32
矩形截面
W I z bh3 /12 bh2 h/2 h/2 6
空 心 圆 截 W πD3 (1 4 )

32
抗扭截面系数
Wt

各种截面下极惯性矩

各种截面下极惯性矩


32
抗扭截面系数
Wt
IP R
α d D
b
h z
y
D d
z y
2.组合图形
W 称为抗弯截面系数
I y I yC a2 A I z I zC b2 A
I yz I yC zC abA
I y I yi
I z I zi
I yz I yizi
(1)两平行轴中,必须有一轴为形心轴,截面对任意两平行轴 的惯性矩间的关系,应通过平行的形心轴惯性矩来换算;
(2)截面图形对所有平行轴的惯性矩中,以对通过形心轴的惯 性矩最小.
6、惯性矩与极惯性矩的关系:
z
I p
2dA
A
( y2 z2 )dA
A
y
dA
y2dA z2dA I z I y
o
A
A
z
y
图形对任一对相互垂直的坐标系的惯性矩之和恒等于此图形对该两轴交点的极惯性矩。
四、惯性半径(Radius of gyration of the area)
iy
Iy A
iz
Iz A
组合图形1两平行轴中必须有一轴为形心轴截面对任意两平行轴的惯性矩间的关系应通过平行的形心轴惯性矩来换算
各种截面下惯性矩,极惯性矩
1.规则图形
d
⑴ 圆形截面:
实心(直径 D)
Iz
Iy
1 D4
64
空心(外径 D,内径 d)——
Iz
Iy
1 (D4
64
d 4)
⑵ 矩形截面:
z y
I y
z2dA
A
b
2 b
2
z 2 hdA
1 12

截面形心和惯性矩的计算

截面形心和惯性矩的计算

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2—2.5)确定。

(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。

惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。

惯性矩恒为正值,其量纲和单位与极惯性矩相同。

常用截面惯性矩与截面系数的计算

常用截面惯性矩与截面系数的计算

常用截面几何性质计算返回目录项目公式单位宽度b mm外高H mm内高h mm面积A=b*(H-h)mm^2对Y轴的惯性矩Iy=(H-h)b³/12mm^4对Z轴的惯性矩Iz=b(H³-h³)/12mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm对Z轴惯性半径i z=(Iz/A)^0.5mm形心到边缘的距离e y=b/2mm形心到边缘的距离e z=H/2mm对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3宽度H mm内宽h mm面积A=H^2-h^2mm^2对Y轴的惯性矩Iy=(H^4-h^4)/12mm^4对Z轴的惯性矩Iz=(H^4-h^4)/12mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm 对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=H/2mm 形心到边缘的距离e z=H/2mm 形心到边缘的距离e z1=0.707*H mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3对Z轴抗弯截面系数W z1=Iz/e z mm^3抗扭截面系数mm^3宽度a mm直径d mm面积A=a^2-Pi*d^2/4mm^2对Y轴的惯性矩Iy=a^4/12-Pi*d^4/64mm^4对Z轴的惯性矩Iz=a^4/12-Pi*d^4/64mm^4对Y轴惯性半径i=(Iy/A)^0.5mm 对Z轴惯性半径i=(Iz/A)^0.5mm 形心到边缘的距离e y=a/2mm 形心到边缘的距离e z=a/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3a=0,三角形顶宽a mm底宽b mm高h mm面积A=h*(a+b)/2mm^2对Y轴的惯性矩mm^4对Z轴的惯性矩Iz=h^3*(a^2+4*a*b+b^2)/36/(a+b)mm^4对Y轴惯性半径mm 对Z轴惯性半径iz=(Iz/A)^0.5mm 形心到边缘的距离e y1=h*(2*a+b)/(a+b)/3mm 形心到边缘的距离e y2=h*(a+2*b)/(a+b)/3mm 对底边抗弯截面系数W z1=Iz/e y1mm^3对顶边抗弯截面系数W z2=Iz/e y2mm^3抗扭截面系数mm^3正多边形边数n边长a mm 外接圆半径R=a/2/sin(180°/n)mm 内接圆半径r=a/2/sin(180°/n)mm 面积A=n*R^2*sin(2*Pi/n)/2mm^2惯性矩I=A*(6*R^2-a^2)/24mm^4对Y轴惯性半径i=(I/A)^0.5mm形心到底边的距离e y=r mm 形心到顶边的距离e y1=R mm 对底边抗弯截面系数W z=I/R/cos(Pi/n)mm^3对顶点抗弯截面系数W z1=I/R mm^3抗扭截面系数mm^3宽度a mm直径d mm面积A=a^2-Pi*d^2/4mm^2对Y轴的惯性矩Iy=a^4/12-Pi*d^4/64mm^4对Z轴的惯性矩Iz=a^4/12-Pi*d^4/64mm^4对Y轴惯性半径i=(Iy/A)^0.5mm 对Z轴惯性半径i=(Iz/A)^0.5mm 形心到边缘的距离e y=a/2mm 形心到边缘的距离e z=a/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3外径D mm内径d mm面积A=Pi*(D^2-d^2)/4mm^2惯性矩I=Pi*(D^4-d^4)/64mm^4惯性半径i=(Iz/A)^0.5mm 形心到边缘的距离e=D/2mm 抗弯截面系数W=I/e mm^3抗扭截面系数Wt=Pi*D^3(1-(d/D)^4)/16mm^3外径D mm内径d mm面积A=Pi*(D^2-d^2)/8mm^2对Y轴的惯性矩Iy=Pi*(D^4-d^4)/128mm^4对Z轴的惯性矩Iz=0.00686*(D^4-d^4)-0.0177*D^2*d^2*(D-d)/(D+d mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm 对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=2*(D^2+D*d+d^2)/3*Pi*(D+d)mm 形心到边缘的距离e z=D/2mm 对Y轴抗弯截面系数W y=Pi*D^3*(1-d^4/D^4)/64mm^3对顶点的抗弯截面系数W z=Iz/(D/2-e y)mm^3对底边的抗弯截面系数W z1=Iz/e y mm^3抗扭截面系数mm^3直径d mm宽度b mm深度t mm面积A=Pi*d^2/4-b*t mm^2对Y轴的惯性矩Iy=Pi*d^4/64-t*b^3/12mm^4对Z轴的惯性矩Iz=Pi*d^4/64-b*t*(d-t)^2/4mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm 对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=d/2mm 形心到边缘的距离e z=d/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3直径d mm宽度b mm深度t mm面积A=Pi*d^2/4-2*b*t mm^2对Y轴的惯性矩Iy=Pi*d^4/64-t*b^3/6mm^4对Z轴的惯性矩Iz=Pi*d^4/64-b*t*(d-t)^2/2mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm 对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=d/2mm 形心到边缘的距离e z=d/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3直径d mm支架d1mm面积A=Pi*d^2/4-d1*d mm^2对Y轴的惯性矩Iy=Pi*d^4*(1-1.69*d1/d)/64mm^4对Z轴的惯性矩Iz=Pi*d^4*(1-1.69*d1^3/d^3)/64mm^4对Y轴惯性半径i y=(Iy/A)^0.5mm 对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=d/2mm 形心到边缘的距离e z=d/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3宽度B mm宽度b mm高度H mm高度h mm面积A=B*H+b*h mm^2对Z轴的惯性矩Iz=(B*H^3+b*h^3)/12mm^4对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e z=H/2mm 对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3宽度B mm宽度a mm高度H mm高度d mm面积A=B*H+b*h mm^2对Z轴的惯性矩Iz=mm^4对Z轴惯性半径i z=(Iz/A)^0.5mm 形心到边缘的距离e y=d/2mm 形心到边缘的距离e z=d/2mm 对Y轴抗弯截面系数W y=Iy/e y mm^3对Z轴抗弯截面系数W z=Iz/e z mm^3抗扭截面系数mm^3宽度B mm宽度a mm205214 4533.375 7642.7109384.6026074495.9760858861010 453.3375 764.271093810102020。

史上最全的常用截面几何特性计算公式

史上最全的常用截面几何特性计算公式

史上最全的常用截面几何特性计算公式构件截面的几何性质,如静力矩、形心、轴向惯性矩、极惯性矩、惯性积和主惯性轴位置等,对构件的承载能力有影响,常用于分析构件的弯曲、扭转和剪切。

1.静态力矩:也称为面积力矩或静态表面力矩。

截面对轴线的静力矩等于每个微区的积分乘以整个截面上微区到轴线的距离。

静力矩可以是正的,也可以是负的。

它的维数是长度的三次方。

静力矩的力学意义是:如果有均布载荷作用在截面上,其值表示为单位面积的量,则该载荷在某一轴上的合成力矩等于分布载荷乘以该轴的静力矩。

2、形心:又称面积中心或面积重心,是截面上具有如下性质的点:截面对通过此点任一个轴的静矩等于零。

如果将截面看成一均质等厚板,则截面的形心就是板面的重心。

形心坐标xo、yo的计算公式为:3、惯性矩:反映截面抗弯特性的一个量,简称惯性矩。

截面对某个轴的轴惯性矩等于截面上各微面积乘微面积到轴的距离的平方在整个截面上的积分。

下图所示的面积为A的截面对x、y轴的轴惯性矩分别为:转动惯量总是正的,量纲是长度的四次方。

构件的抗弯能力与轴的惯性矩成正比。

一些典型截面的轴惯性矩可在专业手册中找到。

例如,平行四边形对中心线的惯性矩为4、极惯性矩:反映截面抗扭特性的一个量。

截面对某个点的极惯性矩等于截面上各微面积乘微面积到该点距离的平方在整个截面上的积分。

下图所示面积为A的截面对某点O的极惯性矩为:极惯性矩永远是正的,量纲是长度的四次方。

构件的抗扭能力与惯性矩成正比。

圆形截面相对于其中心的惯性矩为5、惯性积:截面对于两个正交坐标轴的惯性积等于截面上各个微面积乘微面积到两个坐标轴的距离在整个截面上的积分。

面积为A的截面对两个正交坐标轴x、y的惯性积为:惯性积的量纲是长度的四次方。

截面位于坐标系的一、三象限,Ixy为正,位于二、四象限则为负。

6.主惯性轴:使截面惯性积为零的一对正交坐标轴称为截面主惯性轴,简称主轴。

截面对主惯性轴的惯性矩称为主惯性矩。

若两条主惯性轴的交点为质心,则这两条轴称为质心主惯性轴(或称主质心惯性轴)。

钢结构第二版第三章答案

钢结构第二版第三章答案

第三章3.9图为一两端铰接的焊接工字形等截面钢梁,钢材为Q235。

梁上作用有两个集中荷载P =300 kN (设计值),集中力沿梁跨度方向的支承长度为100mm 。

试对此梁进行强度验算并指明计算位置。

解:首先计算梁的截面模量,计算出梁在荷载作用下的弯矩和剪力,然后按照规定的计算公式度、局部承压强度和折算应力强度等。

(1)计算截面模量324x 188002280104041255342933mm12I =⨯⨯+⨯⨯⨯= 334y 11210280800836620800mm 1212I =⨯⨯⨯+⨯⨯=3x1280104041131200mm S =⨯⨯=3x2400113120040081771200mm 2S =+⨯⨯= (2)验算截面强度梁上剪力和弯矩图分布如图所示,由此确定危险点。

①弯曲正应力B 、C 两点间梁段弯矩最大()128010213.51310b t -==>,不考虑截面发展塑性 6x max x nx 60010410196MPa 215MPa 11255342933M f W σγ⨯⨯===<=⨯②剪应力A 、B 两点间梁段和C 、D 两点间的梁段上的剪力最大3x2maxv x w 30010177120052.9MPa 125MPa 12553429338VS f I t τ⨯⨯===<=⨯ ③局部承压在集中力作用B 、C 两点处没有加劲肋,应验算局部承压应力。

x y R 52100510150mm l a h h =++=+⨯=3c z w 130010250MPa>215MPa 1508Ff l t ψσ⨯⨯====⨯④折算应力B 左截面、C 右截面处同时存在较大的弯矩、剪力和局部压应力,应计算腹板与翼缘交界处的折算应力。

局部承压验算已不满足,此处不必验算折算应力。

3.10一焊接工字形截面简支梁,跨中承受集中荷载P=1500kN (不包含自重),钢材为Q235,梁的跨度及几何尺寸如图所示。

截面形心和惯性矩的计算

截面形心和惯性矩的计算

工程构件典型截面几何性质的计算2.1面积矩如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分上t 和A分别定义为该图形对z 轴和y 轴的面积矩或静矩,用符号S z 和S y ,来表示,如式(2 — 2.1)面积矩的数值可正、可负,也可为零。

面积矩的 量纲是长度的三次方,其常用单位为m 3或mm2 •面积矩与形心平面图形的形心坐标公式如式(2 — 2.2)(2 — 2.2)或改写成,如式(2 — 2.3):二 X 乙 (2面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距 离愈远,对该轴的面积矩绝对值愈大。

—2.3)1 •面积矩的定义图2-2.1任意截 面的几何图形图形对通过其形心的轴的面积矩等于零;反之, 图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3 •组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)鬲=刀殆=£4订(2 — 2.4)式中,A和y i、乙分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2 —2.5)确定迟4吗i-i(2 —2.5)2.2极惯性矩、惯性矩和惯性积1 •极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分1 称为图形对0点的极惯性矩,用符号I P,表示,如式(2 —2.6)' (2 —2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm(1)圆截面对其圆心的极惯性矩,如式(2 —7)(2 —2.7)⑵对于外径为D内径为d的空心圆截面对圆心的极惯性矩,如式(2 —2.8)p 32 (2—2.8)式中,.:二d/D为空心圆截面内、外径的比值。

2 •惯性矩在如图6-1所示中,定义积分,如式(2 —2.9)^2 =J "沁卜'厂(2 — 2.9)称为图形对z轴和y轴的惯性矩。

(完整版)惯性矩的计算方法及常用截面惯性矩计算公式

(完整版)惯性矩的计算方法及常用截面惯性矩计算公式

(完整版)惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式截⾯图形的⼏何性质⼀.重点及难点:(⼀).截⾯静矩和形⼼1.静矩的定义式如图1所⽰任意有限平⾯图形,取其单元如⾯积dA ,定义它对任意轴的⼀次矩为它对该轴的静矩,即ydA dSx xdAdS y == 整个图形对y 、z 轴的静矩分别为 ??==A Ay ydA Sx xdA S (I-1) 2.形⼼与静矩关系图I-1 设平⾯图形形⼼C 的坐标为C C z y , 则 0 AS y x = , A S x y = (I-2)推论1 如果y 轴通过形⼼(即0=x ),则静矩0=y S ;同理,如果x 轴通过形⼼(即0=y ),则静矩0=Sx ;反之也成⽴。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形⼼;如果y 轴为图形对称轴,则图形形⼼必在此轴上。

3.组合图形的静矩和形⼼设截⾯图形由⼏个⾯积分别为n A A A A ??321,,的简单图形组成,且⼀直各族图形的形⼼坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========n i n i ii xi x n i ii n i yi y y A S S x A S 1111S (I-3)截⾯图形的形⼼坐标为∑∑===n i i n i i iAx A x 11, ∑∑===n i in i i i A y A y 11 (I-4) 4.静矩的特征(1) 界⾯图形的静矩是对某⼀坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形⼼轴的静矩必定为零,反之,若图形对某⼀轴的静矩为零,则该轴必通过图形的形⼼。

(4) 若已知图形的形⼼坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形⼼坐标。

形心主惯性轴和形心主惯性矩

形心主惯性轴和形心主惯性矩

I x0
I xC
I yC 2
I xC
I yC 2
2
I2 xC yC
278.3 10.3104 mm4
2
278.3
100.3
2
108
97.32
108
m m4
2
321.3104 mm4
I max
I x0
I xC
I yC 2
I xC
I yC 2
2
I2 xC yC
278.3 10.3104 mm4
97.3104 mm4
目录
截面的几何性质\形心主惯性轴和形心主惯性矩
3)确定形心主惯性轴的位置和计算
形心主惯性矩。由公式 得
tan20
2IxC yC IxC I yC
2
7
2 8.3
9 104
7.3 10
104 0.3
1
04
1.093

20 47.6 ,0 23.8
另一形心主惯性轴与xC轴的夹角为
一对坐标轴xC、yC ,由公式可得
I xC
101203 {
12
202
1 2 01 0
70103 12
-352 7010}mm4 278.3104 mm4
I yC
{120103 12
-152
12010 10 703 12
252 7010}mm4 100.3104 mm4
I xC yC 20 (15) 12010 (35) 25 7010mm4
目录
截面的几何性质\形心主惯性轴和形心主惯性矩
【解】 1)确定截面的形心C的位置。 建立如图所示坐标系Oxy,将截面看作由 两个矩形组成的组合截面,则有

t形截面的形心轴

t形截面的形心轴

t形截面的形心轴T形截面是工程结构中常见的截面形式之一,它具有两个不同的翼板和一个网板。

在进行受力分析时,需要确定该截面的形心轴,以便计算其截面特性参数,如惯性矩、截面面积等。

本文将对T形截面的形心轴进行详细阐述和分析。

一、T形截面的形心轴T形截面的形心轴是该截面截面积在两个翼板和一个网板平面内的几何质心,它是一个中心线或中轴线,有时也称为重心线或质心线。

它的位置和尺寸对该截面的抗弯性能、剪切性能和扭转性能有着重要的影响。

在确定T形截面的形心轴时,可以采用几何方法或积分方法。

几何方法是通过画图求解的方法,将T形截面划分成几个简单几何形状,如矩形、三角形、梯形等,然后按照其几何特征求解出形心轴的位置和尺寸。

积分方法是通过利用微积分的方法求解,将T形截面划分成无穷小的微元,然后对其面积和重心进行积分,得出形心轴的位置和尺寸。

对于对称T形截面,其形心轴可以通过简单的几何方法求解出来。

假设其上翼板的宽度为b1,下翼板的宽度为b2,网板的高度为h,该截面的总高度为H,则该截面的形心轴位置可以通过以下公式计算求得:x = b2×h(H-h/2)/2A + b1×H/2A =b1b1+4b2h4b1+4b2h其中,x表示形心轴距离下翼板底部的距离,A表示该截面的截面面积。

从上式中可以看出,形心轴的位置受T 形截面各个板的尺寸和位置的影响。

对于非对称T形截面,其形心轴的计算则需要采用数值解法或积分法求解,这里不再详细讨论。

二、T形截面的形心轴对结构性能的影响T形截面的形心轴是该截面的重要截面特性参数之一,其位置和尺寸对结构的抗弯性能、剪切性能和扭转性能有着重要的影响。

在进行抗弯计算时,T形截面的形心轴距离下翼板底部的距离对于计算截面的惯性矩、截面面积等参数具有重要影响。

当形心轴偏离下翼板底部较远时,相同截面积下的惯性矩会增加,从而提高截面的抗弯能力。

在进行剪切计算时,T形截面的形心轴距离两个翼板底部的距离对于计算截面的剪切面积有着重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档