高考物理电磁感应现象压轴题知识归纳总结含答案解析

合集下载

高考物理电磁感应现象压轴难题知识归纳总结含答案解析

高考物理电磁感应现象压轴难题知识归纳总结含答案解析

高考物理电磁感应现象压轴难题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

(2)线圈中的电流大小。

(3)AB 边产生的焦耳热。

【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。

高考物理法拉第电磁感应定律压轴题知识归纳总结含答案解析

高考物理法拉第电磁感应定律压轴题知识归纳总结含答案解析

高考物理法拉第电磁感应定律压轴题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】0i =;S =;22max P = 【解析】 【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v =刚进入磁场时产生的感应电动势:10e Bdv =导轨宽度:d =回路电阻:(2R Lr =+联立可得:0i =(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆i t umg t m v +∑∆=∑∆2i i v t umg t m v ∆+∑∆=∑∆200umgt mv +=得:S =(3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒( 产生感应电动势:E Bl v '=2212(cos60)tan 60()2E B L at at L at t =⋅︒-︒⋅=-回路的瞬时电阻:20220121[2(cos60)tan 60(cos60)(23)()2cos602R r L at L at r L at =︒-+︒-=+- 功率:22222222222422223()33()[()]24(23)()(23)(23)E B a L at t B a B a L L P at Lt a t R a a r L at r r-===-+=--++-++ 金属棒运动到D 点,所需的时间设为t ',则有: 21122L at '= 解得:Lt a'=当2Lt t a '=<时, 22max 34(23)B L a P r =+4.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)【解析】 【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量. 故本题答案是:(1)1.2V (2)(3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

高中物理法拉第电磁感应定律压轴题知识归纳总结含答案解析

高中物理法拉第电磁感应定律压轴题知识归纳总结含答案解析

高中物理法拉第电磁感应定律压轴题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mR t B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L v f R=;(2)22 mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLv I R= 联立解得:22B L v f R= (2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLv I R =,x vt = 联立得:22mvR x B L =根据动能定理有:()21022A fx W m v --=-根据功能关系有:Q =W A得:Q =mv 2(3)丙图正确 当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.2.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的14画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案

高中物理法拉第电磁感应定律压轴难题知识归纳总结含答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V【解析】【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s B t ∆=∆ 则磁通量的变化率为:0.04Wb/s B S t t∆Φ∆==∆∆ 根据E n t∆Φ=∆可知回路中的感应电动势为: 4V B E n nS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t ∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++4.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。

高中物理电磁感应现象压轴题综合题及答案解析

高中物理电磁感应现象压轴题综合题及答案解析

高中物理电磁感应现象压轴题综合题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。

现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。

不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。

(1)求ab棒沿斜面向上运动的最大速度;(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。

【答案】(1) (2)q=40C (3)【解析】【分析】(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。

据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。

(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。

(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。

【详解】(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知对物体,有;对ab棒,有又、联立解得:(2) 感应电荷量据闭合电路的欧姆定律 据法拉第电磁感应定律在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化联立解得:(3)对物体和ab 棒组成的系统,根据能量守恒定律有:又解得:电阻R 上产生的焦耳热2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

电磁感应现象压轴题知识点及练习题含答案

电磁感应现象压轴题知识点及练习题含答案

电磁感应现象压轴题知识点及练习题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。

在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。

已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。

将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。

导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。

【答案】(1)22228Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22mgRb B L =【解析】 【分析】 【详解】(1)由牛顿第二定律得3mg mg BIL -=M 棒将要进入磁场上边界时回路的电功率2222282Rm g P I R B L== (2)N 棒产生的感应电动势2E IR BLv ==由动量守恒得(3)4mg mg t BLIt mv --=通过N 棒的电荷量2BLhIt q R==根据能量守恒得21(3)422mg mg h mv Q -=⨯+联立得222222412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或223222244448Rm g m g R Q t B L B L=-) (3)对M 棒受力分析2232B L vmg mg R-=解得224mgRa B L = 由2'322BLv mg mg BLR-= 解得22mgRb B L =2.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。

高中物理电磁感应现象压轴题专项复习含答案

高中物理电磁感应现象压轴题专项复习含答案

高中物理电磁感应现象压轴题专项复习含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。

现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。

不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。

(1)求ab棒沿斜面向上运动的最大速度;(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。

【答案】(1) (2)q=40C (3)【解析】【分析】(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。

据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。

(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。

(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。

【详解】(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知对物体,有;对ab棒,有又、联立解得:(2) 感应电荷量据闭合电路的欧姆定律据法拉第电磁感应定律在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化联立解得:(3)对物体和ab棒组成的系统,根据能量守恒定律有:又解得:电阻R 上产生的焦耳热2.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M,通过高强度绳子套在半径1r的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r和3r的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R.制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m的货物一起以速度v竖直上升,电梯箱离终点(图中未画出)高度为h时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E为多少?此时a与b之间的电势差有多大?(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?(3)若要提高制动的效果,试对上述设计做出二处改进.【答案】(1)22321()2Bv r rEr-=,22321()6Bv r rUr-= (2)21()2Q M m v mgh=+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r3或减小内金属圈的半径r2【解析】【分析】 【详解】(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度1v r ω=所以,制动转盘的角速度1vr ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势22321()2Bv r r B S E t t r -∆Φ⋅∆===∆∆所以干路中的电流223E EI R R R R R==++ 那么此时a 与b 之间的电势差即为路端电压22321()6Bv r r U E IR r -=-=(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得21(2)()2m M v m M gh Mgh Q +=+-+ 解得:21()2Q M m v mgh =+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率222223221()362B v r r E P Rr R-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.3.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。

电磁感应现象压轴题知识归纳总结附答案

电磁感应现象压轴题知识归纳总结附答案

电磁感应现象压轴题知识归纳总结附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图1所示,一个圆形线圈的匝数1000n =匝,线圈面积20.02S m =,线圈的电阻1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图2所示.求()1在04s ~内穿过线圈的磁通量变化量; ()2前4s 内产生的感应电动势; () 36s 内通过电阻R 的电荷量q .【答案】(1)4×10﹣2Wb (2)1V (3)0.8C 【解析】试题分析:(1)依据图象,结合磁通量定义式BS Φ=,即可求解;(2)根据法拉第电磁感应定律,结合磁感应强度的变化率求出前4s 内感应电动势的大小.(3)根据感应电动势,结合闭合电路欧姆定律、电流的定义式求出通过R 的电荷量.(1)根据磁通量定义式BS Φ=,那么在0~4s 内穿过线圈的磁通量变化量为:()()3210.40.20.02410B B S Wb Wb -∆Φ=-=-⨯=⨯(2)由图象可知前4 s 内磁感应强度B 的变化率为:0.40.2/0.05?/4B T s T s t ∆-==∆ 4 s 内的平均感应电动势为:10000.020.05?1BE nSV V t∆==⨯⨯=∆ (3)电路中的平均感应电流为:E I R =总,又q It =,且E n t∆Φ=∆ 所以()0.020.40.210000.841q n C C R 总⨯-∆Φ==⨯=+ 【点睛】本题考查了法拉第电磁感应定律的应用,由法拉第电磁感应定律求出感应电动势,由欧姆定律求出感应电流,最后由电流定义式的变形公式求出感应电荷量.2.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -⨯ 【解析】 【分析】 【详解】(1)感应电动势:10.210000.00200.82B E n n S V t t ∆Φ∆-===⨯⨯=∆∆; (2)电路电流120.80.1134E I A r R R ===++++,电阻2R 两端电压220.140.4U IR V ==⨯=,电容器所带电荷量65230104 1.210Q CU C --==⨯⨯=⨯,S 断开后,流经2R 的电量为41.210C -⨯;【点睛】本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.3.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】(1)当棒ab 达到最大速度时,对ab 和cd 的整体:20.2N F mg ==(2) ab 棒由静止到最大速度通过ab 棒的电荷量q It = 22BLx E tI R R== 解得10.20.1C 0.05C 220.2BLx q R ⨯⨯===⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg由闭合电路欧姆定律知2EI R=棒ab 切割磁感线产生的感应电动势E=BLv m代入数据解得v m =1m/sab 棒由静止到最大速度过程中,由能量守恒定律得()212m F mg x mv Q -+=代入数据解得Q =5×10-3J4.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)同路中的电流;(2)金属棒在x=2m处的速度;(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;(4)金属棒从x=0运动到x=2m过程中外力的平均功率.【答案】(1)2(2)(3)1.6(4)0.71【解析】【分析】【详解】(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变x=0处导体棒切割磁感线产生电动势电流(2) x=2m处解得(3)F-X图像为一条倾斜的直线,图像围成的面积就是二者的乘积即x=0时,F=0.4N x=2m时,F=1.2N(4)从x=0运动到x=2m,根据动能定理解得解得所以【点睛】(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.5.如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为.磁场的磁感强度为B ,方向垂直纸面向里.现有一段长度为、电阻为的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度υ向b 端滑动,滑动中始终与ac 平行并与线框保持良好接触.当MN 滑过的距离为时,导线ac 中的电流是多大?方向如何?【答案】方向a →c【解析】 【分析】 【详解】 试题分析:MN 滑过的距离为L/3时,它与bc 的接触点为P ,如下图所示由图可知MP 长度为L/3, MP 中的感应电动势为:1E 3BL V BLV 有== MP 段的电阻为:r=3R MacP 和MbP 两电路的并联电阻为121212233r 12933r r R R r r 并⨯===++由欧姆定律,PM 中的电流为:EI r r =+并由分流得ac 中的电流为:ac 23I I =, 解得考点:本题考查瞬时感应电动势,闭合电路欧姆定律点评:电磁感应与电路的结合问题,关键是弄清电源和外电路的构造,然后根据电学知识进一步求解6.如图甲所示。

电磁感应现象压轴难题知识归纳总结含答案解析

电磁感应现象压轴难题知识归纳总结含答案解析

电磁感应现象压轴难题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R =4Ω的定值电阻,两导轨在同一平面内。

高中物理电磁感应现象压轴题知识归纳总结

高中物理电磁感应现象压轴题知识归纳总结

高中物理电磁感应现象压轴题知识归纳总结一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

高考物理电磁感应现象压轴题复习题及答案

高考物理电磁感应现象压轴题复习题及答案

高考物理电磁感应现象压轴题复习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

高考物理电磁感应现象压轴题知识归纳总结含答案

高考物理电磁感应现象压轴题知识归纳总结含答案

高考物理电磁感应现象压轴题知识归纳总结含答案一、高中物理解题方法:电磁感应现象的两类情况1.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。

已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。

闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?(2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于ER,试判断并分析说明原因。

【答案】(1)E v BL =;(2) 2222mE B L;(3)见解析 【解析】 【分析】 【详解】(1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。

设导体棒的最终速度v ,则有E BLv =解得Ev BL=(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为2222122k mE E mv B L ∆==所以在整个过程中电源释放的电能为2222mE B L(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于ER,导体棒在安培力的作用下开始运动做加速运动。

之后导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,当感应电动势与电源电动势相等时,电路中电流为0,因此在导体棒运动过程中,电路中的电流只有在闭合电键瞬间等于ER,之后逐渐减小到0。

2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。

高考物理电磁感应现象压轴难题综合题附答案解析

高考物理电磁感应现象压轴难题综合题附答案解析

高考物理电磁感应现象压轴难题综合题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。

高考物理法拉第电磁感应定律压轴题知识归纳总结附答案

高考物理法拉第电磁感应定律压轴题知识归纳总结附答案

高考物理法拉第电磁感应定律压轴题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00B Sv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

电磁感应现象压轴难题知识归纳总结附答案解析

电磁感应现象压轴难题知识归纳总结附答案解析

电磁感应现象压轴难题知识归纳总结附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数;(2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C【解析】【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得E I R r=+③ 联立①②③得 v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得 E I R r=+⑩ 由⑦⑧⑨⑩得 Q =0.02C ⑪2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力;(2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72L t g= 【解析】【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有 21sin 302mgL mv ︒=, 则线框进入磁场时的速度 2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv线框中电流E I R=ab 边受到的安培力 22B L v F BIL R==线框匀速进入磁场,则有22sin 30B L v mg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L v F BI L mg R==''= 方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒=' 解得4v v ='=根据能量守恒定律有 2211sin 30222mg L mv mv Q ︒'⨯+=+ 解得4732mgL Q = 线框ab 边在上侧磁扬中运动的过程所用的时间1L t v= 设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin302mg t BLIt mv mv ︒-='-其中()022BL L x I t R -=联立以上两式解得 ()02432L x v t v g-=- 线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=3.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++ 所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.4.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

高中物理电磁感应现象压轴难题专项复习含答案解析

高中物理电磁感应现象压轴难题专项复习含答案解析

高中物理电磁感应现象压轴难题专项复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。

高考物理与电磁感应现象的两类情况有关的压轴题及答案解析

高考物理与电磁感应现象的两类情况有关的压轴题及答案解析

高考物理与电磁感应现象的两类情况有关的压轴题及答案解析一、电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。

BC 边和AD 边为绝缘轻杆,质量不计。

线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。

在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。

在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。

锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。

当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。

(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL ;(3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。

高考物理电磁感应现象压轴题提高题专题含答案解析

高考物理电磁感应现象压轴题提高题专题含答案解析

高考物理电磁感应现象压轴题提高题专题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。

已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。

高考物理电磁感应现象习题知识归纳总结含答案

高考物理电磁感应现象习题知识归纳总结含答案

高考物理电磁感应现象习题知识归纳总结含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁感应现象压轴题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求:(1)线圈进入磁场时的速度 v 。

(2)线圈中的电流大小。

(3)AB 边产生的焦耳热。

【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =3.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。

一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。

在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。

以U 型导轨bc 边初始位置为原点O 建立坐标x 轴。

t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。

经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。

已知2s 内外力F 做功W =14.4J 。

不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。

求:(1)在2s 内外力F 随时间t 的变化规律; (2)在整个运动过程中,电路消耗的焦耳热Q ;(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。

【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =(0≤x ≤4m );6.40.6v x =-324m m 3x ⎛⎫≤< ⎪⎝⎭;v =0(32m 3x ≥) 【解析】 【分析】 【详解】(1)根据法拉第电磁感应定律可知:U BLv kt t ===得到:2Uv t BL== 根据速度与时间关系可知:22m/s a =对U 型金属导轨根据牛顿第二定律有:F IBL IBL ma μ--=带入数据整理可以得到:2 1.2F t =+(2)由功能关系,有f W Q W =+由于忽略导体棒MN 的重力,所以摩擦力为:A f F μ=则可以得到:fA Q WW μμ==则整理可以得到:(1)f W Q W Q μ=+=+得到:Q=12J(3)设从开始运动到撤去外力F 这段时间为12s t=,这段时间内做匀加速运动;①1t t 时,根据位移与速度关系可知:v =1t t =时根据匀变速运动规律可知该时刻速度和位移为:14m/s v =14m x =②1t t >时,物体做变速运动,由动量定理得到:1(1)BL q mv mv μ-+∆=-整理可以得到:2211(1)(1)(4)6.40.6BL q B L x v v v x m mRμμ+∆+-=-==--当323x m =时: 0v =综合上述,故bc 边速度与位置坐标x 的函数关系如下:v =(0≤x≤4m )6.40.6v x =-324m m 3x ⎛⎫≤< ⎪⎝⎭0v =(32m 3x ≥)4.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。

在电磁感应现象中,感应电动势分为动生电动势和感生电动势两种。

产生感应电动势的那部分导体就相当于“电源”,在“电源”内部非静电力做功将其它形式的能转化为电能。

(1)如图1所示,固定于水平面的U 形金属框架处于竖直向下的匀强磁场中,磁感应强度为B ,金属框两平行导轨间距为l 。

金属棒MN 在外力的作用下,沿框架以速度v 向右做匀速直线运动,运动过程中金属棒始终垂直于两平行导轨并接触良好。

已知电子的电荷量为e 。

请根据电动势定义,推导金属棒MN 切割磁感线产生的感应电动势E 1;(2)英国物理学家麦克斯韦认为,变化的磁场会在空间激发感生电场,感生电场与静电场不同,如图2所示它的电场线是一系列同心圆,单个圆上的电场强度大小处处相等,我们把这样的电场称为涡旋电场。

在涡旋电场中电场力做功与路径有关,正因为如此,它是一种非静电力。

如图3所示在某均匀变化的磁场中,将一个半径为x 的金属圆环置于半径为r 的圆形磁场区域,使金属圆环与磁场边界是相同圆心的同心圆,从圆环的两端点a 、b 引出两根导线,与阻值为R 的电阻和内阻不计的电流表串接起来,金属圆环的电阻为2R ,圆环两端点a 、b 间的距离可忽略不计,除金属圆环外其他部分均在磁场外。

已知电子的电荷量为e ,若磁感应强度B 随时间t 的变化关系为B =B 0+kt (k >0且为常量)。

a .若x <r ,求金属圆环上a 、b 两点的电势差U ab ;b .若x 与r 大小关系未知,推导金属圆环中自由电子受到的感生电场力2F 与x 的函数关系式,并在图4中定性画出F 2-x 图像。

【答案】(1)见解析(2)a. 2ab 2k πU =3x ; b.22 F =2ker x;图像见解析 【解析】 【分析】 【详解】(1)金属棒MN 向右切割磁感线时,棒中的电子受到沿棒向下的洛仑兹力,是这个力充当了非静电力。

非静电力的大小1F Bev =从N 到M 非静电力做功为=W Bevl 非由电动势定义可得1W E Blv q==非(2)a.由01B B kt =+可得Bk t∆=∆ 根据法拉第电磁感应定律2B SE kS t t ∆Φ∆⋅===∆∆ 因为x r <,所以2=πS x根据闭合电路欧姆定律得2/2E I R R =+ab U I R =⋅联立解得22π=3ab k x U b.在很短的时间内电子的位移为s ∆,非静电力对电子做的功为2F s ∆ 电子沿着金属圆环运动一周,非静电力做的功222πW F s F x ∆=∑=非根据电动势定义2W E e=非当x r <时,联立解得22kexF =当x r >时,磁通量有效面积为2S r π=联立解得22ker 2F x= 由自由电子受到的感生电场力2F 与x 的函数关系式 可得F 2-x 图像5.在如图甲所示区域(图中直角坐标系Oxy 的一、三象限)内有匀强磁场,磁感应强度方向垂直于纸面向里,大小为B ,半径为l ,圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在纸面内沿逆时针方向匀速转动,导线框回路电阻为R .(1)求线框中感应电流的最大值I 0和交变感应电流的频率f ;(2)在图乙中画出线框在一周的时间内感应电流I 随时间t 变化的图象(规定与图中线框的位置相应的时刻为t =0)【答案】(1)2012I bl R ω=,f ωπ= (2)【解析】 【详解】(1)在从图1中位置开始t =0转过60°的过程中,经△t ,转角△θ=ω△t ,回路的磁通增量为△Φ=12△θ l 2B 由法拉第电磁感应定律,感应电动势为:ε=tΦ 因匀速转动,这就是最大的感应电动势.由欧姆定律可求得:I 0=1 2RωBl 2前半圈和后半圈I (t )相同,故感应电流周期为:T = πω,频率为:1f T =ωπ=. 故感应电流的最大值为I 0=1 2RωBl 2,频率为f =ωπ. (2)由题可知当线框开始转动3π过程中,有感应电流产生,全部进入时,无感应电流,故当线框全部进入磁场接着再旋转6π过程中无电流,然后出磁场时,又有感应电流产生.故图线如图所示:【点睛】本题考查了法拉第电磁感应定律的应用,注意公式=E tΦ和E =BLv 的区别以及感应电流产生条件,并记住旋转切割产生感应电动势的公式E =12BωL 2.6.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【答案】(1)0Bdv R ;(2)220B d v mR ;(3)2220()B d v v R-;【解析】 【分析】本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P . 【详解】(1)感应电动势 0E Bdv = 感应电流E I R =解得0Bdv I R= (2)安培力 F BId = 牛顿第二定律 F ma =解得220B d v a mR=(3)金属杆切割磁感线的速度0=v v v '-,则感应电动势 0()E Bd v v =-电功率2E P R= 解得2220()B d v v P R -=【点睛】该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.7.为了提高自行车夜间行驶的安全性,小明同学设计了一种闪烁装置.如图所示,自行车后轮由半径的金属内圈、半径的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为的小灯泡.在支架上装有磁铁,形成了磁感应强度、方向垂直纸面向外的扇形匀强磁场,其内半径为、外半径为、张角.后轮以角速度,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.(1)当金属条进入扇形磁场时,求感应电动势E,并指出ab上的电流方向;(2)当金属条进入扇形磁场时,画出闪烁装置的电路图;(3)从金属条进入扇形磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差随时间变化的图象;【答案】(1),电流方向由到;(2)见解析;(3)见解析【解析】【分析】【详解】(1)金属条ab在匀强磁场中转动切割,由得:感应电动势为,根据右手定则判断可知电流方向由到;(2)边切割充当电源,其余为外电路,且并联,其等效电路如图所示(3)设电路的总电阻为,根据电路图可知,两端电势差:设离开磁场区域的时刻,下一根金属条进入磁场的时刻,则:,,设轮子转一圈的时间为,则,在内,金属条有四次进出,后三次与第一次相同,由上面的分析可以画出如下图象:【点睛】本题考查了电磁感应和恒定电路的知识,设计问题从容易入手,层层递进,较好地把握了试题的难度和区分度.8.如图所示,在坐标xoy平面内存在B=2.0T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1和R2,其R1=4.0Ω、R2=12.0Ω.现有一足够长、质量m=0.10kg的金属棒MN在竖直向上的外力F作用下,以v=3.0m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,g取10m/s2,求:(1)金属棒MN在导轨上运动时感应电流的最大值;(2)外力F的最大值;(3)金属棒MN滑过导轨OC段,整个回路产生的热量.【答案】(1)1.0A(2)20.0N(3)1.25J【解析】【分析】【详解】(1)金属棒MN沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN匀速运动到C点时,电路中感应电动势最大,产生的感应电流最大.金属棒MN接入电路的有效长度为导轨OCA形状满足的曲线方程中的x值.因此接入电路的金属棒的有效长度为L m=x m=0.5mE m=3.0V且A(2)金属棒MN匀速运动中受重力mg、安培力F安、外力F外作用NN(3)金属棒MN在运动过程中,产生的感应电动势有效值为金属棒MN滑过导轨OC段的时间为tms滑过OC段产生的热量J.9.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距l.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F,g .使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小.sin(1)乙金属杆刚进入磁场时,发现乙金属杆作匀速运动,则甲乙的电阻R各为多少?(2))以刚释放时t =0,写出从开始到甲金属杆离开磁场,外力F随时间t的变化关系,并说明F的方向.(3)乙金属杆在磁场中运动时,乙金属杆中的电功率多少?(4)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.【答案】(1)R =222(322(4)2sin Q mgl θ-【解析】【分析】【详解】(1)由于甲乙加速度相同,当乙进入磁场时,甲刚出磁场:乙进入磁场时v =受力平衡有:22sin 2B l v mg R θ==解得:R = (2)甲在磁场用运动时,外力F 始终等于安培力: 2A Blv F F BIl Bl R===, 速度为: sin v g t θ=可得:22sin2A Blg t F Bl R θ==, F 沿导轨向下(3)乙金属杆在磁场中运动时,乙金属杆中的电功率为:22222Blv P I R R R ⎛⎫=== ⎪⎝⎭; (4)乙进入磁场前匀加速运动中,甲乙发出相同热量,设为Q 1,此过程中甲一直在磁场中,外力F 始终等于安培力,则有:F 12W W Q ==安乙在磁场中运动发出热量Q 2,利用动能定理:2sin 20mgl Q θ=-可得: 2sin 2mgl Q θ=, 由于甲出磁场以后,外力F 为零,可得: F 2sin W Q mgl θ=-。

相关文档
最新文档