高考物理压轴题电磁场汇编(可编辑修改word版)

合集下载

高考物理电磁感应现象压轴题word

高考物理电磁感应现象压轴题word

高考物理电磁感应现象压轴题word一、高中物理解题方法:电磁感应现象的两类情况1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-由欧姆定律得:12E I R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nBLbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=2.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

高考物理压轴题--电磁场类1

高考物理压轴题--电磁场类1

高考压轴题—电磁场类11.(09.全国卷I )(21分) 应用数学处理物理问题能力如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。

P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。

A 是一块平行于x 轴的挡板,与x 轴的距离为2h ,A 的中点在y 轴上,长度略小于2a。

带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。

质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。

不计重力。

求粒子入射速度的所有可能值。

1. 【解析】设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有 …⑪, 粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有…⑫,粒子射出磁场与下一次进入磁场位置间的距离始终不变,与相等.由图可以看出……⑬设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即 ……⑭,由⑬⑭两式得……⑮ 'O N 1N qBm vR =1x =1x θsin 2R N N O O ='2x 1N N O 'a x =2()a nx x n 2121=-+121n x a n +=+若粒子与挡板发生碰撞,有 ……⑯ 联立⑬⑭⑯得 n<3………⑰ 联立⑪⑫⑮得 ………⑱把代入⑱中得…………⑲…………⑾…………⑿2.(2012全国卷)(18分)如图,一半径为R 的圆表示一柱形区域的横截面(纸面)。

在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直。

圆心O 到直线的距离为 。

现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域。

高考物理电磁感应现象压轴题知识点及练习题及答案解析

高考物理电磁感应现象压轴题知识点及练习题及答案解析

高考物理电磁感应现象压轴题知识点及练习题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff ′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

2020年高考物理电磁场压轴精选14道(答案和解析)

2020年高考物理电磁场压轴精选14道(答案和解析)

物理电磁场压轴精炼14道(有答案和精细解析)1.(16分)如图所示,直角坐标系xoy位于竖直平面内,在-3m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。

一质量m = 6.4×10-27kg、电荷量q =--3.2×10-19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。

求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。

2.(18分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷qm=106 C/kg的正电荷置于电场中的O点由静止释放,经过15π×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:(1)匀强电场的电场强度E的大小;(保留2位有效数字)(2)图b中t=45π×10-5 s时刻电荷与O点的水平距离;(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) (保留2位有效数字)3.(20分)一个质量m =0.1kg的正方形金属框,其电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AB重合),由静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边CD平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与CD重合)。

高考物理电磁感应现象压轴题试卷附答案

高考物理电磁感应现象压轴题试卷附答案

高考物理电磁感应现象压轴题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。

高考物理带电粒子在磁场中的运动压轴题专项复习word

高考物理带电粒子在磁场中的运动压轴题专项复习word

高考物理带电粒子在磁场中的运动压轴题专项复习word一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为20粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0152mv B ql=(2)粒子从P 到A 的轨迹如图所示:粒子绕负点电荷Q 做匀速圆周运动,设半径为r 2 由几何关系得252cos 8l r l α==由库仑力提供向心力得20222v Qqk m r r =解得:2058mv lQ kq=(3)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B ql π=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P ⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子213L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭4.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高考物理压轴题集(磁场)

高考物理压轴题集(磁场)

1如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求:(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小(4)电场强度E 的大小和方向2如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E 、方向水平向右,其宽度为L ;中间区域匀强磁场的磁感应强度大小为B 、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B 、方向垂直纸面向里。

一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a 点,然后重复上述运动过程。

(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d 为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a 点开始运动到第一次回到a 点时所用的时间t.3如图10所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E 。

一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

φQRPOyEφAφB C24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。

一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP=d)射入磁场(不计重力影响)。

A D⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。

⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。

求入射粒子的速度。

24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。

设入射粒子的速度为 v1v2m1=qBv1 d / 2qBd φ QR/ R解得:v1 =2m P DA O/ O⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。

由几何关系得:∠OQO/=OO/=R/+R -d由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos解得:R/d (2R -d )=2[R(1+ cos) -d ]设入射粒子的速度为 v,由m vR/=qvB解出:v =qBd (2R -d )2m[R(1+c os) -d]24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外。

有一质量为m,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。

质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。

接着,质点O x 进入磁场,并垂直于OC 飞离磁场。

不计重力影响。

若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。

24.质点在磁场中偏转90º,半径r=d sin=mv,得v=qBd sin;qB mv23 2 y 0a yEφAφB φdCy P v 0QOM由平抛规律,质点进入电场时 v 0=v cos φ,在电场中经历时间 t=d /v ,在电场中竖直位移 h = dtan= 1 ⋅ qE⋅ t 2 ,由以上各式可得qB 2d E =msin 22 mhOx3 cos25.(18 分)如图所示,在第一象限有一匀强电场,场强大小为E ,方向与 y 轴平行;在 x 轴下方有一匀强磁场,磁场方向与纸面垂直。

一质量为 m 、电荷量为-q (q >0)的粒子以平行于 x 轴的速度从 y 轴上的 P 点处射入电场,在 x 轴上的 Q 点处进入磁场,并从坐标原 点 O 离开磁场。

粒子在磁场中的运动轨迹与 y 轴交于 M 点。

已知 OP=l ,xOQ=2 l 。

不计重力。

求:⑴M 点与坐标原点 O 间的距离;⑵粒子从 P 点运动到 M 点所用的时间。

⎛ 25.⑴MO=6l ⑵ t =⎝ ⎫ + 1⎪ 2⎭33、(2009 年宁夏卷)25.如图所 示,在第一象限有一均强电场,场强大小为 E ,方向与 y 轴平行;在 x 轴下方有一均强磁场,磁场方向与纸面垂直。

一质量为 m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在 x 轴上的 Q 点处进入磁场,并从坐标原点 O 离开磁场。

粒子在磁场中的运动轨迹与 y 轴 交于 M 点。

已知 OP= l , OQ = 2 3l 。

不计重力。

求(1)M 点与坐标原点 O 间的距离;(2)粒子从 P 点运动到 M 点所用的时间。

【解析】(1)带电粒子在电场中做类平抛运动,在 y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为 a ;在 x 轴正方向上做匀速直线运动,设速度为v 0 ,粒子从 P 点运动到 QqE点所用的时间为t 1 ,进入磁场时速度方向与 x 轴正方向的夹角为,则 a =m①t 1 =②v =x 0 ③t 1其中 x = 2 3l , y = l 。

又有tan=at 1④2ml qE 3v6联立②③④式,得= 30︒因为 M 、O 、Q 点在圆周上, ∠MOQ =90︒ ,所以 MQ 为直径。

从图中的几何关系可 知。

R = 2 3l ⑥MO = 6l ⑦(2)设粒子在磁场中运动的速度为v ,从 Q 到 M 点运动的时间为t 2 ,则有v v 0 ⑧cost =R ⑨2v带电粒子自 P 点出发到 M 点所用的时间为t 为t = t 1 + t 2⑩⎛ 3 ⎫ 2ml 联立①②③⑤⑥⑧⑨⑩式,并代入数据得t = 2 + 1⎪⎪ qE⑾⎝ ⎭25.(18 分)a a 如图所示,在 0≤x≤a 、o≤y≤范围内有垂直手 xy 平面向外的匀强磁场,磁感应强度2 2大小为 B 。

坐标原点 0 处有一个粒子源,在某时刻发射大量质量为 m 、电荷量为 q 的带正电粒子,它们的速度大小相同,速度方向均在 xy 平面内,与 y 轴正方向 的夹角分布在 0 ~ 900 范围内。

己知粒子在磁场中做圆周运动的半径 介于 a /2 到 a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的(1) 速度的大小:(2) 速度方向与 y 轴正方向夹角的正弦。

aqB 【答案】(1) v = (2 - ) 2 m (2) si n = 10命题点 10:带电粒子在组合场中的运动——电场中的加速、偏转;磁场中的圆周运动07—25.(18 分)飞行时间质谱仪可以对气体分子进行分析。

如图所示,在真空状态下,脉冲阀 P 喷出微量气体,经激光照 射产生不同价位的正离子,自 a 板小孔进入 a 、b 间的加速电场, 从 b 板小孔射出,沿中线方向进入 M 、N 板间的偏转控制区, 到达探测器。

已知元电荷电量为 e ,a 、b 板间距为 d ,极板 M 、N 的长度和间距均为 L 。

不计离子重力及进入 a 板时的初速度。

⑴当 a 、b 间的电压为 U 1 时,在 M 、N 间加上适当的电压 U 2,使 离子到达探测器。

请导出离子的全部飞行时间与比荷 K (K =ne /m )的关系式。

⑵去掉偏转电压 U 2,在 M 、N6- 6 a bMPL激光束SdNL探测器=2m neU 1 a 1 L 0 磁感应强度 B ,若进入 a 、b 间所有离子质量均为 m ,要使所有的离子均能通过控制区从右侧飞出,a 、b 间的加速电压 U 1 至少为多少?25、解:⑴由动能定理: neU 1 = 1 mv 2 2n 价正离子在 a 、b 间的加速度: a 1 =neU 1 md在 a 、b 间运动的时间: t =v= d 1在 MN 间运动的时间: t 2 = v2d + L 离子到达探测器的时间:t =t 1+t 2=2KU 1⑵假定 n 价正离子在磁场中向 N 板偏转,洛仑兹力充当向心力,设轨迹半径为 R ,v 2由牛顿第二定律得: nevB = mR离子刚好从 N 板右侧边缘穿出时,由几何关系:R 2=L 2+(R -L /2)225neL 2B 2由以上各式得:U 1 =32m当 n =1 时 U 1 取最小值U min =08—25.(18 分)【2010 示例】25eL 2B 232m两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图 1、图 2 所示(规定垂直纸面向里为磁感应强度的正方向)。

在 t =0 时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。

若电场强度 E 0、磁q感应强度 B 0、粒子的比荷 m 均已知,且t 0 = 2πm qB 0 10π2mE ,两板间距 h = 0。

qB 2(1) 求粒子在 0~t 0 时间内的位移大小与极板间距 h 的比值。

(2) 求粒子在板板间做圆周运动的最大半径(用 h 表示)。

(3) 若板间电场强度 E 随时间的变化仍如图 1 所示,磁场的变化改为如图 3 所示,试画出粒子在板间运动的轨迹U PQ t 02 t 03 t 00 0 mv =mv h 图(不必写计算过程)。

解法一:(1)设粒子在 0~t时间内运动的位移大小为 s= 1 at 2 ①a =qE 0②又已知t= 2πm 0 10π2mE , h = 012 0 m联立①②式解得 s 1 = 1 ③ 0 qB qB 2h 5(2) 粒子在 t 0~2t 0 时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。

设运动速度大小为 v 1,轨道半径为 R 1,周期为 T ,则v 1 = at 0 ④2qv 1B 0 = 1⑤ 联立④⑤式得 R 1 = ⑥R 1 5π2πm又T =⑦qB 0即粒子在 t 0~2t 0 时间内恰好完成一个周期的圆周运动。

在 2t 0~3t 0 时间内,粒子做初速度为 v 的匀加速直线运动,设位移大小为 s = v t + 1at 2⑧12 1 023解得 s 2 = 5h ⑨由于 s 1+s 2<h ,所以粒子在 3t 0~4t 0 时间内继续做匀速圆周运动,设速度大小为 v 2,半径为 R 2v 2 = v 1 + at 0 ⑩2qv 2 B 0 =2○11R 2解得 R 2 =2h ○12 5π由于 s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。

在 4t 0~5t 0 时间内,粒子运动到正极 2h 板(如图 1 所示)。

因此粒子运动的最大半径 R 2 5π。

(3) 粒子在板间运动的轨迹如图 2 所示。

09—25.(18 分)如图甲所示,建立 Oxy 坐标系,两平行极板 P 、Q 垂直于 y 轴且关于 x 轴对称,极板长度和板间距均为 l 。

第一、四象限有磁感应强度为 B 的匀强磁场,方向垂直于 Oxy 平面向里。

位于极板左侧的粒子源沿 x 轴向右连接发射质量为 m 、电量为+q 、速度相同、重力不计的带电粒子。

在 0~3t 0 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知 t =0 时刻进入两板间的带电粒子恰好在 t 0 时刻经极板边缘射入磁场。

上述 m 、q 、l 、t 0、B 为已知量。

(不考虑粒子间相互影响及返回板间的情况)⑴求电压 U 0 的大小。

⑵求 t 0/2 时刻进入两板间的带电粒子在磁场中做圆周运动的半径。

⑶何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

U 0O t-U 0图甲图乙yPlv 0 QBOlv 2 + v 2x y 5ml 0 = t v ' 2点评:本题命题点仍为带电粒子在周期性变化的电场和分立的磁场中的运动问题。

创新之处在于带电粒子在磁场中的运动情况由于进入磁场的位置不同而有所不同,这样就造成了运动情况的多样性,从而存在极值问题。

相关文档
最新文档