全等三角形综合练习题

合集下载

全等三角形的练习题(100题)

全等三角形的练习题(100题)

1、如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.2、如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?3、如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF4、如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.5、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l 于点C,BD⊥l交l于点D.求证:AC=OD.6、如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.7、如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.8、如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB9、如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF10、如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.11、如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.12、已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.13、已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.14、如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.15、在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:。

初二全等三角形经典练习题及答案

初二全等三角形经典练习题及答案

初二全等三角形经典练习题及答案一、选择题1. 设ABC和DEF是两个全等三角形,已知∠A=∠D=63°,∠B=∠E=75°,则∠C=_____。

A. 63°B. 75°C. 105°D. 123°2. 若△ABC≌△PQR,已知AB=7.5cm,BC=9cm,PR=6cm,令P是B的重点,则AP的长度是_____。

A. 6.75cmB. 5.25cmC. 3.75cmD. 3cm3. 在△ABC和△PQR中,已知∠A=80°,∠C=60°,∠Q=80°。

如果BC=PQ=4cm,则BQ的长度是_____。

A. 4cmB. 5cmC. 6cmD. 8cm4. 设ABC和DEF是两个全等三角形,已知AB=DE=12cm,BC=EF=16cm,AC=DF=20cm,则△ABC和△DEF的周长之比是_____。

A. 3:4B. 4:3C. 5:6D. 6:5二、填空题1. 在△ABC中,已知AB=AC,∠B=30°,BD为边AB的中线,DE⊥AC交BC于点E,则∠DEB=_____。

2. 在△ABC与△DEF中,AB=DE,AC=DF,∠A=∠D,若AD平行于BF,则BC平行于_____。

3. 在△ABC和△DEF中,BC=EF,AB=2DE,∠B=∠E=90°,∠C=∠F=60°,则BC的长度是_____。

4. 在△ABC中,AB=AC,∠A=40°,点D是边BC的中点,则∠ACD的度数是_____。

三、综合题1. 在△ABC中,AB=AC,∠B=40°。

点D和点E分别在线段AB和AC上,且AD=CE。

若∠CDE=80°,求∠DBE的度数。

解答:已知∠B=40°,AB=AC,AD=CE,且∠CDE=80°。

利用全等三角形的性质,我们可以得到以下等式:∠BAC = ∠CAB (等腰三角形的性质)∠ADE = 180° - ∠D = 180° - 80° = 100°∠AED = 180° - ∠A - ∠ADE = 180° - 40° - 100° = 40°由∠ADE = ∠AED,得到△ADE是一个等腰三角形。

全等三角形综合题

全等三角形综合题

养习惯·树态度一.解答题(共17小题)1.如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD内部,延长AF交CD于点G.(1)请判断线段GF与GC的大小关系是_________.(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.2.在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是_________(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.3.在四边形ABCD中,对角线AC平分∠DAB.(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.4.(1)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.求证:CD=CG;(2)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.若AD=CG,求证:AB=AC+BH.6.把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)7.问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.8.已知:如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.9.如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.11.已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE﹣AF|;②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件_________,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).12.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是_________、_________.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是_________、_________.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.14.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE 于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为_________.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;(3)如图3,若∠ACD=β,则∠AFB=_________(用含β的式子表示)并说明理由.16.如图1,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E.求证:AB=AD+BE;(2)如图2,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2014年09月12日1054166241的初中数学组卷参考答案与试题解析一.解答题(共17小题)1.(2014•潮安区模拟)如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F 在正方形ABCD内部,延长AF交CD于点G.(1)请判断线段GF与GC的大小关系是FG=CG.(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.考点:四边形综合题;直角三角形全等的判定.专题:证明题;分类讨论.分析:(1)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(2)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(3)判定△ECG和△EFG全等,根据全等三角形对应边相等性质即可证明.解答:解:(1)∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(2)不会改变.证明:连接EG∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(3)不会改变.证明:连接EG、FC∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∠B=∠AFE∴EF=EC∴∠EFC=∠ECF∵矩形ABCD改为平行四边形∴∠B=∠D∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D∴∠ECD=∠EFG∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF∴∠GFC=∠GCF∴△ECG≌△EFG∴FG=CG即(1)中的结论仍然成立.点评:本题考查了学生对直角三角形全等的判定,考查了全等三角形对应边相等的性质.3.(2010•海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是CF=BD,CF⊥BD(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.考点:全等三角形的判定与性质.分析:(1)①根据正方形和等边三角形的性质得出AD=AF,∠BAC=∠DAF=90°,求出∠BAD=∠CAF,证△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;②求出∠BAD=∠CAF,证△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;(2)在BD上截取AM=AC,连接AM,与(1)证明过程类似证MAD≌△CAF即可求出答案.解答:(1)①CF=BD CF⊥BD,解:结论还成立,CF=BD CF⊥BD,理由是:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=90°,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∠B=∠ACF,∵∠BAC=90°,∴∠B+∠BCA=90°,∴∠ACF+∠ACB=90°,∴CF⊥BD,故答案为:CF=BD,CF⊥BD.②解:结论还成立,理由是由①知,∠BAC=FAD=90°,∴∠BAC+∠CAD=∠FAD+∠CAD,∴∠BAD=∠FAC,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∠B=∠ACF,∵∠BAC=90°,∴∠B+∠BCA=90°,∴∠ACF+∠ACB=90°,∴CF⊥BD,即①的结论还成立.(2)解:当∠ACB=45°时,CF⊥BD理由是:如图1,当∠BAC>90°,过点A作AM⊥CA交BC于M,则AM=AC,由(1)同理可证明△FAC≌△MAD,∴∠ACF=∠AMD=45°,∴∠FCB=90°,即CF⊥BD.点评:本题考查了全等三角形的性质和判定,正方形的性质,主要培养学生的推理能力,本题具有一定的代表性,证明过程类似,透过做此题培养了学生的发散思维能力.4.(2008•宣武区二模)在四边形ABCD中,对角线AC平分∠DAB.(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.考点:全等三角形的判定与性质.分析:(1)由AC平分∠DAB,∠DAB=120°,可得∠CAB=∠CAD=60°,又由∠B=∠D=90°,即可得∠ACB=∠ACD=30°,根据直角三角形中30°角所对的直角边等于斜边的一半,即可得AB+AD=AC;(2)首先过C点分别作AD和AB延长线的垂线段,垂足分别为E、F,由AC平分∠DAB,可得CE=CF,又由∠B与∠D互补,可证得△CED≌△CFB,则可得AD+AB=AE+AF,又由AE+AF=AC,则可得线段AB、AD、AC有怎样的数量关系为AB+AD=AC;(3)首先过C点分别作AB和AD延长线的垂线段,垂足分别是E、F,与(2)同理可得△CEB≌△CFD,则可得∠G=∠DAC=∠CAB=45°,即可求得线段AB、AD、AC有怎样的数量关系为AB+AD=AC.解答:证明:(1)在四边形ABCD中,∵AC平分∠DAB,∠DAB=120°,∴∠CAB=∠CAD=60°.又∵∠B=∠D=90°,∴∠ACB=∠ACD=30°.∴AB=AD=AC,即AB+AD=AC.(2)AB+AD=AC.证明如下:如图②,过C点分别作AD和AB延长线的垂线段,垂足分别为E、F.∵AC平分∠DAB,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D.又∵∠CED=∠CFB=90°,∴△CED≌△CFB.∴ED=BF.∴AD+AB=AE+ED+AB=AE+BF+AB=AE+AF.∵AC为角平分线,∠DAB=120°,∴∠ECA=∠FCA=30°,∴AE=AF=AC,∴AE+AF=AC,∴AB+AD=AE+AF=AC.∴AB+AD=AC.(3)AB+AD=AC.证明如下:如图③,过C点分别作AB和AD延长线的垂线段,垂足分别是E、F.∵AC平分∠DAB,∵CE⊥AD,CF⊥AF,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠EDC=180°,∴∠ABC=∠EDC.又∵∠CED=∠CFB=90°.∴△CFB≌△CED(AAS).∴CB=CD.延长AB至G,使BG=AD,连接CG.∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC.∴△GBC≌△ADC(SAS).∴∠G=∠DAC=∠CAB=45°.∴∠ACG=90°.∴AG=AC.∴AB+AD=AC.点评:此题考查了全等三角形的判定与性质,四边形的性质,直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.5.(1)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.求证:CD=CG;(2)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.若AD=CG,求证:AB=AC+BH.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由AD⊥BD得到∠ADB=90°,而∠ACB=90°,∠AED=∠BEC,根据三角形内角和得∠CAD=∠DBC,再根据等角的余角相等得到∠BCG=∠DCA,然后利用“ASA”可判断△ADC≌△BCG,则CD=CG;(2)延长EC到F使CF=CE,由△AGC≌△BCD得到AG=BD,由CG=BD可代换得到AG=CG,则∠GAC=∠GCA,而∠CGD=45°,所以∠GAC=22.5°,再利用AC⊥BC,CF=CE,得到△AEF为等腰三角形,于是∠FAC=∠EAC=22.5°,利用∠CAB=45°,∠ABC=45°可计算出∠FAB=67.5°,∠F=67.5°,得到∠F=∠FAB,所以AB=BF,而BF=BC+CF=AC+CE,即有AB=AC+CE,只要证出BH=CD即可.解答:(1)解:∵AD⊥BD,∴∠ADB=90°,∵∠ACB=90°,∠AED=∠BEC,∴∠CAD=∠DBH,∵∠BCG=∠DCA,∵在△ACD和△BGC中∴△ACD≌△BGC(ASA),∴CD=CG;(2)证明:延长EC到F使CF=CE,如图,∵△AGC≌△BCD∴AG=BD,∵CG=BD,∴AG=CG,∴∠GAC=∠GCA,∵△CDG为等腰直角三角形,∴∠CGD=45°,∴∠GAC=22.5°,∵AC⊥BC,CF=CE,∴△AEF为等腰三角形,∴∠FAC=∠EAC=22.5°,∵△ABC为等腰直角三角形,∵∠CAB=45°,∠ABC=45°,∴∠FAB=22.5°+45°=67.5°,∴∠F=180°﹣45°﹣67.5°=67.5°,∴∠F=∠FAB,∴AB=BF,而BF=BC+CF=AC+CE,∴AB=AC+CE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.6.把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)考点:全等三角形的判定与性质.专题:证明题;几何综合题.分析:(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(2)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(3)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可.解答:(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,运用了类比推理的方法,题目比较典型,但有一定的难度.7.问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.考点:全等三角形的判定与性质;三角形的外角性质;多边形内角与外角.专题:证明题.分析:连接EC、BD,由正五边形推出∴∠CBD=∠CDB=∠ECD=∠DEC=36°,△BCD≌△CDE,证出△CEN≌△BDM推出∠ECN=∠DBM,根据∠BON=∠OBC+∠OCB即可求出答案.解答:结论:猜想正确证明:连接EC、BD,∵五边形ABCDE为正五边形,∴∠BCD=∠CDE=∠DEA=108°,BC=CD=DE,∴∠CBD=∠CDB=∠ECD=∠DEC=36°,△BCD≌△CDE,∴∠NEC=∠BDM=∠BCE=72°,BD=EC,又∵DM=EN,∴△CEN≌△BDM,∴∠ECN=∠DBM,∴∠BON=∠OBC+∠OCB=∠DBC+∠ECB=36°+72°=108°,∴∠BON=108°.点评:本题主要考查对全等三角形的性质,三角形的外角性质,多边形的内角和外角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.已知:如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.考点:全等三角形的判定与性质.专题:证明题.分析:(1)利用直角关系得出∠BAE=∠CAF,∠ABD=∠DCF,即可得出△ABE≌△ACF,(2)由△ABE≌△ACF,得出AE=AF,再由等腰直角三角形得出AH=EH,再证得△ADH≌△CDF即可得出CF=EH解答:证明:(1)∵AE⊥AF,∠CAB=90°,∴∠EAF=∠CAB=90°∴∠EAF﹣∠EAC=∠CAB﹣∠EAC即∠BAE=∠CAF,∵CF⊥BD,∴∠BFC=90°=∠CAB,∴∠BDA+∠ABD=90°,∠DCF+∠FDC=90°,∵∠ADB=∠FDC,∴∠ABD=∠DCF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),(2)∵由(1)知△ABE≌△ACF,∴AE=AF,∵∠EAF=90°,∴∠AEF=∠AFE=45°,∵AH⊥BF,∴∠AHF=∠AHE=90°=∠CFH,∴∠EAH=180°﹣∠AHE﹣∠AEF=45°=∠AEF,∴AH=EH,∵D为AC中点,∴AD=CD,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,∴EH=CF.点评:本题主要考查了全等三角形的判定与性质,解题的关键是能根据角和边的关键得出三角形全等.9.如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)求出∠BAD=∠BAC,根据SAS证出△BAD≌△CAE即可;(2)根据全等推出∠DBA=∠C,根据等腰三角形性质得出∠C=∠ABC,根据平行线性质得出∠ABC=∠DFB,推出∠DFB=∠DBF,根据等腰三角形的判定推出即可.解答:(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS);(2)证明:∵△BAD≌△CAE,∴∠DBA=∠C,∵AB=AC,∴∠C=∠ABC,∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.点评:本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质和判定等知识点,主要考查学生运用性质进行推理的能力,题目比较典型,是一道比较好的题目.10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.考点:全等三角形的判定与性质.专题:证明题.分析:(1)AE+CF=EF,证法与(2)相同;(2)延长EA到G,使AG=FC,证△GAB≌△FCB,推出∠GBA=∠FBC,GB=FB,AG=CF,求出∠GBE=30°,证△GBE和△FBE全等即可;(3)在AE上取AM=CF,证△ABM和△BCF全等,证△BME和△BFE全等即可;图4与图3证法类似.解答:解:(1)AE+CF=EF;(2)成立.理由是:延长EA到G,使AG=FC,∵GA=FC,∠GAB=∠FCB=90°,AB=CB,∴△GAB≌△FCB(SAS),∴∠GBA=∠FBC,GB=FB,AG=CF,∵∠FBC+∠FBA=60°,∴∠GBA+∠FBA=60°,即:∠GBF=60°∵∠EBF=30°,∴∠GBE=30°,∵GB=FB,∠GBE=∠FBE,BE=BE,∴△GBE≌△FBE,∴GE=FE∵GE=AG+AE,∴EF=AE+CF;(3)图3:AE﹣CF=EF;图4:AE+EF=CF.点评:本题主要考查对全等三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.11.已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE﹣AF|;②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).考点:全等三角形的判定与性质.分析:(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF 即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.解答:(1)①如图,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.点评:本题考查了全等三角形的性质和判定的应用,本题比较典型,证明过程类似.12.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是AB=AP、AB⊥AP.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是BQ=AP、BQ⊥AP.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.考点:全等三角形的判定与性质.分析:(1)由于AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP,则△ABC与△EFP是全等的等腰直角三角形,根据等腰直角三角形的性质得到∠BAC=∠CAP=45°,AB=AP,则∠BAP=90°,于是AP⊥AB;(2)延长BO交AP于H点,可得到△OPC为等腰直角三角形,则有OC=PC,根据“SAS”可判断△ACP≌△BCO,则AP=BO,∠CAP=∠CBO,利用三角形内角和定理可得到∠AHO=∠BCO=90°,即AP⊥BO;(3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.解答:解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BCQ+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.点评:本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.14.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE 于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为5.考点:全等三角形的判定与性质.分析:图2,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;图③根据已知和三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;图④求出△ABD的面积,根据△ABE≌△CAF得出△ACF与△BDE的面积之和等于△ABD的面积,即可得出答案.解答:证明:图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵,∴△ABD≌△CAF(AAS);图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵,∴△ABE≌△CAF(ASA);图④,解:∵△ABC的面积为15,CD=2BD,∴△ABD的面积是:×15=5,由图3中证出△ABE≌△CAF,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积,是5,故答案为:5.点评:本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,主要考查学生的分析问题和解决问题的能力,题目比较典型,证明过程有类似之处.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.考点:全等三角形的判定与性质.分析:(1)求出∠ACE=∠DCB,根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°﹣(∠EAB+∠DBC),代入求出即可;(3)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°﹣(∠EAB+∠DBC),代入求出即可.解答:(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.点评:本题考查了全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理,解此题的关键是找出已知量和未知量之间的关系.。

全等三角形练习题综合拔高题

全等三角形练习题综合拔高题

1. 已知:如图, AB=AC , ∠B=∠C.BE、DC交于O点.求证:BD=CE2. 如图在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.3. 已知:如图,D、E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE.求证:(1)BD=FC (2)AB∥CF~4. 已知:如图,AE=BF,AD∥BC,AD=、CD交于O点.求证:OE=OF.5. 已知:如图,E是AD上的一点,AB=AC,AE=BD,CE=BD+DE.求证:∠B=∠CAE.—6. 已知:四边形ABCD中,AC、BD交于O点,AO=OC,BA⊥AC,DC⊥AC.垂足分别为A,C.求证:AD=BC7. 如图, AB, CD, EF交于O点, 且AC=BD, AC∥DB.求证:O是EF的中点.…8. 已知:如图, AB=AC , AD=AE , BD=CE.求证:∠BAC=∠DAE.9. 已知: 如图, AB=AC , EB=EC , AE的延长线交BC于D.求证:BD=CD.10. 已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE1.%2.已知:如图, 四边形ABCD中, AB∥CD , AD∥BC.求证:△ABD≌△CDB.3.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.i.4.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.:5.如图,已知: AD是BC上的中线,且DF=DE.求证:BE∥CF.6.。

7.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A8. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD ⊥BC ,请说明理由。

全等三角形综合题目

全等三角形综合题目

全等三角形综合1.如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,则线段BD和CE具有什么数量关系,并证明你的结论.2.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.3.在四边形ABCD中,AD∥BC,点E为CD的中点.求证:S△AEB=1S ABCD.24.(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.5.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.6.如图,已知△PCQ,按如下步骤作图:①以P为圆心,PC长为半径画弧;②以Q为圆心,QC长为半径画弧,两弧相交于点D;③连接PD、QD.求证:△PCQ≌△PDQ.7.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).8.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.9.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E.F,求证:EF=CF﹣AE.10.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.参考答案与试题解析一.解答题(共10小题)1.如图,在Rt △ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC 交AC 于点D ,CE ⊥BD 交BD 的延长线于点E ,则线段BD 和CE 具有什么数量关系,并证明你的结论.【分析】延长CE 与BA 延长线交于点F ,首先证明△BAD ≌△CAF ,根据全等三角形的性质可得BD =CF ,再证明△BEF ≌△BCE 可得CE =EF ,进而可得BD =2CE . 【解答】答:BD =2CE , 延长CE 与BA 延长线交于点F , ∵∠BAC =90°,CE ⊥BD , ∴∠BAC =∠DEC , ∵∠ADB =∠CDE , ∴∠ABD =∠DCE , 在△BAD 和△CAF 中, {∠BAD =∠CAF AB =AC ∠ABD =∠DCE, ∴△BAD ≌△CAF (ASA ), ∴BD =CF ,∵BD 平分∠ABC ,CE ⊥DB , ∴∠FBE =∠CBE , 在△BEF 和△BCE 中, {∠FBE =∠CBE BE =BE ∠BEF =∠BEC, ∴△BEF ≌△BCE (ASA ), ∴CE =EF , ∴DB =2CE .【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,全等三角形对应边相等.2.如图,在△ABC 中,∠ABC =2∠C ,AD 平分∠BAC ,求证:AB +BD =AC .【分析】在AC 上截取AE =AB ,利用“边角边”证明△ABD 和△AED 全等,根据全等三角形对应边相等可得DE =BD ,全等三角形对应角相等可得∠AED =∠ABC ,然后求出∠C =∠CDE ,根据等角对等边可得CE =DE ,然后结合图形整理即可得证. 【解答】证明:如图,在AC 上截取AE =AB , ∵AD 平分∠BAC , ∴∠CAD =∠BAD , 在△ABD 和△AED 中, {AE =AB∠CAD =∠BAD AD =AD, ∴△ABD ≌△AED (SAS ), ∴DE =BD ,∠AED =∠ABC ,∵∠AED =∠C +∠CDE ,∠ABC =2∠C , ∴∠CDE =∠C , ∴CE =DE , ∵AE +CE =AC , ∴AB +BD =AC .【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,作辅助线构造出全等三角形和等腰三角形是解题的关键.3.在四边形ABCD 中,AD ∥BC ,点E 为CD 的中点.求证:S △AEB =12S ABCD .【分析】延长AE 交BC 十位延长线于点F ,证得△ADE ≌△CEF ,得出AE =EF ,AD =CF ,进一步利用△ABF 的面积=四边形ABCD 的面积,△ABE 的面积是△ABF 的面积的一半进一步求得结论即可. 【解答】解:如图,∵AD ∥BF ,∴∠D =∠ECF ,∠DAE =∠F , ∵点E 为CD 的中点, ∴DE =CE ,在△ADE ≌△CEF 中,{∠DAE =∠F∠D =∠ECF DE =CE∴△ADE ≌△CEF , ∴AE =EF ,AD =CF , 设四边形ABCD 的高为h ,∴S △ABF =12(BC +CF )h =12(BC +AD )h =S 四边形ABCD ,∴S△AEB=12S△ABF=12S四边形ABCD.【点评】此题考查三角形全等的判定与性质,三角形的面积,作出辅助线,灵活运用三角形全等的判定方法解决问题.4.(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.【分析】(1)过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,得出△ABC 与△AEG的两条高,由正方形的特殊性证明△ACM≌△AGN,是判断△ABC与△AEG面积之间的关系的关键;(2)同(1)道理知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,求出这条小路一共占地多少平方米.【解答】解:(1)△ABC与△AEG面积相等.理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE和四边形ACFG都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM和△AGN中,{∠MAC =∠NAG ∠AMC =∠ANG AC =AG, ∴△ACM ≌△AGN , ∴CM =GN ,∵S △ABC =12AB •CM ,S △AEG =12AE •GN , ∴S △ABC =S △AEG ,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和. ∴这条小路的面积为(a +2b )平方米.【点评】本题要利用正方形的特殊性,巧妙地借助两个三角形全等,寻找三角形面积之间的等量关系,解决问题.由正方形的特殊性证明△ACM ≌△AGN ,是判断△ABC 与△AEG 面积之间的关系的关键.5.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AD 平分∠CAB . (1)求∠CAD 的度数;(2)延长AC 至E ,使CE =AC ,求证:DA =DE .【分析】(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答; (2)通过证△ACD ≌△ECD 来推知DA =DE .【解答】(1)解:如图,∵在Rt △ABC 中,∠ACB =90°,∠B =30°,∴∠B =30°,∴∠CAB =60°.又∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,即∠CAD =30°;(2)证明:∵∠ACD +∠ECD =180°,且∠ACD =90°,∴∠ECD =90°,∴∠ACD =∠ECD .在△ACD 与△ECD 中,{AC =EC∠ACD =∠ECD CD =CD,∴△ACD ≌△ECD (SAS ),∴DA =DE .【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.6.如图,已知△PCQ ,按如下步骤作图:①以P 为圆心,PC 长为半径画弧;②以Q 为圆心,QC 长为半径画弧,两弧相交于点D ;③连接PD 、QD .求证:△PCQ ≌△PDQ .【分析】根据作图过程可得PC =PD ,CQ =QD ,再加上公共边PQ =PQ ,可利用SSS 判定△PCQ ≌△PDQ .【解答】证明:∵在△PCQ 和△PDQ 中{PC =PDPQ =PQ CQ =QD,∴△PCQ ≌△PDQ (SSS ).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA、AAS、HL.7.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.8.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【分析】推出CP=CQ,①P在AC上,Q在BC上,推出方程6﹣t=8﹣3t,②P、Q都在AC 上,此时P、Q重合,得到方程6﹣t=3t﹣8,Q在AC上,③P在BC上,Q在AC时,此时不存在,④当Q到A点,与A重合,P在BC上时,求出即可得出答案.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t ﹣6=6∴t =12∵t <14∴t =12符合题意答:点P 运动1或3.5或12秒时,△PEC 与△QFC 全等.【点评】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键.9.如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E .F ,求证:EF =CF ﹣AE .【分析】根据已知和三角形内角和定理求出∠E =∠BFC =90°,∠EAB =∠FBC ,根据AAS 推出△AEB ≌△BFC ,根据全等三角形的性质得出AE =BF ,BE =CF 即可.【解答】证明:∵过A 、C 作BD 的垂线,垂足分别为E .F ,∴∠E =∠BFC =90°,∵∠ABC =90°,∴∠EAB +∠ABE =90°,∠FBC +∠ABE =90°,∴∠EAB =∠FBC ,在△AEB 和△BFC 中{∠E =∠BFC∠EAB =∠FBC AB =BC∴△AEB ≌△BFC (AAS ),∴AE =BF ,BE =CF ,∴EF =BE ﹣BF =CF ﹣AE .【点评】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,主要考查学生运用定理进行推理的能力,解此题的关键是推出△AEB≌△BFC.10.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.【分析】本题是一道开放性题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(2)BE=CF仍然成立.证明:在△ACE和△ADF中,∵∠CAE+∠EAD=∠F AD+∠DAE=60°,∴∠CAE=∠DAF,∵∠BCA=∠ACD=60°,∴∠FCE=60°,∴∠ACE=120°,∵∠ADC =60°,∴∠ADF =120°,在△ACE 和△ADF 中,{∠FAD =∠CAEAC =AD ∠ADF =∠ACE∴△ACE ≌△ADF ,∴CE =DF ,∴BE =CF ,【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

(完整版)全等三角形判定综合练习题

(完整版)全等三角形判定综合练习题

全等三角形判定练习题1、如图(1):AD ⊥BC ,垂足为D ,BD =CD 。

求证:△ABD ≌△ACD2、如图(2):AC ∥EF ,AC =EF ,AE =BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF =CE ,AD =BC ,∠D =∠C .求证:△AED ≌△BFC 。

4、 如图(4):AB =AC ,AD =AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B =∠C ,(2)BD =CEFE (图2)DCBAFE(图3)DCB A E(图4)DCBA(图1)DCBA5、如图(5):AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE 。

求证:AC ⊥CE .6、如图(6):CG =CF ,BC =DC ,AB =ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF =EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN =BC 。

求证:(1)MN 平分∠AMB ,(2)∠A =∠CBM .8、如图(8):A 、B 、C 、D 四点在同一直线上,AC =DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

GFE(图6)DC BANM(图7)CBAFE(图8)DC B A E(图5)D BA(完整版)全等三角形判定综合练习题9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE =CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC =∠DAE ,∠ABD =∠ACE ,BD =CE 。

求证:AB =AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点. 求证:PA =PD 。

12、如图(12)AB ∥CD ,OA =OD ,点F 、D 、O 、A 、E 在同一直线上,AE =DF 。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

11.2 全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS 专题练习1.如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2.能判定△ABC ≌△A ′B ′C ′的条件是( ) A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD= , 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.4.如图,已知BD=CD ,要根据“SAS”判定△ABD ≌△ACD , 则还需添加的条件是 。

全等三角形练习题含答案

全等三角形练习题含答案

全等三角形练习题含答案全等三角形练题一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。

A.3个 B.4个 C.5个 D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40° C.25°或40° D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为3+1,那么这个三角形的面积为()A.1 B.3/2 C.3 D.不能确定二、解答题:1、已知:如图,△ABC中,AB=AC,AD=BD,AC=DC求:∠B的度数2、已知:Rt△ABC中,∠BAC=90°,AD是BC边上的高,BF平分∠ABC,交AD于E。

求证:△AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。

求证:∠ABO=∠CDO4、已知:如图△ABC中,BC边中垂线DE交∠BAC的平分线于D,DM⊥AB于M,DN⊥AC于N。

求证:BM=CN5、已知:如图,△ABC中,∠ACB=90°,M为AB的中点,DM⊥AB于M,CD平分∠ACB,交AB于E求证:DE=DF6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC 于点E,PF⊥BC于点F。

求证:DE=DF。

初二数学全等三角形练习题及答案

初二数学全等三角形练习题及答案

初二数学全等三角形练习题及答案一、选择题1. 已知三角形ABC和三角形DEF的对应边长关系为AB=DE,AC=DF,∠B=∠E,则三角形ABC与三角形DEF的关系是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定2. 在△ABC中,∠A=∠C,AB=BC,则∠B的度数为()。

A. 60°B. 90°C. 120°D. 不确定3. 已知三角形ABC和三角形CDE的对应边长关系为AB=CD,AC=CE,BC=DE,则三角形ABC与三角形CDE的关系是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定4. 若两个三角形的对应角相等,且其中一个三角形的一条边与另一个三角形的一条边相等,则这两个三角形一定是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定5. 在△ABC中,∠B=∠C,AC=BC,则这个三角形是()。

A. 等腰三角形B. 直角三角形C. 锐角三角形D. 不确定二、填空题1. 若全等三角形ABC和DEF中∠B=∠E=90°,则∠A=______,∠C=______。

2. 在△ABC中,∠A=∠B=60°,则∠C=______。

3. 已知△ABC≌△DEF,若AC=DF=12cm,AC∥DF,BC=9cm,则DE=______。

4. 若三角形ABC与三角形DEF全等,则∠ABC=______°,∠BAC=______°。

5. 在△ABC≌△XYZ中,∠B=47°,∠X=26°,∠Y=______°。

三、解答题1. 已知△ABC≌△DEF,AB=5cm,AC=8cm,BC=7cm,求DE的长度。

解:由全等三角形的定义可知,当两个三角形全等时,它们的对应边长相等。

因此,DE的长度也为7cm。

2. 由题可得,四边形ABCD中,AB=BC=CD,AD⊥BC,∠C=90°。

全等三角形全套练习题

全等三角形全套练习题

全等三角形一、全等三角形1、定义:能够完全重合的两个三角形叫做全等三角形。

特征:形状相同、大小相等、完全重合。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

平移、翻折、旋转前后的图形全等。

2、全等三角形的表示:“全等”用“≌”表示,“∽”表示两图形的形状相同,“=”表示大小相等,读作“全等于”。

注意:记两三角形全等时,通常把表示对应顶点的字母写在对应位置上。

全等三角形的对应元素:对应顶点,对应边,对应角3、全等三角形的性质(1)全等三角形的对应边相等、对应角相等.(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

4、全等三角形的判定(1)边边边:三边对应相等的两个三角形全等(可简写成“SSS”)(2)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)(3(4(551、2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意的问题(1)要正确区分“对应边”与“对边”,“对应角"与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。

FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB=DE,AC=DF ,BE=CF .求证∠A=∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D.5.如图,AD =BC ,AB =DC ,DE =BF 。

求证:BE =DF.CA B A C E AD C B1.如图,AC 和BD 相交于点O ,OA=OC ,OB=OD .求证DC ∥AB .2.如图,△ABC ≌△A B C ''',AD,A D ''分别是△ABC,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE,AE =BD,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。

全等三角形专项练习及答案

全等三角形专项练习及答案

评卷人得分一、选择题(题型注释)、1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为()A.8cm、15cm 、6cm B.7cm、9cm、13cmC.10cm、20cm、30cm D.20cm、40cm、60cm【答案】B2.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()=AC B.∠BAE=∠CAD =DC =DE【答案】D[3.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A、∠A与∠D互为余角B、∠A=∠2C、△ABC≌△CEDD、∠1=∠2【答案】D4.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于=6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;&AB CDE1]其中正确的结论是( )A.①② B.①②③ C.①③ D.②③》【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()…A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()~A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm}【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90° B.1 80° C.360° D.无法确定【答案】?【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()>A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.~12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O【答案】D .【解析】 试题分析:连接AO 并延长,交BC 于点D ,》∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )B.cm 512 D.cm 514 ¥【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF ∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质?第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分~二、填空题(题型注释)14.如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.【答案】30°.【解析】试题分析:∵DE是BC的垂直平分线,∴DE⊥BC,∵∠A=90°,AD=DE,∴BD平分∠AABC,∴∠ABD=∠DBC,∵DE是BC的垂直平分线,∴DC=BD,∴∠C=∠DBC,∴3∠C=90°,∴∠C=30°.故答案为:30°.考点:1.线段垂直平分线的性质;2.角平分线的性质.!15.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=,则D到AB的距离为。

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习一、单选题1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A. CB CD =B. BAC DAC ∠=∠C. BCA DCA ∠=∠D. 90B D ∠=∠=︒2.如图,已知ABC DCB ∠=∠,添加下列所给的条件不能证明ABC DCB △≌△的是( )A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =3.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =4.某同学把一块三角形的玻璃打碎成了三块(如图所示),现在要到玻璃店去配一块与原来完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去5.如图,BF EC B E =∠=∠请问添加下面哪个条件不能判断ABC DEF ≅△△( )A.A D ∠=∠B.AB ED =C.//DF ACD.AC DF =6.如图,点B E C F 、、、在同一条直线上,//AB DE ,AB DE =,要用SAS 证明ABC DEF ≅△△,可以添加的条件是( )A .A D ∠=∠B .//AC DF C .BE CF =D .AC DF =7.下列各图中a b c ,,为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,点D E ,分别在线段AB AC ,上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△?( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =9.如图所示的是用直尺和圆规作一个角等于已知角 的示意图,则说明'''A O B AOB ∠=∠的依据 是( )A.S.A.SB.S.S.S.C.A.A.S.D.A.S.A.10.如图,AOB ∠是一个任意角,在边OA OB ,上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M N ,重合,过角尺顶点C 的射线OC 便是AOB ∠的平分线这种方法所用的三角形全等的判定方法是( )A.S.A.S.B.S.S.S.C.A.S.A.D.A.A.S.11.如图,AB AD =,BC CD =,点E 在AC 上,则全等三角形共有( )A.1对B.2对C.3对D.4对12.如图,在ABC △和DEF △中,,B E C F ,,在同一直线上,AB DE =,AC DF =,要使ABC DEF ≅△△,还需要添加的一个条件是( )A.EC CF =B.BE CF =C.B DEF ∠=∠D.//AC DF13.如图,ABC △中,AB AC =,EB EC =,则由“S.S.S.”可以判定( )A.ABD ACD ≅△△B.ABE ACE ≅△△C.BDE CDE ≅△△D.以上答案都不对14.如图,点E 在ABC △的外部,点D 在边BC 上,DE 交AC 于点F .若12∠=∠,E C ∠=∠,AE AC =,则( )A.ABC AFE ≅△△B.AFE ADC ≅△△C.AFE DFC ≅△△D.ABC ADE ≅△△15.下列条件能判 断两个三角形全等的是( )A.有两边对应相等B.有两角对应相等C.有一边一角对应相等D.能够完全重合16.如图,全等的两个三角形是( )A.③④B.②③C.①②D.①④17.如图,点,,,B E C F 在同一条直线上,//,AB DE AB DE = ,要用“边角边”证明ABC DEF ≅△△,可以添加的条件是( ).A.A D ∠=∠B.//AC DFC.BE CF =D.AC DF =18.如图,点P 是AB 上任一点,ABC ABD ∠=∠,从下列各条件中补充一个条件,不一定能推出APC APD ≅△△.的是( )A.BC BD =B.ACB ADB ∠=∠C.AC AD =D. CAB DAB ∠=∠二、证明题19.如图:点C D 、在AB 上,且//AC BD AE FB AE BF ==,,.求证://DE CF .20.如图,已知CA CB =,AD BD =,M N ,分别是CB CA ,的中点,求证:DN DM =.21.如图,已知AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.22.如图,90A D ∠=∠=︒,AC DB =,AC DB ,相交于点O .求证:OB OC =.23.如图(1)在ABC △中,90ACB AC BC ∠=︒=,,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E 。

全等三角形综合测试题

全等三角形综合测试题

全等三角形综合测试题(100分)1、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()【单选题】(3分)A.50°B.80°C.50°或80°D.40°或65°正确答案: C2、已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为()【单选题】(3分)A.5cmB.7cmC.9cmD.11cm正确答案: C3、下列可使两个直角三角形全等的条件是()【单选题】(3分)A.A、一条边对应相等B.B、两条直角边对应相等C.C、一个锐角对应相等D.D、两个锐角对应相等正确答案: B4、如图,D是BC的中点,E.F分别是AD和AD延长线上的点且DE=DF,连结BF,CE.下列说法:①CE=BF;②ΔABD和ΔACD面积相等;③BF//CE;△BDF≌ΔCDE其中正确的有()【单选题】(3分)A.1个B.2个C.3个D.4个正确答案: D5、用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是()【单选题】(3分)A.①②③B.②③C.③④⑤D.③④⑥正确答案: D6、如图,平行四边形ABCD中,AC、BD相交于点0过点O,过点O作直线分别交于AD、BC于点E、F.那么图中全等的三角形共有()【单选题】(3分)A.2对B.4对C.6对D.8对正确答案: C7、根据下列条件,能判定△ABC≌△A’B’C’的是()【单选题】(3分)A.)AB=A’B’,BC=B’C‘,∠A=∠A’B.∠A=∠A’,∠B=∠B‘,AC=BCC.∠A=∠A’,∠B=∠B‘,∠C=∠C’D.AB=A‘B’,BC=B’C’,ABC的周长等于△A’B’C’的周长正确答案: D8、【单选题】(3分)A.HLB.SSSC.SASD.ASA正确答案: B9、【填空题】(4分)________________________答案解析: AC=AD(答案不唯一)10、【填空题】(4分)________________________正确答案: CE=DF(回答与答案完全相同才得分)11、如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若CA=30°,DE=2,∠DBC的度数为____CD的长为____【填空题】(4分)________________________正确答案: 30° 2(回答包含答案即可得分)12、如图,ΔABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC.则∠ABC的度数是____【填空题】(4分)________________________正确答案: 45°(回答与答案完全相同才得分)13、【填空题】(8分)________________________正确答案: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF ……4 分 (2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分 (方法不唯一,其他证明方法酌情给分)(回答包含答案即可得分)答案解析: 证明:(1)∵BF=DE,∴BF+FE=DE+FE,即BE=DF …… 1 分又∵AB=CD,∠B=∠D,∴△ABE≌△CDF(SAS) ……3 分∴AE=CF……4 分(2) 先证明△AFE≌△CEF ……6分得∠AFE=∠CEF ……7分∴AF//CE……8 分(方法不唯一,其他证明方法酌情给分)14、【填空题】(6分)________________________正确答案: 证明:(1)·∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° ......2分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC ,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC ∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADC AD=BD ∠DBH=∠DAC} ∴.△BDH≌△ADC.......6分(回答包含答案即可得分)答案解析: 证明:(1).∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90° (2)分.∴∠DBH=∠HAE......3分∵∠HAE=∠DAC,∴∠DBH=∠DAC;......4分(2)∵AD⊥BC∴∠ADB=∠ADC.....5分在△BDH与△ADC中,{∠ADB=∠ADCAD=BD∠DBH=∠DAC}∴.△BDH≌△ADC.......6分15、【填空题】(6分)________________________正确答案: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等 ),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA; (4)分(2)连接DG,则△ADG是等腰三角形. 证明如下: .∵△ABD≌AGCA .∴AG=AD,......5分∴△ADG 是等腰三角形.......6分(回答包含答案即可得分)答案解析: 证明:(1)∵BE、CF分别是AC、 AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义), (1)分∴∠ACG=∠DBA(同角的余角相等),......2分又∵BD=CA,AB=GC,∴△ABD≌△GCA;......4分(2)连接DG,则△ADG是等腰三角形.证明如下:.∵△ABD≌AGCA.∴AG=AD,......5分∴△ADG是等腰三角形.......6分16、【填空题】(7分)________________________正确答案: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF .∴△AF D≌AAFB(AAS)......7分(回答包含答案即可得分)答案解析: DF//BC.......2分证明:∵BE⊥AC,.∴∠BEC=90,......3分∴∠C+∠CBE=90° (4)分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF,......6分在△AFD和△AFB中∠1=∠2 ∠ABF=∠ADF AF=AF.∴△AF D≌AAFB(AAS)......7分17、【填空题】(7分)________________________正确答案: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF} .∴△AF D≌△AFB(AAS)......7分(回答包含答案即可得分)答案解析: ①DF//BC.......1分证明:∵BE⊥AC,.∴∠BEC=90,∴∠C+∠CBE=90°,......3分∵∠AB C=90°,.∴∠ABF+∠CBE=90°,∴∠C=∠ABF, (5)分.∵DF//BC,.∴∠C=∠ADF,.∴∠ABF=∠ADF......6分在△AFD和△AFB中{∠1=∠2 ∠ABF=∠ADF AF=AF}.∴△AF D≌△AFB(AAS)......7分18、【填空题】(7分)________________________正确答案: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB ∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2 ∴BE/AB=1/2 ∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分(回答包含答案即可得分)答案解析: 证明:当动点P运动到AC边上中点位置时,AAPE≌AEDB......1分∵DE//CA,∴△BED∽△BAC,......2分∴BE/AB=DB/CB∴D是BC的中点......3分∵E是AB中点,.∴BD/CB=1/2∴BE/AB=1/2∴E是AB中点∴DE=1/2AC,BE=AE,......5分∵DE// AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=1/2AC,∴P 必须是AC 中点......7分19、【填空题】(7分)________________________正确答案: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE 与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中 {CD=AD,∠EDA=∠DCF,DE=CF} ∴△AED≌△CFD ∴AE=DF......7分(回答包含答案即可得分)答案解析: 解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF ......2分∵DE与CF 平行且相等.∴∠EDA=∠DAC......4分.∴∠EDA=∠DCF......5分在AAED和ACFD中{CD=AD,∠EDA=∠DCF,DE=CF}∴△AED≌△CFD∴AE=DF......7分20、如图,山脚下有A、B两点,要测出A、B两点的距离,请说说你的解决方案。

全等三角形综合测试经典题

全等三角形综合测试经典题

B c D E 1234图2A 图1Dc B A 43F B c D E 图3A 第8题全等三角形综合检测题——经典一、填空题:1、如图,已知∠3=∠4,要说明△ABC ≌△DCB ,(1)若以“SAS ”为依据,则需添加一个条件是 ;(2)若以“AAS ”为依据,则需添加一个条件是 ;(3)若以“ASA"为依据,则需添加一个条件是 。

2、如图,若∠1=∠2,,3=∠4,则图中共有全等三角形 对,它们分别是3F 在一条直线上,AB ∥DE,AC ∥DF ,AC =DE ,若BE =3cm,则CF =4、若DEF ABC ∆≅∆,△DEF 周长为28 cm,DE=9 cm ,EF=12 cm ,则AB= ,BC=5、已知DEF ABC ∆≅∆,∠A=52°,∠B=31°,ED=10,那么∠F= ,AB=6、如图,在△ABC 和△DEF 中,AB ∥DE ,可以推出 = ,然后加上条件AB=DE 和 可得到DEF ABC ∆≅∆,根据是7、如图,△ABD ≌△ACD ,AD 、BC 交于点D,则∠ABD= 。

8、如图,若∠1=∠2,∠3=∠4,则△ ≌△ ,根据是9、如图,∠xoy,分别在ox ,oy 上截取OA =OB ,OC =OD 。

连AD 、BC 相交于E 点。

则射线OE 与∠xoy 的关系为 。

10、如图,AB =CD ,AD =CB,O 为AC 上一点,过O 任作直线EF 分别交AD 、BC 于E 、F,要使BE =FD ,则应满足的条件是 .11、等边△ABC 中,D 、E 为BC 、AC 上两点,且BD =CE,连AD 、BE 交于O ,则∠DOE = 。

二、选择题:12、已知△ABC ≌△DEF ,若∠A =500,∠C =300,则∠E 的度数为 ( )A 、300B 、500C 、600D 、100013、如图,若AC =BD ,AB =DC ,则图中全等三角形的对数是( )A 、1对B 、2对C 、3对D 、4对14、小颖同学不小心把一块三角形的玻璃打碎(如图),现在他要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去配A 、(1)B 、(2)C 、(3)D 、(1)和(2)第6题 C D E 第7题 A B C D 第11题 第10题 第9题 第1题 第2题 第3题O 6题Dc B A (1)(2)(3) E F D B C A 15、如图,在△ABC 中,AD 是△BAC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别为E 、F,下面给出四个结论:①DA 平分∠EDF ;②AE =AF ;③AD ⊥BC ;④BD =CD ,其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个16、下列说法正确的是( )⑴ 形状相同的两个图形是全等形 ⑵ 对应角相等的两个三角形是全等形⑶ 全等三角形的面积相等 ⑷ 若DEF ABC ∆≅∆,MNP DEF ∆≅∆,则MNP ABC ∆≅∆A 、0个B 、1个C 、2个D 、3个17、若BCD ABC ∆≅∆, AB=6cm,BD=7cm ,AD=4cm,那么BC 的长为( )A 、6 cmB 、5 cmC 、4cmD 、不能确定18、若AD=BC ,∠A=∠B ,直接能利用“SAS ”证得△ADF ≌ △BCE 的条件是( )A 、AE=BFB 、DF=CEC 、AF=BED 、∠CEB=∠DFA19、下列能够确定△ABC 的形状和大小的是( )A 、AB=4,BC=5,∠C=60°B 、AB=6,∠C=60°,∠B=70°C 、∠C=60°,∠B=70°,∠A=50°D 、AB=4,BC=5,CA=1020、如图所示,已知OA=OB ,则再加上下列哪个条件后,不能..判断△AOC ≌△BOD 的是( ) A 、∠A=∠B B 、∠C=∠DC 、AC=BD D 、OC=OD 21、如图所示,已知AB=AC,BD=CE ,则图中共有( )组全等三角形A 、4B 、5C 、6D 、7 22、以下能够判定两个直角三角形全等的情况有( )⑴ 两个锐角和一个锐角的对边对应相等 ⑵ ⑶ 一个锐角和它的对边对应相等 ⑷ 两条直角边对应相等⑸ 两边对应相等 ⑹ 斜边和一条直角边相等A 、3B 、4C 、5D 、623、如图:AB =CD ,BC =DA ,O 为AC 中点,过O 的直线BA 、DC 的延长线于E 、F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章全等三角形章节测试测试1 全等三角形的概念和性质一、填空题1._______________的两个图形叫做全等形.2.把两个全等的三角形重合到一起,________叫做对应顶点;叫做对应边;_________叫做对应角.记两个三角形全等时,通常把表示________的字母写在____________上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1- 1 图1-2 图1-35.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_______________;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_______________,对应角_______________.6.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但______________都没有改变,即平移、翻折、旋转前后的图形_______.二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()A.4 B.3 C.2 D.1①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等10.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定图1-5 图1-6图1-411.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7测试2 三角形全等的判定(一)一、填空题1.判断_______________的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.4.已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点. 5.已知:如图,AB =DE ,AC =DF ,BE =CF .求证:RM 平分∠PRQ . 求证:∠A =∠D . 分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______ 证明:∵ M 为PQ 的中点(已知),∴______=______ 在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( )∴ ∠PRM =______(______). 即RM 平分∠PRQ6.如图,CE =DE ,EA =EB ,CA =DB ,求证:△ABC ≌△BAD ..测试3 三角形全等的判定 (二)一、填空题1.全等三角形判定方法2——“边角边” (即______)指的是_________________________________________________________________________________.2.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .3.已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .求证:∠D =∠B .4.如图,小红不慎将一块三角形模具打碎为两块,•她是否可以只带其中一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?5.小颖在练习本上画一个三角形,小兰和她开个玩笑,•将墨迹污染到这块三角形的图形上(如图5),急得小颖直叫,•要小兰画出一个与原来完全一样的三角形来,小兰该怎么办呢?你能帮她吗?一、填空题 测试4 三角形全等的判定 (三) 1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________; (2)全等三角形判定方法4——“角角边” (即______)指的是_________________________________________________________________________________. 2.已知:如图,PM =PN ,∠M =∠N .求证:AM =BN .3.已知:如图,AC BD .求证:OA =OB ,OC =OD .二、选择题4.能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( )A .DE =DFB .AE =AFC .BD =CD D .∠ADE =∠ADF 三、解答题7.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由. 答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?测试5 直角三角形全等的判定一、填空题1.判定两直角三角形全等的“HL ”这种特殊方法指的是_____. 2.直角三角形全等的判定方法有_____ (用简写). 图5-13.如图5-1,E 、B 、F 、C 在同一条直线上,若∠D =∠A =90°,EB =FC ,AB =DF .则ΔABC ≌_____,全等的根据是_____.4.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( ) (2)一个锐角和这个角的邻边对应相等;( ) (3)一个锐角和斜边对应相等; ( ) (4)两直角边对应相等;( )(5)一条直角边和斜边对应相等. ( ) 二、选择题5.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等 6.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .6 三、解答题7.已知:如图5-3,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =DC :(2)AD ∥BC .8.已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;测试6 三角形全等的判定 (四)一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC ≌ΔADE ,除去公共角∠A 外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据. (1)∠B =∠D ,AB =AD ( );(2)_____ ,_____ ( ); (3)_____ ,_____ ( );(4)_____ ,_____ ( ); (5)_____ ,_____ ( );(6)_____ ,_____ ( ); (7)_____ ,_____ ( ).6-1 6-2 3.如图6-2,已知AB ⊥CF ,DE ⊥CF ,垂足分别为B ,E ,AB =DE .请添加一个适当条件,使ΔABC ≌ΔDEF ,并说明理由。

添加条件:_______________________,理由是:__________________________________________. 4.在ΔABC 和ΔDEF 中,若∠B =∠E =90°,∠A =34°,∠D =56°,AC =DF ,贝ΔABC 和ΔDEF 是否全等? 答:______,理由是______. 二、选择题5.下列命题中正确的有 ( )个 A .1 B .2 C .3 D .4①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. 6.如图6-3,AB =CD ,AD =CB ,AC 、BD 交于O ,图中有 ( )对全等三角形.A .2B .3C .4D .57.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( )A .80°B .60°C .40°D .20° 8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( )A .90°-∠AB .A ∠-2190oC .180°-2∠AD .A ∠-2145o9.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( )A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C 'D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是 ( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN图6-3 图6-4 图6-5 图6-6测试7 三角形全等的判定(五)解答题1.如图,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.2.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.3.如图,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE =CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?4.在一池塘边有A、B两棵树,如图.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:测试8 角的平分线的性质(一)一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是__________________,结论是______________________.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线__________它到___________________________.(2)三角形内....,到三边距离相等的点是_____.第6题6.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.二、作图题7.已知:如图,∠AOB .求作:∠AOB 的平分线OC . 8.已知:如图,直线AB 及其上一点P .求作:直线MN ,使得MN ⊥AB 于P .9.已知:如图,△ABC .求作:点P ,使得点P 在△ABC 内, 且到三边AB 、BC 、CA 的距离相等.测试9 角的平分线的性质 (二)一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( )A .PC =PDB .OC =OD C .∠CPO =∠DPO D .OC =PC图9-1 图9-2 图9-3 图9-4 2.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .MnD .2mn二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.4.已知:如图9-4,在ΔABC 中,BD 、CE 分别平分∠ABC 、∠ACB ,且BD 、CE 交于点O ,过O 作OP ⊥BC 于P ,OM ⊥AB 于M ,ON ⊥AC 于N ,则OP 、OM 、ON 的大小关系为_____. 三、解答题5.已知:如图,OD 平分∠POQ ,在OP 、OQ 边上取OA =OB ,点C 在OD 上,CM ⊥AD 于M ,CN ⊥BD 于N .求证:CM =CN .6.已知:如图,ΔABC 的外角∠CBD 和∠BCE 的平分线BF 、CF 交于点F .求证:一点F 必在∠DAE 的平分线上.7.已知:如图,A 、B 、C 、D 四点在∠MON 的边上,AB =CD ,P 为∠MON 内一点, 并且△PAB 的面积与△PCD 的面积相等.求证:射线OP 是∠MON 的平分线.21EDCBAODCBA8.如图,在ΔABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB 于E ,若△BCD 与△BCA 的面积比为3∶8,求△ADE 与△BCA 的面积之比.12.2全等三角形的判定综合练习1.如图,D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED ,求证:AB=AC.2.已知:如图,AB =AD ,AC =AE ,∠1=∠2, 求证:⑴△ABC ≌△ADE ⑵∠B =∠D.3. 如图,AB=AC,∠BAC=900,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE ,求证:BD=EC+ED.4. 如图,在△ABC 和△DCB 中,AC 与BD 相交于点O ,AB =DC ,AC =BD. 求证:△ABC ≌△DCB.5、如图,AB=AC ,BD=CD ,求证:∠1=∠2.6、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .ACB DEDCBA 21AEDCBA E D7、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论 ⑴∠D=∠B ;⑵AE ∥CF .8、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?9、如图,O 是AB 的中点,∠A=∠B,△AOC 与△BOD 全等吗?为什么?AODC B10、已知如图,AB=AC ,AD=AE ,∠BAC=∠DAE,试说明BD=CE 。

相关文档
最新文档