材料成形技术基础第五章
第五章 模锻
二、模锻件的成形方式
在制定模锻工艺时,应根据零件的复杂程度,使用性能等来 选择模锻的成形方式。 按模具件成形方式,可将模锻分为带飞边的开式模锻和不带 飞边的闭式模锻。
三、锻件的分类 形状相似的模锻件,其模锻工艺及所用 的锻模结构基本相同。为便于制定模锻工艺, 可将不同形状的锻件进行分类,一般将锻件 分成短轴线类和长轴线类,再按锻件的复杂 程度,将各类锻件分成简单形状、较复杂形 状和复杂形状。
(4) 拱底连皮
若锻件内孔很大(d>15h),而高 度又很小,采用拱底连皮,或预锻时采 用平底连皮,终锻时采用拱底连皮。可 以容纳更多的金属,冲切连皮也比较省 力,同时,可以避免产生折迭或穿筋裂 纹。 拱底连皮厚度h1= 0.4 d R2=5h1 R1由作图选定
(5) 压凹
当锻件内孔直径较小(d<25mm)时, 考虑到凸模的强度不宜锻出连皮,应采 用压凹形式冲出盲孔。压凹的目的不只 在于节省金属,而是通过压凹变形,迫 使金属向变形区外产生流动,以便充模 膛,特别是易于是锻件的外角充满。
一、热锻件图
热锻件图依据冷锻件图设计,是冷锻件图的基础上加上金 属的冷缩量制定。具体尺寸计算:
④ 匹配斜度 为了使上下模膛的斜度在分模面交合,上下模膛的 斜度可以取得不一样。 ⑤ 自然斜度 锻件本身有斜度,且可以脱模,则不设模锻斜度, 称为自然斜度。若自然斜度太小,不足以脱模时,应增加模锻斜 度。
六、圆角半径
1. 圆角半径 为便于金属在模膛内流动,提高模具使用寿命,锻 件上所有尖锐棱角都做成圆弧,圆弧的半径叫做园角半径。 锻件圆角半径
九、锻件图的绘制
模锻件图的绘制与自由锻件图的绘制方法一样。成形工序带 连皮的锻件,在后道工序连皮已冲去,在锻件图上不需要画出连 皮的形状和尺寸,可在模锻的工序图中反映出来。
材料成形技术基础(问答题答案整理)
材料成形技术基础(问答题答案整理)第二章铸造成形问答题:合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法:(1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质;(2)铸型性质:较小铸型与金属液的温差;(3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统;(4)铸件结构:改进不合理的浇注结构。
影响合金收缩的因素有哪些?答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力)分别说出铸造应力有哪几类?答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同)(2)相变应力(固态相变、比容变化)(3)机械阻碍应力铸件成分偏析分为几类?产生的原因是什么?答:铸件成分偏析的分类:(1)微观偏析晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。
(因为不平衡结晶)晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。
)(2)宏观偏析正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度)逆偏析产生偏析的原因:结晶速度大于溶质扩散的速度铸件气孔有哪几种?答:侵入气孔、析出气孔、反应气孔如何区分铸件裂纹的性质(热裂纹和冷裂纹)?答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。
七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。
(ΣF内<ΣF 横<f直下端<f直上端)< bdsfid="120" p=""></f直下端<f直上端)<> 开放式浇注系统:从浇口杯底孔到内浇道的截面逐渐加大,阻流截面在直浇道上口的浇注系统。
材料科学基础——第五章答案
第五章答案5-1略。
5-2何谓表面张力和表面能?在固态和液态这两者有何差别?解:表面张力:垂直作用在单位长度线段上的表面紧缩力或将物体表面增大一个单位所需作的功;σ=力/总长度(N/m)表面能:恒温、恒压、恒组成情况下,可逆地增加物系表面积须对物质所做的非体积功称为表面能;J/m2=N/m液体:不能承受剪应力,外力所做的功表现为表面积的扩展,因为表面张力与表面能数量是相同的;固体:能承受剪切应力,外力的作用表现为表面积的增加和部分的塑性形变,表面张力与表面能不等。
5-3在石英玻璃熔体下20cm处形成半径5×10-8m的气泡,熔体密度为2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?解:P1(熔体柱静压力)=hρg=0.2×2200×9.81=4316.4Pa附加压力=2×0.29/5×10-8=1.16×107Pa故形成此气泡所需压力至少为P=P1+△P+P大气=4316.4+1.16×107+1.01×105=117.04×105Pa5-4(1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?解:(1)由于表面张力的存在,使弯曲表面上产生一个附加压力,如果平面的压力为P0,弯曲表面产生的压力差为△P,则总压力为P=P0+△P。
附加压力的正负取决于曲面的曲率,凸面为正,凹面为负。
(2)根据Laplace公式:可算得△P=0.9×(1/0.5+1/5)=1.98×106Pa5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?解:吸附:固体表面力场与被吸附分子发生的力场相互作用的结果,发生在固体表面上,分物理吸附和化学吸附;粘附:指两个发生接触的表面之间的吸引,发生在固液界面上;铜丝放在空气中,其表面层被吸附膜(氧化膜)所覆盖,焊锡焊接铜丝时,只是将吸附膜粘在一起,锡与吸附膜粘附的粘附功小,锉刀除去表面层露出真正铜丝表面(去掉氧化膜),锡与铜相似材料粘附很牢固。
工程材料及成型技术基础(吕广庶张元明著)课后习题答案
《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
合工大材料成型技术基础复习知识点(全面)[1]
合工大材料成型技术基础复习知识点(全面)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(合工大材料成型技术基础复习知识点(全面)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为合工大材料成型技术基础复习知识点(全面)(word版可编辑修改)的全部内容。
材料成型技术基础第二章铸造一、铸造的定义、优点、缺点:铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法.优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件.缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。
二、充型能力的定义、影响它的三个因素:金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力.影响因素:①金属的流动性;②铸型条件;③浇注条件。
三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素:①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。
结晶温度范围越窄,合金流动性越好。
②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好.影响充型能力的铸型的三个条件:①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力.蓄热系数越大,金属液保持液态时间短,充型能力越低。
工程材料及成形技术基础教案
教案
学院机电工程学院
课程名称工程材料及成形技术基础适用专业机械类
课程类型专业基础课
2
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案
工程材料及成形技术基础课程教案。
材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。
工程材料与成形技术基础(1-5章)
16
2.面心立方晶格
图
-
面心立方晶格的晶胞也是
面
一个立方体,其六个面中心和
心
八个角上各有一个原子,如图
立 方
1-5所示。属于这类晶格的金
球
属有 γ-Fe 、Cu、Al、Ni等。
体 模
型
及
它们都具有较好的塑性。
其
晶
胞
3.密排六方晶格
图
17
-
密排六方晶格的晶胞是一个
(3)《工程材料及应用》 周凤云主编,华中科技大学出版社。
(4)《材料成型技术基础》 胡亚民主编,重庆大学出版社。
(5)《热加工工艺基础》 任福东主编,机械工业出版社。
概述
工程材料:
用于机械、电子、建筑、 化工和航空航天 等领域的材 料统称为工程材料。
金属材料
机械工程材料:
用来制造各种机电产品的材
1.3.1 金属的力学性能
塑性 高温蠕变
刚度
金属的力学性能:材料在
外力作用下表现出来的特性, 疲劳强度 如弹性、塑性、强度、硬度和 韧性等。
金属 力学性能
表征和判定金属力学性能 所用的指标和依据称为金属力
低应力 脆断
学性能的判据。
弹性 强度
硬度 韧性
1 弹性:
即物体在外力作用下改 变其形状和尺寸,当外 力卸除后物体又回复到 原始形状和尺寸的特性。
六方柱体,其上下底面的中心和
密 排
十二个角上各有一个原子,且在
六
六方柱体的中间还有三个原子, 如图1-7所示。属于这类晶格的
方 球 体
金属有Mg 、Zn 、Cd 、Be等。
模 型
工程材料及成形技术基础课课后习题参考答案
工程材料及成形技术基础课课后习题参考答案第一章:1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。
力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。
1-3 σs、σ0.2和σb含义是什么?什么叫比强度?什么叫比刚度?答:σs-P s∕F0,屈服强度,用于塑性材料。
σ0.2-P0.2∕F0,产生0.2%残余塑性变形时的条件屈服强度,用于无明显屈服现象的材料。
σb-P b∕F0,抗拉强度,材料抵抗均匀塑性变形的最大应力值。
比强度-材料的强度与其密度之比。
比刚度-材料的弹性模量与其密度之比。
思考1-1、1-2.2-3 晶体的缺陷有哪些?可导致哪些强化?答:晶体的缺陷有:⑴点缺陷——空位、间隙原子和置换原子,是导致固溶强化的主要原因。
⑵线缺陷——位错,是导致加工硬化的主要原因。
⑶面缺陷——晶界,是细晶强化的主要原因。
2-5 控制液体结晶时晶粒大小的方法有哪些?答:见P101.3.4.2液态金属结晶时的细晶方法。
⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。
2-8 在铁-碳合金中主要的相是哪几个?可能产生的平衡组织有哪几种?它们的性能有什么特点?答:在铁-碳合金中固态下主要的相有奥氏体、铁素体和渗碳体。
可能产生的室温平衡组织有铁素体加少量的三次渗碳体(工业纯铁),强度低塑性好;铁素体加珠光体(亚共析钢),珠光体(共析钢),珠光体加二次渗碳体(过共析钢),综合性能好;莱氏体加珠光体加二次渗碳体(亚共晶白口铸铁),莱氏体(共晶白口铸铁),莱氏体加一次渗碳体(过共晶白口铸铁),硬度高脆性大。
《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)
3.5.4 拉拔工具
拉拔工具主要包括拉拔模和芯头。此二者的结构、 形状尺寸、表面质量与材质对制品的质量、产量、 成本等具有重要影响。
拉拔模
拉拔模
旋转模
辊式模 普通模(应用最多 )
弧线模:只用于细线的拉拔
锥形模:管、棒、型材和较粗的 线材拉拔
图 普通拉拔模的基本结构 (a)锥形模 (b)弧线模
空拉时壁厚增加或减少,主要取决于两个因素:
①圆周方向压应力:促使金属沿径向流动,导致管材壁厚增 加
②轴向拉应力:促使金属产生轴向延伸,并导致壁厚减薄。
这两个因素作用的强弱取决于各种变形条件。
③固定短芯头拉拔变形
变形分三部分:
AB C D
AB段:空拉区,主要是减径 变形,壁厚一般有所增加, 又称减径区。应力应变特点 与空拉时一样。 BC段:减壁区,此阶段外径 减小,内径不变,壁厚减薄。 应力应变特点与棒材拉拔时 一样。 CD段:定径区,为弹性变形 区。
②空拉时的应力与变形
应力状态:与圆棒拉拔时类似,即:周向、径向为
压,轴向为拉,但 ,且有
。
径向压应力的数值由管材外表面至内表面逐渐减小, 在内表面上为零。
周向应力由外表面向内逐渐增大。
轴向应力由变形区入口为零逐渐增加,在变形区出
口(模孔出口)处达到最大。
变形
按目的不同有: 减径空拉:目的是减径,主要用于中间道次,一般 认为拉拔后壁厚不变; 整径空拉:目的是精确控制制品的尺寸,减径量不 大(0.5~1),一般在最后道次进行; 定型空拉:目的是控制形状,主要用于异型管材拉 拔,即用于圆截面向异型截面过渡拉拔。
拉拔加工的特点
①拉拔制品的尺寸精度高,表面粗糙度低 ②工具与设备简单,维护方便,一机多用 ③适用于连续高速生产断面尺寸小的长尺产品(Al、
北京科技大学材料成形自动控制基础复习要点
第一、二章1.系统定义:由相互作用和相互依赖的若干组成部分结合成的具有特定功能的有机整体。
(1) 包含若干部分(2) 各个部分之间存在某种联系(3) 具有特定的功能。
控制对象:泛指任何被控物体(不含控制器)。
控制:使某个控制对象中一个或多个输出量随着时间的推移按照某种预期的方式进行变化。
实现:靠控制系统去完成。
开环系统:不存在稳定性问题,控制精度无法保证。
闭环系统:可实现高精度控制,但稳定性是系统设计的一个主要问题。
2.实现闭环控制的三个步骤一是对被控量(即实际轧出厚度或压下位置)的正确测量与及时报告;二是将实际测量的被控量与希望保持的给定值进行比较、PID计算和控制方向的判断;三是根据比较计算的结果,发出执行控制的命令,使被控量恢复到所希望保持的数值上。
闭环控制系统的基本组成和要求(1)被控对象(2)被控量(3)干扰量(或叫扰动量)(4)自动检测装置(或叫自动检测环节) (5)给定量(或叫给定值)(6)比较环节(7)调节器(8)执行控制器古典控制策略主要包括:PID控制、Smith控制和解耦控制。
古典控制策略的应用要满足下面几个条件:(1) 系统应为线性定常系统;(2)系统的数学模型应比较精确;(3) 系统的运行环境应比较稳定。
PID算法的特点PID算法综合了系统动态过程中的过去、现在以及将来的信息PID算法适应性好,有较强的鲁棒性PID算法有一套完整的参数设计与整定方法PID控制能获得较高的性价比对PID算法的缺陷进行了许多改良形成具有实用价值的复合控制策略PID控制的显著缺点是不适于具有大时滞的被控系统( G(s)e- s )变参数及变结构的被控系统系统复杂、环境复杂、控制性能要求高的场合3.PID控制完全依靠偏差信号调节会带来很大调节延迟。
对偏差信号进行比例、积分和微分调节运算称为PID控制,它可以提高控制品质。
这是将偏差放大或通过微分给与短时间的强烈输出,加快启动,减少死区。
积分是将偏差累积起来,进行调整,达到消除静差的目的。
《材料成型理论基础》课程大纲
《材料成型理论基础》课程教学大纲一、课程名称(中英文)中文名称:材料成型理论基础英文名称:Fundamentals for Materials Processing二、课程编码及性质课程编码:0809554课程性质:专业核心课,必修课三、学时与学分总学时:56学分:3.5四、先修课程工程材料学、传热学、流体力学、材料成形工艺基础五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供材料科学与工程专业和电子封装技术专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心课程之一,其教学目的主要包括:1.让学生对液态成形、连接成形、固态塑性成形及高分子材料成形的基本过程有较全面、深入的理解,掌握其基本原理和规律。
2.了解液态金属的结构和性质;掌握液态金属凝固的基本原理,冶金处理及其对产品性能的影响。
3.掌握材料成形中化学冶金基本规律和缺陷的形成机理、影响因素及防止措施。
4.掌握塑性成形过程中的应力与应变的基础理论,金属流动的基本规律及其应用。
5.了解高分子材料的组织转变及流动、成形的基本规律。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)本课程以材料成形工艺的理论基础为主线,根据成形加工过程中材料所处或经历的状态,分为液态凝固成形、固态塑性成形、连接成形、塑料注射成形等几类,学习材料在成形过程中的组织结构、性能、形状随外在条件的不同而变化的规律性知识。
2)本课程着重利用前期所学的物理、化学等基础理论,以及传热学、流体力学等专业基础理论知识,学习液态成形、塑性成形、连接成形等基本材料成形技术的内在规律和物理本质,包括共性原理,同时也要注重个性规律性认识。
3)课程将重点或详细介绍三种主要材料成形方法中的主要基础理论和专门知识,阐述这些现象的本质,揭示变化的规律。
而对次要成形方法的基本原理或发展状况等只作简要介绍或自学。
4)重点学习的章节内容包括:第4章“单相合金与多相合金的凝固”(6学时)、第5章“铸件凝固组织的形成与控制”(6学时)、第7章“焊缝及其热影响区的组织和性能”(6学时)、第8章“成形过程的冶金反应原理”(6学时)、第11章“应力与应变理论”(4学时)、第12章“屈服准则”(6学时)。
(完整版)工程材料及材料成型技术基础
§1-1 材料原子(或分子)的相互作用
1、离子键 当正电性金属原子与负电性非金属
原子形成化合物时,通过外层电子的重 新分布和正、负离子间的静电作用而相 互结合,故称这种结合键为离子键。
离子晶体硬度高,强度大,脆性大。 如氯化钠,陶瓷。
18
2、共价键 当两个相同的原子或性质相差不大的
原子相互接近时,它们的原子间不会有电 子转移。此时原子间借共用电子对所产生 的力而结合,这种结合方式称为共价键。
14
3.陶瓷材料 ① 普通陶瓷—主要为硅、铝氧化物的硅酸盐材料. ② 特种陶瓷—高熔点的氧化物、碳化物、氮化物
等烧结材料。 ③ 金属陶瓷—用生产陶瓷的工艺来制取的金属与
碳化物或其它化合物的粉末制品。 4.复合材料 是由两种或两种以上的材料组合而成的材料。 ①按基体相种类分:聚合物基、金属基、 陶瓷基、 石墨基等。 ②按用途分:结构、功能、智能复合材料。
15
本部分重点
1)工程材料的概念
– 制造工程结构和机器零件使用的材料
2)工程材料的分类
• 金属材料
钢铁材料 有色金属及其合金
• 有机高分子材料
塑料 橡胶等
• 陶瓷材料 • 复合材料
16
第一章 工程材料的结构与性能
§1-1 材料原子(或分子)的相互作用
当大量原子(或分子)处于聚集状态时, 它们之间以键合方式相互作用。由于组成 不同物质的原子结构各不相同,原子间的 结合键性质和状态存在很大区别。
8
绪论
一、材料的发展史
材料(metals) 是人类用来制作各种产品的物质,是 先于人类存在的,是人类生活和生产的物质基础。 反映人类社会文明的水平。
1 . 石器时代 :古猿到原始人的漫长进化过程。原料: 燧石和石英石。 2. 新石器时代:原始社会末期开始用火烧制陶器。 3. 青铜器时代:夏(公元前2140年始)以前就开始了 4. 铁器时代:春秋战国时期(公元前770~221年)开始 大量使用铁器
工程材料与成形工艺基础 课件说明 各章思考题及思考题答案_OK
• 答:参見教材P33。
• 4-12.什么是回火?回火工艺的分类、目的、组织与应用是什么?
• 答:参見教材P27。
• 4-13. 什么叫调质处理?调质处理获得什么组织?
• 答:参見教材P34。
• 4-14. 什么叫表面热处理?常用的表面热处理有哪些?
• 答:参見教材P34。
• 4-15.什么叫火焰加热表面淬火?目的是什么?有哪些特点?用于什么场合?
《工程材料与成形工艺基础》 课件
课件主编:赵海霞 付平 技术支持:张丽敏 主 审:孟庆东
化学工业出版社
1
《工程材料与成形工艺基础》
• 开本:16开 • 定价:28.00元 • 2008年9月化学工业出版社出版 • 编辑联系方式 化学工业出版社 机械电气分社 王清颢(hao) 地址:北京东城区青年湖南街13号
胜(各章学习指导;试题庫)。 另外,张丽敏、滕腾也参加了课件中部分图、表的校正,汇总等工作。 课件由孟庆东教授审阅。在编写过程中得到各位编者所在学校领导、老师的大力支持,参阅、借用了许多
同类课件的资料,在此一一表示衷心的感谢。 编者企望电子课件能对采用此教材的师生的教与学有所邦助。但由于编者水平有限,经验不足,加之时间
的目的及适用范围。
• 10.表面热处理的概念。
15
思考题与习题
• 4-1.什么是热处理?热处理的目的是什么? • 答:参見教材P27。 • 4-2.马氏体与贝氏体转变有哪些异同点? • 答:参見教材P31。 • 4-3.试述影响C曲线形状和位置的主要因素。 • 答:参見教材P30。 • 4-4.马氏体的硬度主要取决于什么?说明马氏体具有高硬度的原因。 • 答:参見教材P31-32。 • 4-5.珠光体、贝氏体和马氏体的组织和性能有什么区别? • 答:参見教材P30-32。 • 4-6.什么是残余奥氏体?它会引起什么问题? • 答:参見教材P27。 • 4-7.什么是退火热处理?常用的退火分为哪几种?各有何特点? • 答:参見教材P27。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗碳体 亚稳相,具有复杂的晶体 结构,硬而脆。
在一定条件下能分解为铁和石墨 Fe3C→3Fe+C 即 Fe3C→F+G 石墨(G) 稳定相,简单六方晶格。 底面上原子呈六方网格排列,原子 间距小(1.42×10-10 m),结合力 很强;
铁素体可锻铸铁
珠光体可锻铸铁
可锻铸铁应用: 制造形状复杂、承受冲击和振动载荷的零件, 如汽车拖拉机的后桥外壳、管接头、低压阀门 等。 这些零件用铸钢生产时,因铸造性不好,工 艺困难;用灰铸铁时,性能不能满足要求。
与球墨铸铁比,可锻铸铁成本低、质量稳定、 铁水处理简单、容易组织流水生产。尤其对于 薄壁件,若采用球墨铸铁易生成白口,需要进 行高温退火,采用可锻铸铁更为适宜。
F+G球
F+P+G球
P+G球
(1) 球墨铸铁的成分和球化处理 成分:要求比较严格。3.6%~3.9%C, 2.2% ~2.8%Si, 0.6%~0.8%Mn, <0.07%S, <0.球1%化P处。理:在铁水中加入一定量的球化剂和 孕育剂,获得细小、均匀分布的球状石墨。 使用稀土镁球化剂。 镁强烈阻碍石墨化。为了避免白口,并使石 墨球细小、均匀分布、一定要加入孕育剂。 常用的孕育剂为硅铁和硅钙合金等。
(4)石墨对振动的传递起削弱作用,使铸铁有 很好的抗振性能。
灰铁、球铁及钢振动衰减图
(5)石墨强度、韧性极低,相当于裂纹或空洞。 石墨越多,越大,对基体的割裂作用越严重,铸铁抗 拉强度越低。
铸铁分类
第1阶段 第2阶段 第3阶段 组织 石墨化 石墨化 石墨化 特征
组织
白口铸铁 不进行
不进行
不进行
有Le’ Le’+P+Fe3
机械设计制造及其自动化专业课程
第五章凝固成形技术
凝固成形
(铸造)
第一节 凝固成形概述
一、凝固成形材料 (1)铸铁
铸铁是碳质量分数大于2.11%、含有较多的 硅、锰、硫、磷等元素的铁碳合金。
铸铁生产设备和工艺简单,价格便宜,具有 许多优良的使用性能和工艺性能,应用广泛。
1. 铸铁的石墨化过程
排气管
进气管
4. 可锻铸铁 可锻铸铁是由白口铸铁通过退火处理得到的 一种高强铸铁。 有较高的强度、塑性和冲击韧性,可以部分 代替碳钢。可锻铸铁依靠石墨化退火获得。 可锻铸铁有铁素体和珠光体两种基体。
(1) 可锻铸铁的牌号 KT350-10、KTZ600-3 铁素体可锻铸铁以“KT”表示。 珠光体可锻铸铁以“KTZ”表示。 两组数字表示最低抗拉强度和延伸率。
无G
CⅡ
Le’
Le’+Fe3CⅠ
麻口铸铁 部分进行 部分进行 不进行 有Le’ Le’+P+G
有G
灰口铸铁 充分进行 充分进行 充分进行 无Le’ 部分进行 有G 不进行
F+G F+P+G
P+G
2.灰口铸铁的组织特征和分类 铸铁组织由基体和石墨组成。 基体:铁素体、珠光体或铁素体加珠光体 石墨:片状、球状、蠕虫状、团絮状
应用:制造轧辊、车轮等。
高磷铸铁
磷的质量分数提高到0.4%~0.6%,生成磷共晶, 呈断续网状的形态分布在珠光体基体上。磷共晶硬度 高,改善珠光体灰口铸铁的耐磨性。
高铬耐磨铸铁、奥-贝球墨铸铁
加入Cr、Mo、W、Cu等合金元素,提高基体强度和 韧性,铸铁的耐磨性能等得到更大提高。
灰铸铁的显微组织
F+G片
F+P+G片
P+G片
灰铸铁的应用
灰铸铁铸造性能优良、价格便宜,但强度较低、韧性 差。制造机床床身、床头箱、阀体、叶轮、飞轮等。
箱体 叶轮
启动阀 发动机飞轮
2. 球墨铸铁 球墨铸铁的石墨呈球状。 具有很高的强度,良好的塑性和韧性。综合机械性能接近于 钢,铸造性能好,成本较低,生产方便,得到广泛应用。
灰口铸铁的分类
灰口铸铁 灰铸铁、孕育铸铁
石墨形态 片状、细片状
球墨铸铁 蠕墨铸铁 可锻铸铁
球状 蠕虫状 团絮状
灰口铸铁根据石墨形态不同又可分为:
普通灰铸铁(片状G);可锻铸铁(团絮状G); 球墨铸铁(球状G); 蠕墨铸铁(蠕虫状G)
常用铸铁:
1. 灰铸铁 价格便宜、应用最广。 (1)灰铸铁的牌号 HT150、HT250、HT400 “HT”表示“灰铁”,数字表示最低抗 拉强度。灰铸铁有铁素体、珠光体和铁素体 加珠光体三种基体。 灰铸铁中的碳、硅质量分数一般控制在以 下范围:2.5%~4.0%C; 1.0%~2.0%Si。
5. 特殊性能铸铁
铸铁中加入合金元素,得到具有特殊性能的合金铸 铁。
(1) 耐磨铸铁 激冷铸铁
白口铸铁耐磨。采用激冷的办法使铸件表面获得白 口铸铁。
用金属型铸造铸件的耐磨表面,其它部位采用砂型。 调整铁水化学成分(高碳、低硅),保证白口层的深度。 表面为白口铸铁,心部为灰口铸铁组织,有一定的强度。
(2) 球墨铸铁的牌号、组织和性能
QT400-15、QT600-3、QT800-2 球墨铸铁牌号用“QT”标明,其后两组 数值表示最低抗拉强度极限和延伸率。
不同基体的球墨铸铁,性能差别很大。 珠光体球墨铸铁的抗拉强度比铁素体基体 高50%以上。 铁素体球墨铸铁的延伸率为珠光体基的35倍。
球墨铸铁的应用: 用球墨铸铁来代替钢制造某些重要零件。 如曲轴、连杆、凸轮轴等。
曲轴
管道接口
3. 蠕墨铸铁
RuT300、RuT420
蠕墨铸铁以“RuT”表示,
数字表示最低抗拉强度。
蠕墨铸铁组织
蠕墨铸铁的石墨在光学显微镜下为蠕虫状
,长厚比小,端部较钝。
蠕墨铸铁是新型高强铸铁。强度接近于球墨 铸铁,有一定的韧性、较高的耐磨性;又有和 灰铸铁一样良好的铸造性能和导热性。
蠕墨铸铁的生产: 在一定成分的铁水中加入适量的蠕化剂形成。蠕 化剂主要采用镁钛合金、稀土镁钛合金或稀土镁钙 合金等。 应用:用于高层建筑中高压热交换器、内燃机汽 缸、缸盖、排气管、进气管、汽缸套、钢锭模、液 压阀等铸件。
底面间的间距较大(3.04× 10-10 m),结合力较弱。石墨的强 度、硬度和塑性很差。
Fe3C 石墨的晶体结构
石墨的作用: (1)石墨提高铸铁的切削加工性能。
(2)铸件凝固时石墨膨胀,减少铸件体积收缩 ,降低内应力。铸铁铸造性能良好。
(3)石墨有良好的润滑作用,并能储存润滑油 ,使铸件有很好的耐磨性能。