数控车床由浅入深的宏程序实例

合集下载

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例第一篇:数控机床宏程序编程的技巧和实例论文:数控机床宏程序编程的技巧和实例2011年8月11日前言随着工业技术的飞速发展,产品形状越来越复杂,精度要求越来越高,产品更新换代越来越快,传统的设备已不能适应新要求。

现在我国的制造业中已广泛地应用了数控车床、数控铣床、加工中心机床、数控磨床等数控机床。

这些先进设备的加工过程都需要由程序来控制,需要由拥有高技能的人来操作。

要发挥数控机床的高精度、高效率和高柔性,就要求操作人员具有优秀的编程能力。

常用的编程方法有手工编程和计算机编程。

计算机编程的应用已非常广泛。

与手工编程比较,在复杂曲面和型腔零件编程时效率高、质量好。

因此,许多人认为手工编程已不再重要,特别是比较难的宏程序编程也不再需要。

只须了解一些基本的编程规则就可以了。

这样的想法并不能全面。

因为,计算机编程也有许多不足:1、程序数据量大,传输费时。

2、修改或调整刀具补偿需要重新后置输出。

3、打刀或其他原因造成的断点时,很难及时复位。

手工编程是基础能力,是数控机床操作编程人员必须掌握的一种编程方法。

手工编程能力是计算机编程的基础,是刀具轨迹设计,轨迹修改,以及进行后置处理设计的依据。

实践证明,手工编程能力强的人在计算机编程中才能速度快,程序质量高。

在程序中使用变量,通过对变量进行赋值及处理使程序具有特殊功能,这种有变量的程序叫宏程序。

宏程序是数控系统厂家面向客户提供的的二次开发工具,是数控机床编程的最高级手工方式。

合理有效的利用这个工具将极大地提升机床的加工能力。

作为一名从事数控车床、数控铣床、加工中心机床操作编程二十多年的技师,在平时的工作中,常常用宏程序来解决生产中的难题,因此对宏程序的编程使用积累了一些经验。

在传授指导徒弟和与同事探讨中,总结了许多学习编制宏程序应注意的要点。

有关宏编程的基础知识在许多书籍中讲过,我们在这里主要通过实例从编制技巧、要点上和大家讨论。

一、非圆曲面类的宏程序的编程技巧1、非圆曲面可以分为两类;(1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。

数控车床编程实例详解(30个例子)(1).

数控车床编程实例详解(30个例子)(1).

车床编程实例一半径编程图3.1.1 半径编程%3110 (主程序程序名)N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转)N3 M98 P0003 L6 (调用子程序,并循环6 次)N4 G00 X16 Z1 (返回对刀点)N5 G36 (取消半径编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (子程序名)N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段)N3U3.215 W-39.877 R60 (加工R60 园弧段)N4 G02 U1.4 W-28.636 R40(加工切R40 园弧段)N5 G00 U4 (离开已加工表面)N6 W73.436 (回到循环起点Z 轴处)N7 G01 U-4.8 F100 (调整每次循环的切削量)N8 M99 (子程序结束,并回到主程序)直线插补指令编程图3.3.5 G01 编程实例%3305N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26 外圆)N5 U34 W-10 (切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)N10 M30 (主程序结束并复位)车床编程实例三圆弧插补指令编程%3308N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G00 X0 (到达工件中心)N4 G01 Z0 F60 (工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15 圆弧段)N6 G02 X26 Z-31 R5 (加工R5 圆弧段)N7 G01 Z-40 (加工Φ26 外圆)N8 X40 Z5 (回对刀点)N9 M30 (主轴停、主程序结束并复位图3.3.8 G02/G03 编程实例倒角指令编程图3.3.10.1 倒角编程实例%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10 (从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100 (倒3×45°直角)N40 W-22 R3 (倒R3 圆角)N50 U39 W-14 C3 (倒边长为3 等腰直角)N60 W-34 (加工Φ65 外圆)N70 G00 U5 W80 (回到编程规划起点)N80 M30 (主轴停、主程序结束并复位)车床编程实例五倒角指令编程%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 X0 Z4 (到工件中心)N30 G01 W-4 F100 (工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26 外圆)N60 G02 U30 W-15 R15 RL=3(加工R15 圆弧,并倒边长为4 的直角)N70 G01 Z-70 (加工Φ56 外圆)N80 G00 U10 (退刀,离开工件)N90 X70 Z10 (返回程序起点位置)M30 (主轴停、主程序结束并复位)图3.3.10.2 倒角编程实例车床编程实例六圆柱螺纹编程螺纹导程为1.5mm,δ=1.5mm,δ'=1mm ,每次吃刀量(直径值)分别为0.8mm、0.6 mm 、0.4mm、0.16mm图3.3.12 螺纹编程实例%3312N1 G92 X50 Z120 (设立坐标系,定义对刀点的位置)N2 M03 S300 (主轴以300r/min 旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X 轴方向快退)N6 Z101.5 (Z 轴方向快退到螺纹起点处)N7 X28.6 (X 轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X 轴方向快退)N10 Z101.5 (Z 轴方向快退到螺纹起点处)N11 X28.2 (X 轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N13 G00 X40 (X 轴方向快退)N14 Z101.5 (Z 轴方向快退到螺纹起点处)N15 U-11.96 (X 轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40 (X 轴方向快退)N18 X50 Z120 (回对刀点)N19 M05 (主轴停)N20 M30 (主程序结束并复位)恒线速度功能编程%3314车床编程实例七图3.3.14 恒线速度编程实例N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0 (刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15 圆弧段)N7 G02 X26 Z-31 R5 (加工R5 圆弧段)N8 G01 Z-40 (加工Φ26 外圆)N9 X40 Z5 (回对刀点)N10 G97 S300 (取消恒线速度功能,设定主轴按300r/min 旋转)N11 M30 (主轴停、主程序结束并复位)车床编程实例八%3317M03 S400 (主轴以400r/min 旋转)G91 G80 X-10 Z-33 I-5.5 F100(加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30 (主轴停、主程序结束并复位)图3.3.17 G80 切削循环编程实例车床编程实例九G81 指令编程(点画线代表毛坯)图3.3.20 G81 切削循环编程实例%3320N1 G54 G90 G00 X60 Z45 M03 (选定坐标系,主轴正转,到循环起点)N2 G81 X25 Z31.5 K-3.5 F100 (加工第一次循环,吃刀深2mm)N3 X25 Z29.5 K-3.5 (每次吃刀均为2mm,)N4 X25 Z27.5 K-3.5 (每次切削起点位,距工件外圆面5mm,故K 值为-3.5)N5 X25 Z25.5 K-3.5 (加工第四次循环,吃刀深2mm)N6 M05 (主轴停)N7 M30 (主程序结束并复位车床编程实例十G82 指令编程(毛坯外形已加工完成)%3323N1 G55 G00 X35 Z104(选定坐标系G55,到循环起点)N2 M03 S300 (主轴以300r/min 正转)N3 G82 X29.2 Z18.5 C2 P180 F3(第一次循环切螺纹,切深0.8mm)N4 X28.6 Z18.5 C2 P180 F3(第二次循环切螺纹,切深0.4mm)N5 X28.2 Z18.5 C2 P180 F3(第三次循环切螺纹,切深0.4mm)N6 X28.04 Z18.5 C2 P180 F3(第四次循环切螺纹,切深0.16mm)N7 M30 (主轴停、主程序结束并复位)图3.3.23 G82 切削循环编程实例车床编程实例十一外径粗加工复合循环编制图3.3.27 所示零件的加工程序:要求循环起始点在A(46,3),切削深度为1.5mm(半径量)。

G54数控宏程序教程(车床篇)随浅入深宏程序

G54数控宏程序教程(车床篇)随浅入深宏程序

由浅入深宏程序1-宏程序入门基础之销轴加工对于没有接触过宏程序人,觉得它很神秘,其实很简单,只要掌握了各类系统宏程序的基本格式,应用指令代码,以及宏程序编程的基本思路即可。

对于初学者,尤其是要精读几个有代表性的宏程序,在此基础上进行模仿,从而能够以此类推,达到独立编制宏程序的目的。

本教程将分步由浅入深的将宏程序讲解给大家,作者水平有限,也希望各位同仁提供更好的思路。

下面大家先看一个简单的车床的程序,图纸如下:要求用外圆刀切削一个短轴,这里只列举程序的前几步:T0101M3S800G0X82Z5G0X76G1Z-40F0.2X82G0Z5G0X72G1Z-40F0.2X82G0Z5G0X68G1Z-40F0.2X82G0Z5G0X68G1Z-40F0.2X82G0Z5........G0X40G1Z-40F0.2X82G0Z5G0X150Z150M5M30从上面程序可以看出,每次切削所用程序都只是切削直径X有变化,其他程序代码未变。

因此可以将一个变量赋给X,而在每次切削完之后,将其改变为下次切削所用直径即可。

T0101M3S800G0X82Z5#1=76赋初始值,即第一次切削直径N10 G0X[#1] 将变量赋给X,则X方向进刀的直径则为#1变量中实际存储值。

N10是程序G1Z-40F0.2 段的编号,用来标识本段,为后面循环跳转所用。

X82G0Z5#1=#1-4每行切深为2mm,直径方向递减4mmIF [#1GE40] GOGO 10如果#1 >= 40,即此表达式满足条件,则程序跳转到N10继续执行。

G0X150Z150 当不满足#1 >= 40,即#1<40,则跳过循环判断语句,由此句继续向后执行。

M5M30由浅入深宏程序2-宏程序之销轴粗精加工本篇文章利用宏程序简单模仿数控系统的外圆车削循环功能。

在此用前一篇的图纸与程序原程序:T0101M3S800G0X82Z5 粗加工开始#2=0.05 Z向的加工余量#3=0.5 外圆方向的加工余量#4=0.3 每层切削后的回退量#1=76+2*#3考虑了精加工余量的第一次切削直径N10 G0X[#1] 将变量赋给X,则X方向进刀的直径则为#1变量中实际存储值。

数控车床编程实例详解(30个例子)

数控车床编程实例详解(30个例子)

半径编程图3.1.1 半径编程%3110 (主程序程序名)N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转)N3 M98 P0003 L6 (调用子程序,并循环6次)N4 G00 X16 Z1 (返回对刀点)N5 G36 (取消半径编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (子程序名)N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8园弧段)N3 U3.215 W-39.877 R60 (加工R60园弧段)N4 G02 U1.4 W-28.636 R40(加工切R40园弧段)N5 G00 U4 (离开已加工表面)N6 W73.436 (回到循环起点Z轴处)N7 G01 U-4.8 F100 (调整每次循环的切削量)N8 M99 (子程序结束,并回到主程序)直线插补指令编程图3.3.5 G01编程实例%3305N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z轴2mm处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26外圆)N5 U34 W-10 (切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)N10 M30 (主程序结束并复位)车床编程实例三圆弧插补指令编程%3308N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min旋转)N3 G00 X0 (到达工件中心)N4 G01 Z0 F60 (工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15圆弧段)N6 G02 X26 Z-31 R5 (加工R5圆弧段)N7 G01 Z-40 (加工Φ26外圆)N8 X40 Z5 (回对刀点)N9 M30 (主轴停、主程序结束并复位图3.3.8 G02/G03编程实例倒角指令编程图3.3.10.1 倒角编程实例%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10 (从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100 (倒3×45°直角)N40 W-22 R3 (倒R3圆角)N50 U39 W-14 C3 (倒边长为3等腰直角)N60 W-34 (加工Φ65外圆)N70 G00 U5 W80 (回到编程规划起点)N80 M30 (主轴停、主程序结束并复位)车床编程实例五倒角指令编程%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 X0 Z4 (到工件中心)N30 G01 W-4 F100 (工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26外圆)N60 G02 U30 W-15 R15 RL=3(加工R15圆弧,并倒边长为4的直角)N70 G01 Z-70 (加工Φ56外圆)N80 G00 U10 (退刀,离开工件)N90 X70 Z10 (返回程序起点位置)M30 (主轴停、主程序结束并复位)图3.3.10.2 倒角编程实例圆柱螺纹编程螺纹导程为1.5mm,δ=1.5mm,δ '=1mm ,每次吃刀量(直径值)分别为0.8mm、0.6 mm 、0.4mm、0.16mm图3.3.12 螺纹编程实例%3312N1 G92 X50 Z120 (设立坐标系,定义对刀点的位置)N2 M03 S300 (主轴以300r/min旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X轴方向快退)N6 Z101.5 (Z轴方向快退到螺纹起点处)N7 X28.6 (X轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X轴方向快退)N10 Z101.5 (Z轴方向快退到螺纹起点处)N11 X28.2 (X轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N13 G00 X40 (X轴方向快退)N14 Z101.5 (Z轴方向快退到螺纹起点处)N15 U-11.96 (X轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40 (X轴方向快退)N18 X50 Z120 (回对刀点)N19 M05 (主轴停)N20 M30 (主程序结束并复位)恒线速度功能编程图3.3.14 恒线速度编程实例%3314N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0 (刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15圆弧段)N7 G02 X26 Z-31 R5 (加工R5圆弧段)N8 G01 Z-40 (加工Φ26外圆)N9 X40 Z5 (回对刀点)N10 G97 S300 (取消恒线速度功能,设定主轴按300r/min旋转)N11 M30 (主轴停、主程序结束并复位)车床编程实例八%3317M03 S400 (主轴以400r/min旋转)G91 G80 X-10 Z-33 I-5.5 F100(加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30 (主轴停、主程序结束并复位)图3.3.17 G80切削循环编程实例G81指令编程(点画线代表毛坯)图3.3.20 G81切削循环编程实例%3320N1 G54 G90 G00 X60 Z45 M03 (选定坐标系,主轴正转,到循环起点)N2 G81 X25 Z31.5 K-3.5 F100 (加工第一次循环,吃刀深2mm)N3 X25 Z29.5 K-3.5 (每次吃刀均为2mm,)N4 X25 Z27.5 K-3.5 (每次切削起点位,距工件外圆面5mm,故K值为-3.5)N5 X25 Z25.5 K-3.5 (加工第四次循环,吃刀深2mm)N6 M05 (主轴停)N7 M30 (主程序结束并复位车床编程实例十G82指令编程(毛坯外形已加工完成)%3323N1 G55 G00 X35 Z104(选定坐标系G55,到循环起点)N2 M03 S300 (主轴以300r/min正转)N3 G82 X29.2 Z18.5 C2 P180 F3(第一次循环切螺纹,切深0.8mm)N4 X28.6 Z18.5 C2 P180 F3(第二次循环切螺纹,切深0.4mm)N5 X28.2 Z18.5 C2 P180 F3(第三次循环切螺纹,切深0.4mm)N6 X28.04 Z18.5 C2 P180 F3(第四次循环切螺纹,切深0.16mm)N7 M30 (主轴停、主程序结束并复位)图3.3.23 G82切削循环编程实例车床编程实例十一外径粗加工复合循环编制图3.3.27所示零件的加工程序:要求循环起始点在A(46,3),切削深度为1.5mm(半径量)。

数控车床编程100例

数控车床编程100例

数控车床编程100例问题描述数控车床编程是数控机床中非常重要的一环。

掌握好数控车床编程,能够提高生产效率,降低管理成本。

本文将为大家提供100个数控车床编程的例子,涵盖常见的加工操作,帮助读者更好地了解数控车床编程的实操技巧。

例子列表1. 钻孔操作G90 G54 G0 X100. Y200.G43 H1 Z10.M3 S1000.G81 R3. Z-10. F200.G80这个例子展示了如何在坐标系(G54)下,以坐标(100, 200)为起点进行钻孔操作。

首先将Z轴移动到10mm的位置,然后以200mm/min的速度迅速下钻到10mm深度,最后返回到初始位置。

2. 铣削操作G90 G54 G0 X50. Y100.G43 H2 Z5.M3 S2000.G1 Z-5. F500.G1 X100. Y100. Z-10. F100.G1 X100. Y50. Z-10. F100.G1 X50. Y50. Z-10. F100.G1 X50. Y100. Z-10. F100.G80这个例子展示了如何在坐标系(G54)下,以坐标(50, 100)为起点进行铣削操作。

首先将Z轴移动到5mm的位置,然后以500mm/min的速度迅速下降到5mm深度。

接下来,以100mm/min的速度沿着指定的路径进行线性铣削,即依次经过(100, 100)、(100, 50)、(50, 50)和(50, 100)四个点。

最后回到起始位置。

3. 螺纹加工操作G90 G54 G0 X50. Y50.G43 H3 Z5.M3 S1500.G76 P010060 Q1500 R1.这个例子展示了如何在坐标系(G54)下,以坐标(50, 50)为起点进行螺纹加工操作。

首先将Z轴移动到5mm的位置,然后以1500mm/min的速度以1mm 的进给量、600mm的主轴速度进行螺纹加工。

加工完成后,返回初始位置。

4. 镗孔操作G90 G54 G0 X150. Y100.G43 H4 Z5.M3 S500.G78 X150. Y100. Z-20. F200.这个例子展示了如何在坐标系(G54)下,以坐标(150, 100)为起点进行镗孔操作。

数控车床编程实例详解(30个例子)完整

数控车床编程实例详解(30个例子)完整

车床编程实例一半径编程图3.1.1 半径编程%3110 (主程序程序名)N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转)N3 M98 P0003 L6 (调用子程序,并循环6次)N4 G00 X16 Z1 (返回对刀点)N5 G36 (取消半径编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (子程序名)N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段) N3U3.215 W-39.877 R60 (加工R60 园弧段) N4G02 U1.4 W-28.636 R40(加工切R40 园弧段) N5G00 U4 (离开已加工表面)N6 W73.436 (回到循环起点Z轴处)N7 G01 U-4.8 F100 (调整每次循环的切削量)N8 M99 (子程序结束,并回到主程序)1直线插补指令编程%3305车床编程实例二图3.3.5 G01 编程实例N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26 外圆)N5 U34 W-10 (切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)N10 M30 (主程序结束并复位)圆弧插补指令编程车床编程实例三%3308N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G00 X0 (到达工件中心)N4 G01 Z0 F60 (工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15 圆弧段)N6 G02 X26 Z-31 R5 (加工R5 圆弧段)N7 G01 Z-40 (加工Φ26 外圆)N8 X40 Z5 (回对刀点)N9 M30 (主轴停、主程序结束并复位图3.3.8 G02/G03 编程实例2倒角指令编程%3310车床编程实例四图3.3.10.1 倒角编程实例N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10 (从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100 (倒3×45°直角)N40 W-22 R3 (倒R3 圆角)N50 U39 W-14 C3 (倒边长为3等腰直角)N60 W-34 (加工Φ65 外圆)N70 G00 U5 W80 (回到编程规划起点)N80 M30 (主轴停、主程序结束并复位)倒角指令编程%3310车床编程实例五N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 X0 Z4 (到工件中心)N30 G01 W-4 F100 (工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26 外圆)N60 G02 U30 W-15 R15 RL=3(加工R15 圆弧,并倒边长为4的直角)N70 G01 Z-70 (加工Φ56 外圆)N80 G00 U10 (退刀,离开工件)N90 X70 Z10 (返回程序起点位置)M30 (主轴停、主程序结束并复位)图3.3.10.2 倒角编程实例3车床编程实例六圆柱螺纹编程螺纹导程为1.5mm,δ=1.5mm,δ '=1mm ,每次吃刀量(直径值)分别为0.8mm、0.6 mm 、0.4mm、0.16mm图3.3.12 螺纹编程实例%3312N1 G92 X50 Z120 (设立坐标系,定义对刀点的位置)N2 M03 S300 (主轴以300r/min 旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X 轴方向快退)N6 Z101.5 (Z 轴方向快退到螺纹起点处)N7 X28.6 (X 轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X 轴方向快退)N10 Z101.5 (Z 轴方向快退到螺纹起点处)N11 X28.2 (X 轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N13 G00 X40 (X 轴方向快退)N14 Z101.5 (Z 轴方向快退到螺纹起点处)N15 U-11.96 (X 轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40 (X 轴方向快退)N18 X50 Z120 (回对刀点)N19 M05 (主轴停)N20 M30 (主程序结束并复位)4恒线速度功能编程%3314车床编程实例七图3.3.14 恒线速度编程实例N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0 (刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15 圆弧段)N7 G02 X26 Z-31 R5 (加工R5 圆弧段)N8 G01 Z-40 (加工Φ26 外圆)N9 X40 Z5 (回对刀点)N10 G97 S300 (取消恒线速度功能,设定主轴按300r/min 旋转)N11 M30 (主轴停、主程序结束并复位)车床编程实例八%3317M03 S400 (主轴以400r/min 旋转)G91 G80 X-10 Z-33 I-5.5 F100(加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30 (主轴停、主程序结束并复位)图3.3.17 G80 切削循环编程实例5车床编程实例九G81 指令编程(点画线代表毛坯)图3.3.20 G81 切削循环编程实例%3320N1 G54 G90 G00 X60 Z45 M03 (选定坐标系,主轴正转,到循环起点)N2 G81 X25 Z31.5 K-3.5 F100 (加工第一次循环,吃刀深2mm)N3 X25 Z29.5 K-3.5 (每次吃刀均为2mm,)N4 X25 Z27.5 K-3.5 (每次切削起点位,距工件外圆面5mm,故K值为-3.5)N5 X25 Z25.5 K-3.5 (加工第四次循环,吃刀深2mm)N6 M05 (主轴停)N7 M30 (主程序结束并复位车床编程实例十G82 指令编程(毛坯外形已加工完成)%3323N1 G55 G00 X35 Z104(选定坐标系G55,到循环起点)N2 M03 S300 (主轴以300r/min 正转)N3 G82 X29.2 Z18.5 C2 P180 F3(第一次循环切螺纹,切深0.8mm)N4 X28.6 Z18.5 C2 P180 F3(第二次循环切螺纹,切深0.4mm)N5 X28.2 Z18.5 C2 P180 F3(第三次循环切螺纹,切深0.4mm)N6 X28.04 Z18.5 C2 P180 F3(第四次循环切螺纹,切深0.16mm)N7 M30 (主轴停、主程序结束并复位)图3.3.23 G82 切削循环编程实例6车床编程实例十一外径粗加工复合循环编制图3.3.27 所示零件的加工程序:要求循环起始点在A(46,3),切削深度为 1.5mm(半径量)。

数控车床编程实例详解(30个例子)

数控车床编程实例详解(30个例子)

数控车床编程实例详解(30个例子)1. 基础G00轨迹移动G00指令可以用于快速移动机床上的工具,不做切削。

例如,要将铣刀从(0,0,0)点移动到(100,100,0)可以使用下面的编程:G00 X100 Y100 Z02. 简单的G01直线插补3. 向X正方向设定工件原点在某些情况下,需要在工件上设计的特定原点作为整个程序的起点。

在下面的例子中,我们将工件原点移到X轴上的10毫米位置:G92 X104. G02 G03 模拟圆弧G02和G03指令可以用于沿着一条圆弧轨迹移动工具。

例如,以下代码将插入一个逆时针圆弧:G03 X50 Y50 I25 J05. 床上对刀长度测量刀具长度对刀是数控车床操作的重要步骤。

在这个例子中,我们使用手动设定对刀。

首先,我们将铣刀移动到Z轴处的一个位置,然后将刀具轻轻放置在工件上以测量其长度。

最后,我们将刀具测量值输入机床,以便于适当地调整刀具长度。

6. 坐标旋转在某些情况下,需要在XY平面上绕特定角度旋转工件,以便于确保最佳切削角度。

在这个例子中,我们将工件绕着Z轴旋转45度:G68 X0 Y0 R457. 使用M code 启动或停止旋转工件M03用于启动旋转工作台的主轴,M05用于关闭它。

例如,以下代码段启动了工作台的主轴,并等待它旋转到合适速度,以便于切削。

8. 镜像轨迹在制造工具或零件时,可能需要将一个轮廓沿着特定轴镜像。

例如,以下代码镜像X 轴上的轮廓:G01 X50 Y0G01 X0 Y50G01 X-50 Y0G01 X0 Y-50MHE29. 使用G04指令延迟程序G04指令用于程序内部的延迟。

例如,以下代码让机床停顿1秒钟:G04 P100010. 利用G10指令改变工作坐标系G10指令可以用于更改工作坐标系。

例如,下面的代码段将当前坐标系设定为{X50 Y50 Z0}:11. 使用G17, G18和G19指令绘制园形、X-Y平面和Z-X平面G17G02 X50 Y50 I25 J0G02 X0 Y0 I-25 J0G02 X-50 Y50 I0 J25G02 X0 Y100 I25 J0G02 X50 Y50 I0 J-25G02 X0 Y0 I-25 J0MHE2M30指令可以用于彻底结束程序。

数控宏程序编制两例

数控宏程序编制两例

数控宏程序编制两例数控宏程序是一种通过编辑代码来控制数控机床进行自动加工的程序。

宏程序可以重复使用,可以提高生产效率和加工精度,且可以自动完成编程过程。

下面将介绍两个数控宏程序编制的例子:1. 零件加工宏程序该宏程序适用于零件的加工,需先测量零件尺寸,并依据测量结果编写数控宏程序。

以轴套为例,宏程序如下:O0001;(宏程序的名称)G10L20P1X10Y20Z30;(设定工具长度、直径及坐标轴位置)T1;(选择工具)M03S1000;(主轴正转并设定转速)G01X0Z0F100;(工件坐标轴归零)G00X-20;(工件坐标轴回原点)G01X-15Z-10;(以100 的进给速率和深度,向工件进给加工)G01X-10;(向工件进给加工)G00X0Z0F100;(以快速进给回到原点位置)M05;(主轴停止)通过以上程序,机床可以自动进行轴套加工,增加了生产效率,又避免了因人为因素引起的误差。

2. 零件检测宏程序该宏程序适用于零件的检测,可以快速高效地检查零件尺寸是否合格。

以零件平面度检测为例,宏程序如下:O0002;(宏程序的名称)G10L20P1X10Y20Z30;(设定工具长度、直径及坐标轴位置)T2;(选择工具)M03S1000;(主轴正转并设定转速)G01X0Z0F100;(工件坐标轴归零)G00X-20;(工件坐标轴回原点)G01X-10Z-3;(以 50 的进给速率和深度,向工件进给检测)G00X0Z0F100;(以快速进给回到原点位置)M05;(主轴停止)IF[#2 LT 0.01]GOTO5;(IF 判断语句,如果测量值小于 0.01 mm,跳转到标记 5)G01X10Z-3;(以 50 的进给速率和深度,向工件进给检测)G00X0Z0F100;(以快速进给回到原点位置)M05;(主轴停止)通过以上程序,机床可以自动进行零件平面度的检测,并根据实际情况跳转到不同的位置进行处理。

总之,数控宏程序可以方便快捷地控制数控机床进行自动加工和检测,极大提高了生产效率和加工精度。

数控车床宏程序编程实例

数控车床宏程序编程实例

数控车床宏程序编程实例
首先,我们将介绍一些数控车床宏程序的基本概念。

宏程序是一种编写在机床控制器内部的程序,它可以包含一系列的指令和操作,从而完成一定的加工工艺。

宏程序可以使操作员在加工过程中减少输入指令的时间和精力,提高加工精度和效率。

接下来,我们将通过实例来介绍数控车床宏程序的编程方法。

假设我们需要在数控车床上加工一个圆柱形工件,其直径为100mm,长度为200mm。

我们可以编写一个宏程序来完成这个加工过程。

具体步骤如下:
1. 首先,我们需要定义一个宏程序,命名为“CYLINDER”。

2. 接下来,我们需要设置加工过程中所需用到的切削工具和切削速度等参数。

3. 然后,我们需要编写加工程序的主体部分,即定义加工路径。

在本例中,我们需要使用G代码来定义加工路径,例如:“G00 Z5.0;G00 X0;G00 Z0;G01 X50 F200;G01 Z-100 F100;G02 X0 Z-200 I-50;G01 X-50 F200;G01 Z0 F100;G02 X0 Z100 I50;G00 Z5.0”。

4. 最后,我们需要定义程序结束的指令,例如:“M30”。

完成上述步骤后,我们就可以将宏程序保存在机床控制器内部。

需要加工圆柱形工件时,我们只需要调用宏程序“CYLINDER”,即可自动完成加工过程。

总之,数控车床宏程序编程是一种非常实用的编程方式,能够大大提高机床操作的效率和精度。

通过本文的介绍,相信读者能够更加
深入地了解宏程序的编写方法和调用方式,为实际工作提供帮助。

数控车床宏程序案例上课讲义

数控车床宏程序案例上课讲义

数控车床宏程序案例由浅入深宏程序数控车床旋转正弦函数宏程序正弦函数曲线旋转宏程序坐标点旋转1s = x cos(b) – y sin(b)t = x sin(b) + y cos(b)根据下图,原来的点(#1,#2),旋转后的点(#4,#5),则公式:#4=#1*COS[b]- #2*SIN[b]#5=#1*SIN[b]+ #2*COS[b]公式中角度b,逆时针为正,顺时针为负。

下图中正弦曲线如果以其左边的端点为参考原点,则此条正弦曲线顺时针旋转了16度,即b=-16正弦函数旋转图纸1此正弦曲线周期为24,对应直角坐标系的360对应关系【0,360】 y=sin(x)【0,24】 y=sin(360*x/24)可理解为:360/24是单位数值对应的角度360*x/24是当变量在【0,24】范围取值为x时对应的角度sin(360*x/24)是当角度为360*x/24时的正弦函数值旋转正弦函数曲线粗精加工程序如下:T0101M3S800G0X52Z5#6=26 工件毛坯假设为50mm,#6为每层切削时向+X的偏移量。

N5 G0X[#6+18.539]G1Z0F0.1#1=48N10 #2=sin【360*#1/24】#4=#1*COS[-16]- #2*SIN[-16] 旋转30度之后对应的坐标值#5=#1*SIN[-16]+ #2*COS[-16]#7=#4-【50-3.875】坐标平移后的坐标。

#8=45+2*#5+#6G1X[#8]Z[#7]F0.1 沿小段直线插补加工#1=#1-0.5 递减0.5,此值越小,工件表面越光滑。

IF [#1 GE 0] GOTO 10 条件判断是否到达终点。

Z-50G1X52 直线插补切到工件外圆之外G0Z5#6=#6-2IF [#6 GE 0] GOTO 5G0X150Z150M5M30镂空立方体宏程序范例镂空立方体图纸及宏程序范例此零件六个面加工内容相同,在加工时,调面装夹时要注意考虑夹紧力。

数控车床宏程序案例

数控车床宏程序案例

由浅入深宏程序数控车床旋转正弦函数宏程序正弦函数曲线旋转宏程序坐标点旋转1s = x cos(b) – y sin(b)t = x sin(b) + y cos(b)根据下图,原来的点(#1,#2),旋转后的点(#4,#5),则公式:#4=#1*COS[b]- #2*SIN[b]#5=#1*SIN[b]+ #2*COS[b]公式中角度b,逆时针为正,顺时针为负。

下图中正弦曲线如果以其左边的端点为参考原点,则此条正弦曲线顺时针旋转了16度,即b=-16正弦函数旋转图纸1此正弦曲线周期为24,对应直角坐标系的360对应关系【0,360】 y=sin(x)【0,24】 y=sin(360*x/24)可理解为:360/24是单位数值对应的角度360*x/24是当变量在【0,24】范围取值为x时对应的角度sin(360*x/24)是当角度为360*x/24时的正弦函数值旋转正弦函数曲线粗精加工程序如下:T0101M3S800G0X52Z5#6=26 工件毛坯假设为50mm,#6为每层切削时向+X的偏移量。

N5 G0X[#6+18.539]G1Z0F0.1#1=48N10 #2=sin【360*#1/24】#4=#1*COS[-16]- #2*SIN[-16] 旋转30度之后对应的坐标值#5=#1*SIN[-16]+ #2*COS[-16]#7=#4-【50-3.875】坐标平移后的坐标。

#8=45+2*#5+#6G1X[#8]Z[#7]F0.1 沿小段直线插补加工#1=#1-0.5 递减0.5,此值越小,工件表面越光滑。

IF [#1 GE 0] GOTO 10 条件判断是否到达终点。

Z-50G1X52 直线插补切到工件外圆之外G0Z5#6=#6-2IF [#6 GE 0] GOTO 5G0X150Z150M5M30镂空立方体宏程序范例镂空立方体图纸及宏程序范例此零件六个面加工内容相同,在加工时,调面装夹时要注意考虑夹紧力。

G54数控宏程序教程(车床篇)讲解

G54数控宏程序教程(车床篇)讲解

由浅入深宏程序1-宏程序入门基础之销轴加工对于没有接触过宏程序人,觉得它很神秘,其实很简单,只要掌握了各类系统宏程序的基本格式,应用指令代码,以及宏程序编程的基本思路即可。

对于初学者,尤其是要精读几个有代表性的宏程序,在此基础上进行模仿,从而能够以此类推,达到独立编制宏程序的目的。

本教程将分步由浅入深的将宏程序讲解给大家,作者水平有限,也希望各位同仁提供更好的思路。

下面大家先看一个简单的车床的程序,图纸如下:要求用外圆刀切削一个短轴,这里只列举程序的前几步:T0101M3S800G0X82Z5G0X76G1Z-40F0.2X82G0Z5G0X72G1Z-40F0.2X82G0Z5G0X68G1Z-40F0.2X82G0Z5G0X68G1Z-40F0.2X82G0Z5........G0X40G1Z-40F0.2X82G0Z5G0X150Z150M5M30从上面程序可以看出,每次切削所用程序都只是切削直径X有变化,其他程序代码未变。

因此可以将一个变量赋给X,而在每次切削完之后,将其改变为下次切削所用直径即可。

T0101M3S800G0X82Z5#1=76赋初始值,即第一次切削直径N10 G0X[#1] 将变量赋给X,则X方向进刀的直径则为#1变量中实际存储值。

N10是程序G1Z-40F0.2 段的编号,用来标识本段,为后面循环跳转所用。

X82G0Z5#1=#1-4每行切深为2mm,直径方向递减4mmIF [#1GE40] GOGO 10如果#1 >= 40,即此表达式满足条件,则程序跳转到N10继续执行。

G0X150Z150 当不满足#1 >= 40,即#1<40,则跳过循环判断语句,由此句继续向后执行。

M5M30由浅入深宏程序2-宏程序之销轴粗精加工本篇文章利用宏程序简单模仿数控系统的外圆车削循环功能。

在此用前一篇的图纸与程序原程序:T0101M3S800G0X82Z5 粗加工开始#2=0.05 Z向的加工余量#3=0.5 外圆方向的加工余量#4=0.3 每层切削后的回退量#1=76+2*#3考虑了精加工余量的第一次切削直径N10 G0X[#1] 将变量赋给X,则X方向进刀的直径则为#1变量中实际存储值。

数控车床由浅入深的宏程序实例

数控车床由浅入深的宏程序实例

数控车床由浅入深的宏程序实例数控车床是现代机械加工领域中的一种高精度、高效率加工设备。

与传统的机械车床相比,数控车床不仅在加工精度和速度上有明显的优势,更为重要的是,它具备灵活多变的加工方式,充分适应各种复杂零件的加工需求。

而宏程序,作为数控车床加工中最为常用的编程方式之一,更是可以提高加工效率、简化加工工艺、保证加工质量等多个方面的优势。

本文将从浅入深,分别介绍数控车床宏程序的编写方法和实例。

一、基本概念宏程序是一种在数控机床上直接进行的加工操作指令序列。

它是由NC语言编写成的,常常用于完成较为简单的重复模式和复杂工件的加工,实现加工自动化。

通过宏程序编写,可以将较繁琐、复杂的加工操作转化为简单的编程操作,同时进一步提高加工精度和效率。

为了实现宏程序的编写,我们需要提前设定好工件坐标系、刀具的长度和半径、加工的切削速度、进给速度等参数,这些参数将会在宏程序的运行过程中派生出具体的加工路径。

二、编写方法1.确定加工参数在编写宏程序之前,我们需要明确加工零件所需的具体参数,包括切削速度、进给速度、划刀深度、工件坐标系等。

这些参数一旦确定,将成为宏程序编写的基础。

2.配置宏程序头每一份宏程序都需要设置头部信息,包括文件名、创建日期、作者、所在单位等。

这些信息一方面可以为以后的使用提供便利,同时也可以作为程序的基本属性进行管理和控制。

3.设置初调参数初调参数是指在程序运行前必须进行设置以保证加工成功的参数。

通常有复位、机床坐标系选择、刀具半径、工件相对坐标系设定等。

这些参数一旦设置好,将会对后续的加工过程产生重要的影响。

4.编写宏程序体宏程序体是指实际进行加工的NC语言命令组成的区域。

它根据预定义的加工参数,将加工路径进行编程,并且在运行时依次完成各个加工过程。

在编写宏程序体时,需要根据加工路径、刀具半径等参数进行具体调整和修改。

宏程序体可以是由多个程序段组成的序列,供后续加工流程使用。

5.结束宏程序宏程序在结束前需要进行清理性工作,包括退回初始点、关闭冷却液、跳转到下一程序等。

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例论文:数控机床宏程序编程的技巧和实例西北工业集团有限公司白锋刚2011年8月11日1前言随着工业技术的飞速发展,产品形状越来越复杂,精度要求越来越高,产品更新换代越来越快,传统的设备已不能适应新要求。

现在我国的制造业中已广泛地应用了数控车床、数控铣床、加工中心机床、数控磨床等数控机床。

这些先进设备的加工过程都需要由程序来控制,需要由拥有高技能的人来操作。

要发挥数控机床的高精度、高效率和高柔性,就要求操作人员具有优秀的编程能力。

常用的编程方法有手工编程和计算机编程。

计算机编程的应用已非常广泛。

与手工编程比较,在复杂曲面和型腔零件编程时效率高、质量好。

因此,许多人认为手工编程已不再重要,特别是比较难的宏程序编程也不再需要。

只须了解一些基本的编程规则就可以了。

这样的想法并不能全面。

因为,计算机编程也有许多不足:1、程序数据量大,传输费时。

2、修改或调整刀具补偿需要重新后置输出。

3、打刀或其他原因造成的断点时,很难及时复位。

手工编程是基础能力,是数控机床操作编程人员必须掌握的一种编程方法。

手工编程能力是计算机编程的基础,是刀具轨迹设计,轨迹修改,以及进行后置处理设计的依据。

实践证明,手工编程能力强的人在计算机编程中才能速度快,程序质量高。

在程序中使用变量,通过对变量进行赋值及处理使程序具有特殊功能,这种有变量的程序叫宏程序。

宏程序是数控系统厂家面向客户提供的的二次开发工具,是数控机床编程的最高级手工方式。

合理有效的利用这个工具将极大地提升机床的加工能力。

2作为一名从事数控车床、数控铣床、加工中心机床操作编程二十多年的技师,在平时的工作中,常常用宏程序来解决生产中的难题,因此对宏程序的编程使用积累了一些经验。

在传授指导徒弟和与同事探讨中,总结了许多学习编制宏程序应注意的要点。

有关宏编程的基础知识在许多书籍中讲过,我们在这里主要通过实例从编制技巧、要点上和大家讨论。

一、非圆曲面类的宏程序的编程技巧1、非圆曲面可以分为两类;(1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例

论文:数控机床宏程序编程的技巧和实例西北工业集团有限公司白锋刚2011年8月11日前言随着工业技术的飞速发展,产品形状越来越复杂,精度要求越来越高,产品更新换代越来越快,传统的设备已不能适应新要求。

现在我国的制造业中已广泛地应用了数控车床、数控铣床、加工中心机床、数控磨床等数控机床。

这些先进设备的加工过程都需要由程序来控制,需要由拥有高技能的人来操作。

要发挥数控机床的高精度、高效率和高柔性,就要求操作人员具有优秀的编程能力。

常用的编程方法有手工编程和计算机编程。

计算机编程的应用已非常广泛。

与手工编程比较,在复杂曲面和型腔零件编程时效率高、质量好。

因此,许多人认为手工编程已不再重要,特别是比较难的宏程序编程也不再需要。

只须了解一些基本的编程规则就可以了。

这样的想法并不能全面。

因为,计算机编程也有许多不足:1、程序数据量大,传输费时。

2、修改或调整刀具补偿需要重新后置输出。

3、打刀或其他原因造成的断点时,很难及时复位。

手工编程是基础能力,是数控机床操作编程人员必须掌握的一种编程方法。

手工编程能力是计算机编程的基础,是刀具轨迹设计,轨迹修改,以及进行后置处理设计的依据。

实践证明,手工编程能力强的人在计算机编程中才能速度快,程序质量高。

在程序中使用变量,通过对变量进行赋值及处理使程序具有特殊功能,这种有变量的程序叫宏程序。

宏程序是数控系统厂家面向客户提供的的二次开发工具,是数控机床编程的最高级手工方式。

合理有效的利用这个工具将极大地提升机床的加工能力。

作为一名从事数控车床、数控铣床、加工中心机床操作编程二十多年的技师,在平时的工作中,常常用宏程序来解决生产中的难题,因此对宏程序的编程使用积累了一些经验。

在传授指导徒弟和与同事探讨中,总结了许多学习编制宏程序应注意的要点。

有关宏编程的基础知识在许多书籍中讲过,我们在这里主要通过实例从编制技巧、要点上和大家讨论。

一、非圆曲面类的宏程序的编程技巧1、非圆曲面可以分为两类;(1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。

数控机床宏程序编程实例FANUC

数控机床宏程序编程实例FANUC

数控机床宏程序编程实例相关知识:用户宏程序是以变量的组合,通过各种算术和逻辑运算,转移和循环等命令,而编制的一种可以灵活运用的程序,只要改变变量的值,即可以完成不同的加工和操作。

用户宏程序可以简化程序的编制,提高工作效率。

宏程序可以像子程序一样用一个简单的指令调用。

宏程序分为A、B两类。

在一些较老的数控系统中采用A类宏程序,而现在常用的一些较为先进的数控系统中则采用B类程序。

本书主要介绍B类宏程序。

(一)变量在常规程序中,总是将一个具体的数值赋给一个地址,为了使程序更具有通用性,更加灵活,在宏程序中设置了变量。

1、变量的表示变量由变量符号#和后面的变量号组成:#i(i=1,2,3,…)。

例如#100,#110,#5等。

变量序号可用表达式,但表达式必须放在[ ]中。

例:#5,#109,#[100+#5 ]。

2、变量的引用将跟随在一个地址后的数值用一个变量来代替,即引入了变量。

例:G01 X#100 Z#101 F#102,当#100=25、#101=-30、#102=0.1时,上式即表示为G01 X25 Z-30 F0.1。

①用表达式指定变量,表达式要放在方括号里:G01 X[#1+#2] F#3。

②引用一个未定义变量时,在遇到地址字之前,该变量被忽略。

③要改变被引用变量的符号,在#前加负号G01 X-#1。

3、变量的类型变量分为局部变量、公共变量和系统变量三种。

①局部变量(#1~#33)局部变量是一个在宏程序中局部使用的变量,可以服务于不同的宏程序,在不同的宏程序中局部变量可以赋不同的值,相互之间不影响。

②公共变量(#100~#199,#500~#999)公共变量也叫通用变量,可在各级宏程序中被共同使用,即这一变量在不同程序级中调用时含义相同。

因此,一个宏程序中经计算得到的一个通用变量的数值,可以被另一个宏程序调用。

③系统变量(#1000~)系统变量用来读取和写入各种数控数据项,如当前位置和刀具偏置值,它的值决定于系统的状态。

数控车床编程实例详解(30个例子)(1).

数控车床编程实例详解(30个例子)(1).

车床编程实例一半径编程图3.1.1 半径编程%3110 (主程序程序名)N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转)N3 M98 P0003 L6 (调用子程序,并循环6 次)N4 G00 X16 Z1 (返回对刀点)N5 G36 (取消半径编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (子程序名)N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段)N3U3.215 W-39.877 R60 (加工R60 园弧段)N4 G02 U1.4 W-28.636 R40(加工切R40 园弧段)N5 G00 U4 (离开已加工表面)N6 W73.436 (回到循环起点Z 轴处)N7 G01 U-4.8 F100 (调整每次循环的切削量)N8 M99 (子程序结束,并回到主程序)直线插补指令编程图3.3.5 G01 编程实例%3305N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26 外圆)N5 U34 W-10 (切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)N10 M30 (主程序结束并复位)车床编程实例三圆弧插补指令编程%3308N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G00 X0 (到达工件中心)N4 G01 Z0 F60 (工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15 圆弧段)N6 G02 X26 Z-31 R5 (加工R5 圆弧段)N7 G01 Z-40 (加工Φ26 外圆)N8 X40 Z5 (回对刀点)N9 M30 (主轴停、主程序结束并复位图3.3.8 G02/G03 编程实例倒角指令编程图3.3.10.1 倒角编程实例%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10 (从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100 (倒3×45°直角)N40 W-22 R3 (倒R3 圆角)N50 U39 W-14 C3 (倒边长为3 等腰直角)N60 W-34 (加工Φ65 外圆)N70 G00 U5 W80 (回到编程规划起点)N80 M30 (主轴停、主程序结束并复位)车床编程实例五倒角指令编程%3310N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 X0 Z4 (到工件中心)N30 G01 W-4 F100 (工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26 外圆)N60 G02 U30 W-15 R15 RL=3(加工R15 圆弧,并倒边长为4 的直角)N70 G01 Z-70 (加工Φ56 外圆)N80 G00 U10 (退刀,离开工件)N90 X70 Z10 (返回程序起点位置)M30 (主轴停、主程序结束并复位)图3.3.10.2 倒角编程实例车床编程实例六圆柱螺纹编程螺纹导程为1.5mm,δ=1.5mm,δ'=1mm ,每次吃刀量(直径值)分别为0.8mm、0.6 mm 、0.4mm、0.16mm图3.3.12 螺纹编程实例%3312N1 G92 X50 Z120 (设立坐标系,定义对刀点的位置)N2 M03 S300 (主轴以300r/min 旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X 轴方向快退)N6 Z101.5 (Z 轴方向快退到螺纹起点处)N7 X28.6 (X 轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X 轴方向快退)N10 Z101.5 (Z 轴方向快退到螺纹起点处)N11 X28.2 (X 轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N13 G00 X40 (X 轴方向快退)N14 Z101.5 (Z 轴方向快退到螺纹起点处)N15 U-11.96 (X 轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40 (X 轴方向快退)N18 X50 Z120 (回对刀点)N19 M05 (主轴停)N20 M30 (主程序结束并复位)恒线速度功能编程%3314车床编程实例七图3.3.14 恒线速度编程实例N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0 (刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15 圆弧段)N7 G02 X26 Z-31 R5 (加工R5 圆弧段)N8 G01 Z-40 (加工Φ26 外圆)N9 X40 Z5 (回对刀点)N10 G97 S300 (取消恒线速度功能,设定主轴按300r/min 旋转)N11 M30 (主轴停、主程序结束并复位)车床编程实例八%3317M03 S400 (主轴以400r/min 旋转)G91 G80 X-10 Z-33 I-5.5 F100(加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30 (主轴停、主程序结束并复位)图3.3.17 G80 切削循环编程实例车床编程实例九G81 指令编程(点画线代表毛坯)图3.3.20 G81 切削循环编程实例%3320N1 G54 G90 G00 X60 Z45 M03 (选定坐标系,主轴正转,到循环起点)N2 G81 X25 Z31.5 K-3.5 F100 (加工第一次循环,吃刀深2mm)N3 X25 Z29.5 K-3.5 (每次吃刀均为2mm,)N4 X25 Z27.5 K-3.5 (每次切削起点位,距工件外圆面5mm,故K 值为-3.5)N5 X25 Z25.5 K-3.5 (加工第四次循环,吃刀深2mm)N6 M05 (主轴停)N7 M30 (主程序结束并复位车床编程实例十G82 指令编程(毛坯外形已加工完成)%3323N1 G55 G00 X35 Z104(选定坐标系G55,到循环起点)N2 M03 S300 (主轴以300r/min 正转)N3 G82 X29.2 Z18.5 C2 P180 F3(第一次循环切螺纹,切深0.8mm)N4 X28.6 Z18.5 C2 P180 F3(第二次循环切螺纹,切深0.4mm)N5 X28.2 Z18.5 C2 P180 F3(第三次循环切螺纹,切深0.4mm)N6 X28.04 Z18.5 C2 P180 F3(第四次循环切螺纹,切深0.16mm)N7 M30 (主轴停、主程序结束并复位)图3.3.23 G82 切削循环编程实例车床编程实例十一外径粗加工复合循环编制图3.3.27 所示零件的加工程序:要求循环起始点在A(46,3),切削深度为1.5mm(半径量)。

数控车床由浅入深的宏程序实例-精选.

数控车床由浅入深的宏程序实例-精选.
键盘输一.变量的种类
1.局部变量#133
一个在宏程序中局部使用的变量,其运算结果其他程序不可使用。
例: A宏程序 B宏程序
… …
#10=20 10 不表示X20
… …
断电后清空,调用宏程序时代入变量值
2. 公共变量。早期(#100149,#500531 )、新系统(#100199,#500999)
各用户宏程序内公用的变量 ,其运算结果任何程序调用都相同。
应用
以下都以#100和#101和#102,及数值10和20做为例子,应用的时候别把他们当格式就行,
基本指令
H01赋值;格式65H01101102:把#102内的数值赋予到#101中
G65H0110110:把#10赋予到#101中
H02加指令;格式G65 H02 101 102 103,把#102的数值加上#103的数值赋予#101
宏程序指令适合抛物线、椭圆、双曲线等没有插补指令的曲线编程;适合图形一样,只是尺寸不同的系列零件的编程;适合工艺路径一样,只是位置参数不同的系列零件的编程。较大地简化编程;扩展应用范围。
宏的分类
B类宏
由于现在B类宏程序的大量使用,很多书都进行了介绍这里我就不再重复了,但在一些老系统中,比如发那科()系统中由于它的键盘上没有公式符号,连最简单的等于号都没有,为此如果应用B类宏程序的话就只能在计算机上编好再通过32接口传输的数控系统中,可是如果我们没有机和32电缆的话怎么办呢,那么只有通过A类宏程序来进行宏程序编制了,下面我介绍一下A类宏的引用;
例:#1[1]/[-1]时,#1为了35.0
3) 用于语句中的地址,按各地址的最小设定单位进行四舍五入
例:设#1=1.2345,#2=2.3456,设定单位1μm

数控车床由浅入深的宏程序实例

数控车床由浅入深的宏程序实例

宏程序裳华职业技术中专鲍新涛宏程序概述其实说起来宏就是用公式来加工零件的,比如说椭圆,如果没有宏的话,我们要逐点算出曲线上的点,然后慢慢来用直线逼近,如果是个光洁度要求很高的工件的话,那么需要计算很多的点,可是应用了宏后,我们把椭圆公式输入到系统中然后我们给出Z坐标并且每次加10um那么宏就会自动算出X坐标并且进行切削,实际上宏在程序中主要起到的是运算作用。

.宏一般分为A类宏和B类宏。

A类宏是以G65 Hxx P#xx Q#xx R#xx的格式输入的,而B类宏程序则是以直接的公式和语言输入的和C语言很相似在0i系统中应用比较广。

宏程序的作用数控系统为用户配备了强有力的类似于高级语言的宏程序功能,用户可以使用变量进行算术运算、逻辑运算和函数的混合运算,此外宏程序还提供了循环语句、分支语句和子程序调用语句,利于编制各种复杂的零件加工程序,减少乃至免除手工编程时进行繁琐的数值计算,以及精简程序量。

宏程序指令适合抛物线、椭圆、双曲线等没有插补指令的曲线编程;适合图形一样,只是尺寸不同的系列零件的编程;适合工艺路径一样,只是位置参数不同的系列零件的编程。

较大地简化编程;扩展应用范围。

宏的分类B类宏由于现在B类宏程序的大量使用,很多书都进行了介绍这里我就不再重复了,但在一些老系统中,比如发那科(FANUC)OTD系统中由于它的MDI键盘上没有公式符号,连最简单的等于号都没有,为此如果应用B类宏程序的话就只能在计算机上编好再通过RSN-32接口传输的数控系统中,可是如果我们没有PC机和RSN-32电缆的话怎么办呢,那么只有通过A类宏程序来进行宏程序编制了,下面我介绍一下A类宏的引用;A类宏A类宏是用G65 Hxx P#xx Q#xx R#xx或G65 Hxx P#xx Qxx Rxx格式输入的,xx 的意思就是数值,是以um级的量输入的,比如你输入100那就是0.1MM.#xx就是变量号,变量号就是把数值代入到一个固定的地址中,固定的地址就是变量,一般OTD系统中有#0~#100~#149~#500~#531.关闭电源时变量#100~#149被初始化成“空”,而变量#500~#531保持数据.我们如果说#100=30那么现在#100地址内的数据就是30了,就是这么简单.好现在我来说一下H代码,大家可以看到A 类宏的标准格式中#xx和xx都是数值,而G65表示使用A类宏,那么这个H就是要表示各个数值和变量号内的数值或者各个变量号内的数值与其他变量号内的数值之间要进行一个什么运算,可以说你了解了H代码A类宏程序你基本就可以应用了,好,现在说一下H代码的各个含义:应用以下都以#100和#101和#102,及数值10和20做为例子,应用的时候别把他们当格式就行,基本指令H01赋值;格式:G65H01P#101Q#102:把#102内的数值赋予到#101中G65H01P#101Q#10:把#10赋予到#101中H02加指令;格式G65 H02 P#101 Q#102 R#103,把#102的数值加上#103的数值赋予#101G65 H02 P#101 Q#102 R10G65 H02 P#101 Q10 R#103G65 H02 P#101 Q10 R20上面4个都是加指令的格式都是把Q后面的数值或变量号内的数值加上R后面的数值或变量号内的数值然后等于到P后面的变量号中.H03减指令;格式G65 H03 P#101 Q#102 R#103,把#102的数值减去#103的数值赋予#101G65 H03 P#101 Q#102 R10G65 H03 P#101 Q10 R#103G65 H03 P#101 Q20 R10上面4个都是减指令的格式都是把Q后面的数值或变量号内的数值减去R后面的数值或变量号内的数值然后等于到P后面的变量号中.H04乘指令;格式G65 H04 P#101 Q#102 R#103,把#102的数值乘上#103的数值赋予#101G65 H04 P#101 Q#102 R10G65 H04 P#101 Q10 R#103G65 H04 P#101 Q20 R10上面4个都是乘指令的格式都是把Q后面的数值或变量号内的数值乘上R后面的数值或变量号内的数值然后等于到P后面的变量号中.H05除指令;格式G65 H05P#101 Q#102 R#103,把#102的数值除以#103的数值赋予#101G65 H05 P#101 Q#102 R10G65 H05 P#101 Q10 R#103G65 H05 P#101 Q20 R10上面4个都是除指令格式都是把Q后面的数值或变量号内的数值除以R后面的数值或变量号内的数值然后等于到P后面的变量号中.(余数不存,除数如果为0的话会出现112报警)三角函数指令H31 SIN正玄函数指令:格式G65 H31 P#101 Q#102 R#103;含义Q后面的#102是三角形的斜边R后面的#103内存的是角度.结果是#101=#102*SIN#103,也就是说可以直接用这个求出三角形的另一条边长.和以前的指令一样Q和R后面也可以直接写数值.H32 COS余玄函数指令:格式G65 H32 P#101 Q#102 R#103;含义Q后面的#102是三角形的斜边R后面的#103内存的是角度.结果是#101=#102*COS#103,也就是说可以直接用这个求出三角形的另一条边长.和以前的指令一样Q和R后面也可以直接写数值.H33和H34本来应该是TAN 和ATAN的可是经过我使用得数并不准确,希望有知道的人能够告诉我是为什么?开平方根指令H21;格式G65 H21 P#101 Q#102 ;意思是把#102内的数值开了平方根然后存到#101中(这个指令是非常重要的如果在车椭圆的时候没有开平方根的指令是没可能用宏做到的.无条件转移指令H80;格式:G65 H80 P10 ;直接跳到第10程序段有条件转移指令H81 H82 H83 H84 H85 H86 ,分别是等于就转的H81;不等于就转的H82;小于就转的H83;大于就转的H84;小于等于就转的H85;大于等于就转的H86;格式:G65 H8x P10 Q#101 R#102;将#101内的数值和#102内的数值相比较,按上面的H8x的码带入H8x中去,如果条件符合就跳到第10程序段,如果不符合就继续执行下面的程序段.4B类宏程序定义能完成某一功能的一系列指令像子程序那样存入存储器,用户可以设定M、S、T、G代码调用它们,使用时只需给出这个指令代码就能执行其功能,也可以像调用子程序一样使用。

数控机床宏程序例题

数控机床宏程序例题

由浅入深宏程序10-车床旋转正弦函数宏程序正弦函数曲线旋转宏程序坐标点旋转1s = x cos(b) – y sin(b)t = x sin(b) + y cos(b)根据下图,原来的点(#1,#2),旋转后的点(#4,#5),则公式:#4=#1*COS[b]- #2*SIN[b]#5=#1*SIN[b]+ #2*COS[b]公式中角度b,逆时针为正,顺时针为负。

下图中正弦曲线如果以其左边的端点为参考原点,则此条正弦曲线顺时针旋转了16度,即b=-16正弦函数旋转图纸1此正弦曲线周期为24,对应直角坐标系的360对应关系【0,360】 y=sin(x)【0,24】 y=sin(360*x/24)可理解为:360/24是单位数值对应的角度360*x/24是当变量在【0,24】范围取值为x时对应的角度sin(360*x/24)是当角度为360*x/24时的正弦函数值旋转正弦函数曲线粗精加工程序如下:T0101M3S800G0X52Z5#6=26 工件毛坯假设为50mm,#6为每层切削时向+X的偏移量。

N5 G0X[#6+18.539]G1Z0F0.1#1=48N10 #2=sin【360*#1/24】#4=#1*COS[-16]- #2*SIN[-16] 旋转30度之后对应的坐标值#5=#1*SIN[-16]+ #2*COS[-16]#7=#4-【50-3.875】坐标平移后的坐标。

#8=45+2*#5+#6G1X[#8]Z[#7]F0.1 沿小段直线插补加工#1=#1-0.5 递减0.5,此值越小,工件表面越光滑。

IF [#1 GE 0] GOTO 10 条件判断是否到达终点。

Z-50G1X52 直线插补切到工件外圆之外G0Z5#6=#6-2IF [#6 GE 0] GOTO 5G0X150Z150M5M30镂空立方体宏程序范例镂空立方体图纸及宏程序范例此零件六个面加工内容相同,在加工时,调面装夹时要注意考虑夹紧力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宏程序裳华职业技术中专鲍新涛宏程序概述其实说起来宏就是用公式来加工零件的,比如说椭圆,如果没有宏的话,我们要逐点算出曲线上的点,然后慢慢来用直线逼近,如果是个光洁度要求很高的工件的话,那么需要计算很多的点,可是应用了宏后,我们把椭圆公式输入到系统中然后我们给出Z坐标并且每次加10um那么宏就会自动算出X坐标并且进行切削,实际上宏在程序中主要起到的是运算作用。

.宏一般分为A类宏和B类宏。

A类宏是以G65 Hxx P#xx Q#xx R#xx的格式输入的,而B类宏程序则是以直接的公式和语言输入的和C语言很相似在0i系统中应用比较广。

宏程序的作用数控系统为用户配备了强有力的类似于高级语言的宏程序功能,用户可以使用变量进行算术运算、逻辑运算和函数的混合运算,此外宏程序还提供了循环语句、分支语句和子程序调用语句,利于编制各种复杂的零件加工程序,减少乃至免除手工编程时进行繁琐的数值计算,以及精简程序量。

宏程序指令适合抛物线、椭圆、双曲线等没有插补指令的曲线编程;适合图形一样,只是尺寸不同的系列零件的编程;适合工艺路径一样,只是位置参数不同的系列零件的编程。

较大地简化编程;扩展应用范围。

宏的分类B类宏由于现在B类宏程序的大量使用,很多书都进行了介绍这里我就不再重复了,但在一些老系统中,比如发那科(FANUC)OTD系统中由于它的MDI键盘上没有公式符号,连最简单的等于号都没有,为此如果应用B类宏程序的话就只能在计算机上编好再通过RSN-32接口传输的数控系统中,可是如果我们没有PC机和RSN-32电缆的话怎么办呢,那么只有通过A类宏程序来进行宏程序编制了,下面我介绍一下A类宏的引用;A类宏A类宏是用G65 Hxx P#xx Q#xx R#xx或G65 Hxx P#xx Qxx Rxx格式输入的,xx 的意思就是数值,是以um级的量输入的,比如你输入100那就是0.1MM.#xx就是变量号,变量号就是把数值代入到一个固定的地址中,固定的地址就是变量,一般OTD系统中有#0~#100~#149~#500~#531.关闭电源时变量#100~#149被初始化成“空”,而变量#500~#531保持数据.我们如果说#100=30那么现在#100地址内的数据就是30了,就是这么简单.好现在我来说一下H代码,大家可以看到A 类宏的标准格式中#xx和xx都是数值,而G65表示使用A类宏,那么这个H就是要表示各个数值和变量号内的数值或者各个变量号内的数值与其他变量号内的数值之间要进行一个什么运算,可以说你了解了H代码A类宏程序你基本就可以应用了,好,现在说一下H代码的各个含义:应用以下都以#100和#101和#102,及数值10和20做为例子,应用的时候别把他们当格式就行,基本指令H01赋值;格式:G65H01P#101Q#102:把#102内的数值赋予到#101中G65H01P#101Q#10:把#10赋予到#101中H02加指令;格式G65 H02 P#101 Q#102 R#103,把#102的数值加上#103的数值赋予#101G65 H02 P#101 Q#102 R10G65 H02 P#101 Q10 R#103G65 H02 P#101 Q10 R20上面4个都是加指令的格式都是把Q后面的数值或变量号内的数值加上R后面的数值或变量号内的数值然后等于到P后面的变量号中.H03减指令;格式G65 H03 P#101 Q#102 R#103,把#102的数值减去#103的数值赋予#101G65 H03 P#101 Q#102 R10G65 H03 P#101 Q10 R#103G65 H03 P#101 Q20 R10上面4个都是减指令的格式都是把Q后面的数值或变量号内的数值减去R后面的数值或变量号内的数值然后等于到P后面的变量号中.H04乘指令;格式G65 H04 P#101 Q#102 R#103,把#102的数值乘上#103的数值赋予#101G65 H04 P#101 Q#102 R10G65 H04 P#101 Q10 R#103G65 H04 P#101 Q20 R10上面4个都是乘指令的格式都是把Q后面的数值或变量号内的数值乘上R后面的数值或变量号内的数值然后等于到P后面的变量号中.H05除指令;格式G65 H05P#101 Q#102 R#103,把#102的数值除以#103的数值赋予#101G65 H05 P#101 Q#102 R10G65 H05 P#101 Q10 R#103G65 H05 P#101 Q20 R10上面4个都是除指令格式都是把Q后面的数值或变量号内的数值除以R后面的数值或变量号内的数值然后等于到P后面的变量号中.(余数不存,除数如果为0的话会出现112报警)三角函数指令H31 SIN正玄函数指令:格式G65 H31 P#101 Q#102 R#103;含义Q后面的#102是三角形的斜边R后面的#103内存的是角度.结果是#101=#102*SIN#103,也就是说可以直接用这个求出三角形的另一条边长.和以前的指令一样Q和R后面也可以直接写数值.H32 COS余玄函数指令:格式G65 H32 P#101 Q#102 R#103;含义Q后面的#102是三角形的斜边R后面的#103内存的是角度.结果是#101=#102*COS#103,也就是说可以直接用这个求出三角形的另一条边长.和以前的指令一样Q和R后面也可以直接写数值.H33和H34本来应该是TAN 和ATAN的可是经过我使用得数并不准确,希望有知道的人能够告诉我是为什么?开平方根指令H21;格式G65 H21 P#101 Q#102 ;意思是把#102内的数值开了平方根然后存到#101中(这个指令是非常重要的如果在车椭圆的时候没有开平方根的指令是没可能用宏做到的.无条件转移指令H80;格式:G65 H80 P10 ;直接跳到第10程序段有条件转移指令H81 H82 H83 H84 H85 H86 ,分别是等于就转的H81;不等于就转的H82;小于就转的H83;大于就转的H84;小于等于就转的H85;大于等于就转的H86;格式:G65 H8x P10 Q#101 R#102;将#101内的数值和#102内的数值相比较,按上面的H8x的码带入H8x中去,如果条件符合就跳到第10程序段,如果不符合就继续执行下面的程序段.4B类宏程序定义能完成某一功能的一系列指令像子程序那样存入存储器,用户可以设定M、S、T、G代码调用它们,使用时只需给出这个指令代码就能执行其功能,也可以像调用子程序一样使用。

这样的程序也称作用户宏程序l 调用宏程序的指令————宏指令l 特点:使用变量变量的表示和使用(一)变量表示#I(I=1,2,3,…)或#[<式子>]例:#5,#109,#501,#[#1+#2-12](二)变量的使用1.地址字后面指定变量号或公式格式:<地址字>#I这里的“I”代表变量号例:F#103,设#103=15 则为F15Z-#110,设#110=250 则为Z-250X[#24+#18*COS[#1]]2.变量号可用变量代替例:#[#30],设#30=3 则为#33.变量不能使用地址O,N,I例:下述方法下允许O#1;I#2 6.00×100.0;N#3 Z200.0;4.变量号所对应的变量,对每个地址来说,都有具体数值范围例:#30=1100时,则M#30是不允许的5.#0为空变量,没有定义变量值的变量也是空变量6.变量值定义:程序定义时可省略小数点,例:#123=149MDI键盘输一.变量的种类1. 局部变量#1~#33一个在宏程序中局部使用的变量,其运算结果其他程序不可使用。

例:A宏程序B宏程序……#10=20 X#10 不表示X20……断电后清空,调用宏程序时代入变量值2. 公共变量。

早期(#100~#149,#500~#531 )、新系统(#100~#199,#500~#999)各用户宏程序内公用的变量,其运算结果任何程序调用都相同。

例:上例中#10改用#100时,B宏程序中的X#100表示X20#100~#149 断电后清空#500~#531保持型变量(断电后不丢失)3. 系统变量固定用途的变量,其值取决于系统的状态例:#2001值为1号刀补X轴补偿值#5221值为X轴G54工件原点偏置值入时必须输入小数点,小数点省略时单位为μm运算指令运算式的右边可以是常数、变量、函数、式子式中#j,#k也可为常量式子右边为变量号、运算式1.定义#I=#j2.算术运算#I=#j+#k#I=#j-#k#I=#j*#k#I=#j/#k3.逻辑运算#I=#JOK#k#I=#JXOK#k#I=#JAND#k4.函数#I=SIN[#j] 正弦#I=COS[#j] 余弦#I=TAN[#j] 正切#I=ATAN[#j] 反正切#I=SQRT[#j] 平方根#I=ABS[#j] 绝对值#I=ROUND[#j] 四舍五入化整#I=FIX[#j] 上取整#I=FUP[#j] 下取整#I=BIN[#j] BCD→BIN(二进制)#I=BCN[#j] BIN→BCD1.说明1) 角度单位为度例:90度30分为90.5度2) ATAN函数后的两个边长要用“/ ”隔开例:#1=ATAN[1]/[-1]时,#1为了35.03) ROUND用于语句中的地址,按各地址的最小设定单位进行四舍五入例:设#1=1.2345,#2=2.3456,设定单位1μmG91 X-#1;X-1.235X-#2 F300;X-2.346X[#1+#2];X3.580未返回原处,应改为X[ROUND[#1]+ROUND[#2]];4) 取整后的绝对值比原值大为上取整,反之为下取整例:设#1=1.2,#2=-1.2时若#3=FUP[#1]时,则#3=2.0若#3=FIX[#1]时,则#3=1.0若#3=FUP[#2]时,则#3=-2.0若#3=FIX[#2]时,则#3=-1.05) 指令函数时,可只写开头2个字母例:ROUND→ROFIX→FI6) 优先级函数→乘除(*,1,AND)→加减(+,-,OR,XOR)例:#1=#2+#3*SIN[#4];7) 括号为中括号,最多5重,园括号用于注释语句例:#1=SIN[[[#2+#3]*#4+#5]*#6];(3重)转移与循环指令1.无条件的转移格式:GOTO 1;GOTO #10;2.条件转移格式:IF[<条件式>] GOTO n条件式:#j EQ#k 表示=#j NE#k 表示≠#j GT#k 表示>#j LT#k 表示<#j GE#k 表示≥#j LE#k 表示≤例:IF[#1 GT 10] GOTO 100;…N100 G00 G91 X10;例:求1到10之和O9500;#1=0#2=1N1 IF [#2 GT10] GOTO 2#1=#1+#2;#2=#2+1;GOTO 1N2 M301.循环格式:WHILE[<条件式>]DO m;(m=1,2,3)………ENDm说明:1.条件满足时,执行DOm到ENDm,则从DOm的程序段不满足时,执行DOm到ENDm的程序段2.省略WHILE语句只有DOm…ENDm,则从DOm到ENDm之间形成死循环3.嵌套4.EQ NE时,空和“0”不同其他条件下,空和“0”相同例:求1到10之和O0001;#1=0;#2=1;WHILE [#2LE10] DO1;#1=#1+#2;#2=#2+#1;END1;M30由浅入深宏程序1-宏程序入门基础之销轴加工对于没有接触过宏程序人,觉得它很神秘,其实很简单,只要掌握了各类系统宏程序的基本格式,应用指令代码,以及宏程序编程的基本思路即可。

相关文档
最新文档