高考数学模拟试题及答案.pdf

合集下载

湖南省常德市2024届高三高考模拟数学试题含答案

湖南省常德市2024届高三高考模拟数学试题含答案

常德市高2024届高三高考模拟试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|,}230A x mx m =->∈R ,其中2A ∈且1A ∉,则实数m 的取值范围是( )A.33,42⎛⎤ ⎥⎝⎦B.33,42⎡⎫⎪⎢⎣⎭C.33,42⎛⎫ ⎪⎝⎭D.33,42⎡⎤⎢⎥⎣⎦2.已知复数πcos6z =+=( )3.平面向量a ,b 满足1b a b =⋅=,则a 在b 方向上的投影向量为( )A.12b - b C.b - D.b4. 将函数()cos 2fx x =的图象向右平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x ,x 12minx -==( )21(0)4y a +=>的焦距为2,则该椭圆的离心率为( )6. 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是( )(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.6寸B.4寸C.3寸D.2寸7. 已知等差数列{}n a 的首项为1,公差不为0,若2a ,3a ,6a 成等比数列,则{}n a 的第5项为( ) A .9- B .7-C .7-或1D .9-或18.如图,已知M 为双曲线E :()222210,0x y a b a b-=>>上一动点,过M 作双曲线E 的切线交x 轴于点A ,过点A 作AD OM ⊥于点D ,22OD OM b ⋅=,则双曲线E 的离心率为( )B.2D.2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1z ,2z 是两个虚数,则下列结论中正确的是( ) A.若12z z =,则12z z +与12z z 均为实数 B.若12z z +与12z z 均为实数,则12z z = C.若1z ,2z 均为纯虚数,则12z z 为实数 D.若12z z 为实数,则1z ,2z 均为纯虚数 10.已知非零函数()f x 的定义域为R ,()1f x +为奇函数,且()()22f x f x +=-,则()A.()10f =B.4是函数()f x 的一个周期C.()()11f x f x +=---D.()y f x =在区间[]0,2024上至少有1012个零点11.已知6ln m m a =+,6nn e a =+,其中n m e ≠,则n m e +的取值可以是( )A.eB.2eC.23eD.24e三、填空题:本题共3小题,每小题5分,共15分.12.241(1)(2)x x x+-的展开式中常数项为__________. 13. 在公差为正数的等差数列{}n a 中,若13a =,3a ,6a ,832a 成等比数列,则数列{}n a 的前10项和为___________.14.已知圆()22:21220C mx m y ax a +----=,若对于任意的a ∈R ,存在一条直线被圆C 所截得的弦长为定值n ,则m n +=__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足1sin sin cos cos A BA B-=.(1)求证:22A B π+=;(2)求222a b c+的最小值.16. (15分)如图1,菱形ABCD 2BD =,将其沿BD 折叠形成如图2所示的三棱锥A BCD -.(1)证明:三棱锥A BCD -中,BD AC ⊥;(2)当点A 在平面BCD 的投影为BCD △的重心时,求直线AC 与平面BCD 所成角的正弦值.17.(15221(0)y a b b+=>>的左顶点为A ,右焦点为F ,椭圆C 上的点到F 的31,2⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)设过点F 的直线l 与C 相交于M ,N 两点,直线l 的倾斜角为锐角.若点31,2P ⎛⎫⎪⎝⎭到直线l 与18.(17分)在一场乒乓球赛中,甲、乙、丙、丁四人角逐冠军.比赛采用“双败淘汰制”,具体赛制为:首先,四人通过抽签两两对阵,胜者进入“胜区”,败者进入“败区”;接下来,“胜区”的两人对阵,胜者进入最后决赛;“败区”的两人对阵,败者直接淘汰出局获利第四名,紧接着,“败区”的胜者和“胜区”的败者对阵,胜者晋级最后的决赛,败者获得第三名;最后,剩下的两人进行最后的冠军决赛,胜者获得冠军,败者获利第二名.甲对阵乙、丙、丁获胜的概率均为()01p p <<,且不同对阵的结果相互独立. (1)若0.6p =,经抽签,第一轮由甲对阵乙,丙对阵丁; ①求甲获得第四名的概率;②求甲在“双败淘汰制”下参与对阵的比赛场数的数学期望;(2)除“双败淘汰制”外,也经常采用“单败淘汰制”:抽签决定两两对阵,胜者晋级,败者淘汰,直至决出最后的冠军.哪种赛制对甲夺冠有利?请说明理由.19.(17分)罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔·罗尔于1691年提出的.它的表达如下:如果函数()f x 满足在闭区间[,]a b 连续,在开区间(,)a b 内可导,且()()f a f b =,那么在区间(,)a b 内至少存在一点m ,使得()0f m '=.(1)运用罗尔定理证明:若函数()f x 在区间[],a b 连续,在区间(,)a b 上可导,则存在0(,)x a b ∈,使得21,()12x g x x bx =-+,若对于区间(1,2)内任意两个不相等的实数1x ,2x ,都有1212|()()||()()|f x f x g x g x ->-成立,求实数b 的取值范围.(3)证明:当1p >,n ≥11111[]1(1)p p p n n--<---.2024数学参考答案1. A2. C3. D4. A5. C6. C7. B8. B9. ABC 10. ABD 11. CD 12. 16 13. 165 14.1或115.(1)由1sin sin cos cos A B A B -=知,2A π≠即sin cos cos sin cos A B A B B +=,∴()sin cos sin 2A B B B π⎛⎫+==-⎪⎝⎭∴2A B B π+=-,即22A B π+=,得证.(2)由(1)知22A B π=-,2C B π=+∴()22222222222cos11cos cos 2sincos cos B Ba b B B c BB-+-++==∴2222224cos 55cos a b B c B +=+-≥当且仅当2cos 2B =时,222a b c +取最小值516. (1)记BD 的中点为E ,由菱形的性质,有AD AB =,CD CB =,所以AE BD ⊥,CE BD ⊥. 而AE 和CE 在平面ACE 内交于点E ,故BD 垂直于平面ACE . 又因为AC 在平面ACE 内,所以BD AC ⊥.(2)设BCD △的重心为点G ,则AG 垂直于平面BCD .这表明直线AC 与平面BCD 所成角等于ACG ∠,故所求正弦值即为sin ACG ∠的值.由于2CE ==,2AE =,故2433CG CE ===,42233EG CE CG =-=-=.从而3AG ===,故sin AGACH AC∠=====.所以直线AC 与平面BCD所成角的正弦值是3. 17.(1)由题意知a c +=, 得22223a ac c b ++=,由222a b c =+, 得2222233a ac c a c ++=-,化简得2a c =,所以b =,又因为椭圆过点31,2P ⎛⎫⎪⎝⎭,2914b =, 29112c +=,解得1c =.所以2a =,b =213y =. (2)设直线l 的方程为1x my =+,()0m >. 由点31,2P ⎛ ⎝=2=. 联立2221143x y x y =+⎧⎪⎨+=⎪⎩,整理得2161290y y +-=.设()11,M x y ,()22,N x y ,则12y y +=12y y =所以直线PM 与直线PN 的斜率的和为1212121212123333322221011224y y y y y y x x y y y y ----++=+=-⋅=--, 18.(1)①记“甲获得第四名”为事件A ,则()()210.60.16P A =-=; ②记在甲在“双败淘汰制”下参与对阵的比赛场次为随机变量X , 则X 的所有可能取值为2,3,4,连败两局:()()2210.60.16P X ==-=,3X =可以分为:连胜两局,第三局不管胜负;负胜负;胜负负;()()()()()230.610.60.610.60.610.610.60.552P X ==+-⨯⨯-+⨯-⨯-=, ()()()410.60.60.60.610.60.60.288P X ==-⨯⨯+⨯-⨯=;故X 的分布列如下:故数学期望()20.1630.55240.288 3.128E X =⨯+⨯+⨯=;(2)“双败淘汰制”下,甲获胜的概率()()()32331132P p p p p p p p p =+-+-=-,在“单败淘汰制”下,甲获胜的概率为2p ,由()()()()3222232321211p p p p p p p p p --=--=--,且01p <<所以1,12p ⎛⎫∈ ⎪⎝⎭时,()3232p p p ->,“双败淘汰制”对甲夺冠有利;10,2p ⎛⎫∈ ⎪⎝⎭时,()3232p p p -<,“单败淘汰制”对甲夺冠有利;()bt f a at =-,令函数()()F x f x tx =-,则()()F a F b =,()()F x f x t ''=-,显然()F x 在[],a b 上连续,且在(,)a b 上可导,由罗尔定理,存在0(,)x a b ∈,使得0()0F x '=, 即0)(0f x t '-=,所以0()f x '=(2)依题意,()ln 1,()f x x g x x b ''=+=-, 不妨令12x x >,则12121212()()()()||||f x f x g x g x x x x x -->--恒成立,由(1)得|()||()|f x g x ''>,(1,2)x ∈,于是ln 1||x x b +>-,即1ln ln 1x b x x --<-<+, 因此ln 1ln 1x x b x x --<<++,令()ln 1(12)x x x x ϕ=--<<, 求导得1()0x x xϕ-'=>,函数()x ϕ在(1,2)上单调递增,则0()1ln 2x ϕ<<-, 而函数ln 1y x x =++在(1,2)上单调递增,其值域为(2,3ln 2)+, 则1ln 22b -≤≤,所以实数b 的取值范围是1ln 22b -≤≤.(3)令函数1()p h x x -=,[1,]x n n ∈-,显然函数()h x 在(1,)n n -上可导, 由(1),存在(1,)c n n ∈-,使得()h c '=又()(1)p h x p x -'=-⋅11()(1)pp h c p c n--'-=-=-,1111[](1)p p n n ---=-1n c n ≤-<<,1p >,则p c n <>11111[]1(1)p p p n n--<---.。

数学高考模拟试题及答案

数学高考模拟试题及答案

数学高考模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 若f(x) = 2x - 3,求f(5)的值:A. 1B. 4C. 7D. 103. 已知等差数列的前三项为2, 5, 8,求第10项的值:A. 21B. 22C. 23D. 244. 圆的半径为5,求其面积:A. 25πB. 50πC. 75πD. 100π5. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (0, 3)C. (3, 0)D. (1, 0)6. 函数y = x^3 - 6x^2 + 9x + 2的极值点是:A. x = 1B. x = 2C. x = 3D. x = 47. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 已知三角形ABC,∠A = 60°,AB = 2,AC = 3,求BC的长度:A. 1B. 2√3C. 3D. 410. 根据题目所给的二项式定理,求(a + b)^5展开式的通项公式:A. T_n = C_5^n a^n b^(5-n)B. T_n = C_5^n a^(5-n) b^nC. T_n = C_5^n a^(4-n) b^nD. T_n = C_5^n a^n b^(4-n)二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值:________。

12. 若sin(θ) = 0.6,求cos(θ)的值:________。

13. 已知函数f(x) = x^2 - 4x + 3,求其对称轴:________。

全国卷高考数学模拟卷(含答案)

全国卷高考数学模拟卷(含答案)

全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交。

一、选择题:1.已知集合A={x|x-1>0}。

B={-2.2-1.1},则A∩B=?A。

{-2.-1} B。

{-2} C。

{-1.1} D。

{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。

-12/55+i/55 B。

-12/55-i/55 C。

12-i/55 D。

-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。

4-2√7/27 B。

4-√7/3 C。

4+√7/3 D。

4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。

(y-2)^2/9 - x^2/4 = 1 B。

x^2/9 - (y-2)^2/4 = 1 C。

-x^2/9 + (y-2)^2/4 = 1 D。

(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。

56-8π/3 B。

64-8π/3 C。

64-4π/3 D。

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。

答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。

2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。

答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。

3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。

答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。

4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。

答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。

5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。

答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。

二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。

答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。

山东省高考数学模拟考试试题及答案.pdf

山东省高考数学模拟考试试题及答案.pdf

的通项 an = 3n −16 , k = 4 ,同理②不存在,③ m.cksdu 牛逼 k = 4
18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60° (2)设 AC=4x(想想为什么不直接设为 x?),将三角形 CFB 三边表示出来,再用余
弦定理, 5 17 51
19. (1)取 SB 中点 M,易知 AM//EF,且 MAB=45°,可得 AS=AB,易证 AM⊥面 SBC, 进一步得证
C 6. 画个图,一目了然,A 7. 关键是把“所有”翻译成“任取”,C 8. 用 6、4、2 特值即可(更高级的,可以用极限特值 8-、4、2,绝招班里有讲),B 二、多项选择题 9. 这个,主要考语文,AD
10.
注意相同渐近线的双曲线设法,
x2 a2

y2 b2
=
,D
选项可用头哥口诀(直线平方……)
AC 11. B 选项构造二面平行,C 选项注意把面补全为 AEFD1(也可通过排除法选出),D 选项
CG 中点明显不在面上,BC 12. 利用函数平移的思想找对称中心,ABC 三、填空题 13. 确定不是小学题?36
14. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以, − 4 5
4
4
(2)单一关参模型,条件转化为 AB=CD=1(绝招班里有讲),剩下就是计算了,无解, 所以不存在 22. (1)送分的(求导可用头哥口诀),7
(2)考求导,没啥意思,注意定义域,单增 (0, +)
(3)有点意思,详细点写
由递推公式易知 an 1
( )( ) 由 an+1 −
7 = an + 7 − an +1

2023年高考数学模拟试题及参考答案

2023年高考数学模拟试题及参考答案

2023年高考数学模拟试题及参考答案一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.如果a>b>0,c>d>0,则下列不等式中不.正确的是( )A.a-d>b-c B.ad>bcC.a+d>b+c D.ac>bd【答案】C【解析】可利用不等式的基本性质一一验证.由已知及不等式的性质可得a+c>b+d,即a-d>b-c,所以A正确;由c>d>0,得1d>1c>0,又a>b>0,所以ad>bc,即B正确;显然D正确.2.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=( )A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}【答案】C【解析】借助数轴可得{x|2<x<3}.3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是( )A.4 B.3 C.2 D.1【答案】C【解析】函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2,故选C.4.已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>b>c B.b>c>aC.c>b>a D.a>c>b【答案】D【解析】a=60.7>60=1,c=0.80.7>0.70.7>0.70.8=b,且c=0.80.7<0.80=1,所以a>c>b.5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=( )A.-1 B.0 C.1 D.3【答案】B【解析】等差数列中,设S2=a1+a2=x,则a3+a4=S4-S2=4-x,a 5+a 6=S 6-S 4=8,则S 2,S 4-S 2,S 6-S 4仍成等差数列,所以2(4-x )=x +8,解得x =0,即S 2=0故选B.6.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( )A. 2 B .2-2 C.2-1D.2+1【答案】C 【解析】由点到直线的距离公式知d =|a -2+3|2=|a +1|2=1, 得a =-1± 2.又∵a >0,∴a =2-1.7.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【答案】B【解析】根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 8.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59 C .59 D .53【答案】A【解析】利用同角三角函数的基本关系及二倍角公式求解.∵sin α+cos α=33,∴(sin α+cos α)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0,∴2kα+α2<α<2kα+34α(k∈Z),∴4kα+α<2α<4kα+32α(k ∈Z),∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310 B.15 C.110D.112【答案】A【解析】随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为3或6的结果为{}1,2,{}1,5,{}2,4,共3种,故所求答案为A.10.若实数x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为( )A .3B .4C .6D .8 【答案】B【解析】作出满足不等式⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示,作直线l 1:2y -2x =t ,当l 1经过B (1,1)时,z min =2×1-2×1+4=4.故选B.11.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( ) A .33 B . 3 C .-33D .-3 【答案】B【解析】∵a ∥b ,∴sin θ-3cos θ=0,即sin θ=3cos θ.故tan θ= 3.12.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π-22C .π6 D .4-π4【答案】D【解析】如图所示,区域D 是正方形OABC ,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,所以所求事件的概率P =4-π4.13.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( ) A .T =π,M =1 B .T =2π,M =1 C .T =π, M =2 D .T =2π,M =2【答案】A【解析】由于三角函数y =A sin(ωx +φ)+B (A >0,ω>0)的最小正周期T =2αω,最大值为A +B ;∴函数y =2sin2x -1的最小正周期T =2α2=α,最大值M =2-1=1.14.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C【解析】∵n ⊥β,且α,β交于直线l .l ⊂β,∴n ⊥l .15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5 【答案】A【解析】一组数据x 1,x 2,x 3…,x n 的平均值为2,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均数是2×2+1=5;又数据x 1,x 2,x 3,…x n 的方差为1,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的方差是22×1=4,故选A.二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上)16.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.【答案】15【解析】由题意知,青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.17.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是________米.【答案】1.76【解析】由小到大排列为1.69,1.72,1.75, 1.77,1.78, 1.80.中位数是1.75+1.772=1.76.18.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________.【答案】6766升【解析】设最上面一节的容积为a 1,公差为d ,则有⎩⎨⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4.即⎩⎨⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎪⎨⎪⎧a 1=1322,d =766,则a 5=6766,故第5节的容积为6766升.19.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 【答案】4【解析】∵A ,B ,C 三点共线,∴a -35-4=5-36-4,∴a =4.三、解答题(本大题共3个题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤) 20.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解:(1)f (x )=2sin ⎝⎛⎭⎫2x -α4+1的振幅为2,最小正周期T =2α2=α,初相为-α4. (2)列表并描点画出图象:故函数y =f (x )在区间⎣⎡⎦⎤-α2,α2上的图象是21.(12分)已知四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是正方形,E是P A的中点.求证:(1)PC∥平面EBD;(2)平面PBC⊥平面PCD.解:证明:(1)连接AC交BD与O,连接EO,∵E,O分别为P A,AC的中点,∴EO∥PC.∵PC⊄平面EBD,EO⊂平面EBD,∴PC∥平面EBD.(2)∵PD⊥平面ABCDBC⊂平面ABCD∴PD⊥BC∵ABCD为正方形∴BC⊥CD又∵PD∩CD=D∴BC⊥平面PCD∵BC⊂平面PBC∴平面PBC⊥平面PCD.22.(12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.解:(1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1,得2a 1+3a 1q =1,得a 1=13. 故数列{a n }的通项公式为a n =13n . (2)b n =log 3a 1+log 3a 2+…+log 3a n = -(1+2+…+n )=-n (n +1)2.故1b n=-2n (n +1)=-2(1n -1n +1).1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2n n +1. 所以数列{1b n}的前n 项和为-2n n +1.。

(完整word版)高考数学模拟试题及答案

(完整word版)高考数学模拟试题及答案

高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。

2024届山东省联合模拟考试数学试题(解析版)

2024届山东省联合模拟考试数学试题(解析版)

2024年全国普通高考模拟考试数学试题2024.5注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.3.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.样本数据2,3,4,5,6,8,9的第30百分位数是()A.3B.3.5C.4D.5【答案】C 【解析】【分析】利用百分位数的求法计算即可.【详解】易知730% 2.1⨯=,则该组数据的第三个数4为第30百分位数.故选:C2.已知集合{}|12024A x x =-≤≤,{}|1B x a x a =+≤≤()0a >,若A B ⋂≠∅,则a 的取值范围是()A.()0,2024 B.(]0,2024 C.()0,2023 D.(]0,2023【答案】B 【解析】【分析】由A B ⋂≠∅,则集合B 中最小元素a 应在集合A 中,即可得到a 的取值范围.【详解】由题意A B ⋂≠∅,再由0a >,所以集合B 中最小元素a 应在集合A 中,所以02024a <≤,即a 的取值范围是(]0,2024.故选:B.3.已知抛物线2:4C x y =的焦点为F ,点P 在C 上,若P 到直线=3y -的距离为5,则PF =()A.5B.4C.3D.2【答案】C【解析】【分析】利用抛物线的定义先确定准线及焦点,计算即可.【详解】由题意可知()0,1F ,抛物线的准线为1y =-,而PF 与P 到准线的距离相等,所以()()5133PF =----=.故选:C4.某所学校的3名同学和2名老师站成一排合影,若两名老师之间至少有一名同学,则不同的站法种数为()A.120B.72C.64D.48【答案】B 【解析】【分析】根据给定条件,利用不相邻的排列问题列式计算即得.【详解】依题意,两名老师不相邻,所以不同的站法种数为2334A 62A 127=⨯=.故选:B5.已知5a = ,4b = ,若a 在b 上的投影向量为58b - ,则a 与b 的夹角为()A.60° B.120°C.135°D.150°【答案】B 【解析】【分析】利用投影向量的定义计算即可.【详解】易知a 在b上的投影向量为cos ,55cos ,88a b a b a b a b b b ⋅=-⇒=- ,而51cos ,82b a b a =-⋅=-,所以a 与b 的夹角为120 .故选:B6.已知圆()22:200M x y ay a ++=>的圆心到直线322x y +=M 与圆()()22:221N x y -++=的位置关系是()A.相离B.相交C.内切D.内含【答案】D 【解析】【分析】根据点到直线的距离公式求a 的值,再利用几何法判断两圆的位置关系.【详解】圆M :2220x y ay ++=⇒()222x y a a ++=,所以圆心()0,M a -,半径为a .==,且0a >,所以112a =.又圆N 的圆心()2,2N -,半径为:1.所以2MN ==,912a -=.由922<,所以两圆内含.故选:D7.已知等差数列{}n a 满足22144a a +=,则23a a +可能取的值是()A.2-B.3- C.4D.6【答案】A 【解析】【分析】根据题意,令12cos a θ=,42sin a θ=,由等差数列的下标和性质结合三角函数的性质求解即可.【详解】设12cos a θ=,42sin a θ=,则1243π)4a a a a θ=+++=,所以23[a a ∈+-,故选:A.8.已知函数()1cos 4221f x x x ππ⎛⎫=-+ ⎪-⎝⎭,则21y x =-与()f x 图象的所有交点的横坐标之和为()A.12B.2C.32D.3【答案】D 【解析】【分析】先用诱导公式化简函数,然后变形成一致的结构,再换元,转化成新元方程根的横坐标之和,分别画图,找出交点横坐标的关系,再和即可.【详解】由题意化简()11cos 4sin(4)22121f x x x x x πππ⎛⎫=-+=+ ⎪--⎝⎭11sin(42)sin 2(21)2121x x x x πππ=-+=-+--,21y x =-与()f x 图象有交点,则1sin 2(21)2121x x x π-+=--有实根,令21t x =-,则12t x +=,则化为1sin 2t t t π+=,即1sin 2t t tπ=-的所有实根之和,即()sin 2g t t π=与1()h t t t =-所有交点横坐标之和,显然()g t 是周期为1的奇函数,()h t 为奇函数且在(0,)+∞上为增函数,图像如图所示,显然,一共有6个交点123456,,,,,t t t t t t ,它们的和为0,则12345612345616322t t t t t tx x x x x x ++++++++++=⨯+=,故选:D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1z ,2z 为复数,则()A.1212z z z z +=+ B.若12z z =,则2121z z z =C.若11z =,则12z -的最小值为2 D.若120z z ⋅=,则10z =或20z =【答案】BD 【解析】【分析】通过列举特殊复数验证A ;设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,通过复数计算即可判断B ;设()1i,,R z a b a b =+∈,由复数的几何意义计算模长判断C ;由120z z ⋅=得120z z =,即可判断D.【详解】对于A ,若121i,1i =+=-z z ,则121i 1i 2z z +=++-=,121i 1i z z +=++-=1212z z z z +≠+,故A 错误;对于B ,设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,所以()()2212i i z z a b a b a b =+-=+,而2221z a b =+,所以2121z z z =,故B 正确;对于C ,设()1i,,R z a b a b =+∈,因为11z =,所以221a b +=,所以()1i 22a b z =-+===-,因为11a -≤≤,所以1549a ≤-≤,所以12z -的最小值为1,故C 错误;对于D ,若120z z ⋅=,所以120z z ⋅=,所以120z z =,所以10z =或20z =,所以12,z z 至少有一个为0,故D 正确.故选:BD10.袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件A =“取出的球的数字之积为奇数”,事件B =“取出的球的数字之积为偶数”,事件C =“取出的球的数字之和为偶数”,则()A.()15P A =B.()1|3P B C =C.事件A 与B 是互斥事件D.事件B 与C 相互独立【答案】AC 【解析】【分析】分别求出事件,,A B C 的概率,再根据互斥事件和相互独立事件的概率进行判断.【详解】因为“取出的求的数字之积为奇数”,就是“取出的两个数都是奇数”,所以()2326C 31C 155P A ===;故A 正确;“取出的球的数字之积为偶数”就是“取出的两个数不能都是奇数”,所以()2326C 3411C 155P B =-=-=;“取出的两个数之和为偶数”就是“取出的两个数都是奇数或都是偶数”,所以()2326C 22C 5P C =⨯=;A B +表示“取出的两个数的积可以是奇数,也可以是偶数”,所以()1P A B +=;BC 表示“取出的两个数的积与和都是偶数”,就是“取出的两个数都是偶数”,所以()2326C 1C 5P BC ==.因为()()()|P BC P B C P C =12=,故B 错误;因为()()()P A B P A P B +=+,所以,A B 互斥,故C 正确;因为()()()P BC P B P C ≠⋅,所以,B C 不独立,故D 错误.故选:AC11.已知双曲线()222:10x C y a a-=>的渐近线方程为12y x =±,过C 的右焦点2F 的直线交双曲线右支于A ,B 两点,1F AB 的内切圆分别切直线1F A ,1F B ,AB 于点P ,Q ,M ,内切圆的圆心为I,半径为,则()A.CB.切点M 与右焦点2F 重合C.11F BI F AI ABI S S S +-=△△△D.17cos 9AF B ∠=【答案】ABD 【解析】【分析】A 选项,根据渐近线方程求出2a =,得到离心率;B 选项,由双曲线定义和切线长定理得到22AP BQ AM BM AF BF -=-=-,得到切点M 与右焦点2F 重合;C 选项,根据双曲线定义和1F AB 的内切圆的半径得到11F BI F AI ABI S S S +-=△△△;D 选项,作出辅助线,得到112tan 4PI AF I PF ∠==,利用万能公式得到答案.【详解】A 选项,由题意得112a =,解得2a =,故离心率c e a ===A 正确;B 选项,11,,AP AM F P FQ QB BM ===,由双曲线定义可得1224AF AF a -==,1224BF BF a -==,两式相减得1122AF BF AF BF -=-,即22AP BQ AM BM AF BF -=-=-,故切点M 与右焦点2F 重合,B 正确;C 选项,1F AB 的内切圆的半径为2r =故()111111111122222F BI F AI ABI S S S F A r F B r AB r F A F B AB +-=+-=+- ()11112424222F A AM F B BM a =-+-=⨯=C 错误;D 选项,连接1F I ,则1F I 平分1AF B ∠,其中111224F P AF AP AF AF a =-=-==,故112tan 4PI AF I PF ∠==,所以2221111212112c i os cos co s s c s n s s in o in AF I AF IAF I AF I AF I AF IAF B ∠-∠∠-=∠=+∠∠∠2212212141tan 71tan 9214AF I AF I ⎛⎫-⎪-∠⎝⎭===+∠⎛⎫+ ⎪⎝⎭.故选:ABD【点睛】关键点点睛:利用双曲线定义和切线长定理推出切点M 与右焦点2F 重合,从而推理得到四个选项的正误.三、填空题:本题共3小题,每小题5分,共15分.12.二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式中,3x 的系数为10,则=a ___________.【答案】2【解析】【分析】利用二项式展开式的通项计算即可.【详解】易知二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式通项公式为()5152155C C rr rr rr r T x a x a x ---+=⋅=⋅,显然1r =时,115C 102a a =⇒=.故答案为:213.若函数()()πcos sin 3f x x x ϕ⎛⎫=-++ ⎪⎝⎭的最大值为2,则常数ϕ的一个取值为___________.【答案】π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)【解析】【分析】利用和(差)角公式化简,再判断1sin 02ϕ+≠,利用辅助角公式化简,再结合函数的最大值,求出ϕ.【详解】因为()()πcos sin 3f x x x ϕ⎛⎫=-++⎪⎝⎭ππcos cos sin sin sin coscos sin 33x x x x ϕϕ=+++1cos cos sin sin 22x x ϕϕ⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭,若1sin 02ϕ+=,则cos 2ϕ=±,所以()0f x =或()f x x =,显然不满足()f x 的最大值为2,所以1sin 02ϕ+≠,则()()f x x θ=+,(其中3cos 2tan 1sin 2ϕθϕ+=+),依题意可得2213sin cos 422ϕϕ⎛⎛⎫+++= ⎪ ⎝⎭⎝⎭,即sin 2ϕϕ+=,所以πsin 13ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 32k k ϕ+=+∈,解得πZ π2,6k k ϕ=+∈.故答案为:π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)14.如图,正方形ABCD 和矩形ABEF 所在的平面互相垂直,点P 在正方形ABCD 及其内部运动,点Q 在矩形ABEF 及其内部运动.设2AB =,AF =,若PA PE ⊥,当四面体PAQE 体积最大时,则该四面体的内切球半径为___________.【答案】222-或84352362+-【解析】【分析】先确定P 点的轨迹,确定四面体P AQE -体积最大时,P ,Q 点的位置,再利用体积法求内切球半径.【详解】如图:因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BE ⊂平面ABEF ,且BE AB ⊥,所以BE ⊥平面ABCD .AP ⊂平面ABCD ,所以BE AP ⊥,又⊥PE AP ,,PE BE ⊂平面PBE ,所以AP ⊥平面PBE ,PB ⊂平面PBE ,所以AP PB ⊥.又P 在正方形ABCD 及其内部,所以P 点轨迹是如图所示的以AB 为直径的半圆,作PH AB ⊥于H ,则PH 是三棱锥P AQE -的高.所以当AQE 的面积和PH 都取得最大值时,四面体PAQE 的体积最大.此时Q 点应该与B 或F 重合,P 为正方形ABCD 的中心.如图:当Q 点与B 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 1PEQ S = ,1PAQ S = ,APE V 中,因为AP PE ⊥,2AP =,2PE =,所以2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:2222222r ==+.如图:当Q 点与F 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 3PEQ S = ,1PAQ S = ,2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:22231r =++84352362+--=.综上可知,当四面体PAQE 的体积最大时,其内切球半径为:222-或84352362+-.故答案为:222或84352362+-【点睛】关键点点睛:根据PA PE ⊥得到P 点在以AE 为直径的球面上,又P 点在正方形ABCD 及其内部,所以P 点轨迹就是球面与平面ABCD 的交线上,即以AB 为直径的半圆上.明确P 点轨迹是解决问题的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()1ln f x x kx =-.(1)若曲线()f x 在e x =处的切线与直线y x =垂直,求k 的值;(2)讨论()f x 的单调性.【答案】(1)1k =(2)答案见解析【解析】【分析】(1)对函数求导,结合题意有,()()e ln e 1f k ='-=-,即可求解k 值;(2)对函数求导,分0k >和0k <两种情况讨论,根据导数的正负判断原函数的单调性.【小问1详解】因为()()1ln f x x kx =-,0k ≠,所以()()ln f x kx =-',曲线()f x 在e x =处的切线与y x =垂直,所以()()e ln e 1f k ='-=-,得1k =;【小问2详解】由()()1ln f x x kx =-得()()ln f x kx =-',当0k >时,()f x 的定义域为()0,∞+,令()0f x '=得1x k=,当10,x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>,当1,x k ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '<所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 的定义域为(),0∞-,令()0f x '=得1x k=当1,x k ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1,0x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>所以()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当0k >时,()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.16.如图,在四棱台1111ABCD A B C D -中,底面ABCD 为正方形,1ABC 为等边三角形,E 为AB 的中点.(1)证明:111C D B E ⊥;(2)若1124BC B C ==,1B E =,求直线1BC 与平面11CDD C 所成角的余弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)连接1EC ,可得1AB C E ⊥,由已知得11AB B C ⊥,所以得AB ⊥平面11B C E ,可得11C D ⊥平面11B C E ,则可得111C D B E ⊥;(2)以点E 为坐标原点,建立如图所示的空间直角坐标系,求出1BC的坐标及平面11CDD C 的一个法向量n的坐标,由1BC 和n夹角的余弦值的绝对值即为直线1BC 与平面11CDD C 所成角正弦值,由向量夹角的余弦公式算出,再算出直线1BC 与平面11CDD C 所成角的余弦值.【小问1详解】连接1EC ,因为1ABC 为等边三角形,所以1AB C E ⊥,因为ABCD 为正方形,所以AB BC⊥在四棱台1111ABCD A B C D -中,11//BC B C ,所以11AB B C ⊥,又1111111,,B C C E C B C C E ⋂=⊂平面11B C E ,所以AB ⊥平面11B C E ,因为11//AB C D ,所以11C D ⊥平面11B C E ,因为1B E ⊂平面11B C E ,所以111C D B E ⊥;.【小问2详解】因为底面ABCD 为正方形,1ABC 为等边三角形,所以4AB BC ==,所以1C E =因为1B E =,112B C =,所以2221111C B B E C E +=,所以111B E B C ⊥,又由(1)111C D B E ⊥,且11111C D B C C = ,1111,C D B C ⊂平面1111D C B A ,所以1B E ⊥平面1111D C B A ,即1B E ⊥平面ABCD ,取CD 的中点F ,连接EF ,以点E 为坐标原点,以EB ,EF,1EB 分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,()2,0,0B ,()2,4,0C,(10,2,C ,()2,4,0D -,所以(12,2,BC =-,(12,2,CC =-- ,()4,0,0CD =-,设(),,n x y z = 是平面11CDD C 的一个法向量,所以100n CC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即22040x y x ⎧-+-+=⎪⎨=⎪⎩,得()n = ,直线1BC 与平面11CDD C所成角正弦值为113BC n BC n⋅==⋅,则直线1BC 与平面11CDD C3=.17.已知数列{}n a 满足12a =,1nn n a a d q +-=⋅,*n ∈N .(1)若1q =,{}n a 为递增数列,且2,5a ,73a +成等比数列,求d ;(2)若1d =,12q =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)12d =(2)()1171332nnn a --=+⋅【解析】【分析】(1)利用数列{}n a 为单调递增数列,得到1n n a a d +-=,再根据2,5a ,73a +成等比数列,得到28230d d +-=,即可求出的值.(2)由数列{}21n a -是递增数列得出21210n n a a +-->,可得()()2122210n n n n a a a a +--+->,但2211122n n -<,可得212221n n n n a a a a +--<-.可得()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭;由数列{}2n a 是递减数列得出2120n n a a +-<,可得()1112n n n naa ++--=,再利用累加法可求出数列{}n a 的通项公式.【小问1详解】因为12a =,且{}n a 为递增数列,所以1n n a a d +-=,所以{}n a 为等差数列,因为2,5a ,73a +成等比数列,所以()()2114263a d a d +=++,整理得28230d d +-=,得12d =,34d =-,因为{}n a 为递增数列,所以12d =.【小问2详解】由于{}21n a -是递增数列,因而21210n n a a +-->,于是()()2122210n n n n a a a a +--+->①但2211122n n -<,所以212221n n n n a a a a +--<-.②又①,②知,2210n n a a -->,因此()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭③因为{}2n a 是递减数列,同理可得2120n n a a +-<,故()21221221122n nn n n a a ++-⎛⎫-=-=⎪⎝⎭,④由③,④即知,()1112n n n na a ++--=,于是()()()121321nn n a a a a a a a a -=+-+-++- ()1211111112221222212n nn --⎛⎫-- ⎪-⎝⎭=+-++=++ ()1171332nn --=+⋅,故数列{}n a 的通项公式为()1171332nnn a --=+⋅.【点睛】思路点睛:本题可从以下方面解题.(1)数列{}n a 为等差数列,利用等差数列的性质即可;(2)根据数列{}21n a -是递增数列得,21210n n a a +-->,数列{}2n a 是递减数列得,2120n n a a +-<,综合数列{}21n a -和{}2n a 即可得()1112n n n naa ++--=,最后利用累加法可求出数列{}n a 的通项公式.18.已知椭圆C :()222210x y a b a b+=>>的上顶点为A ,左焦点为F ,点4,3b B ⎛⎫- ⎪⎝⎭为C 上一点,且以AB为直径的圆经过点F .(1)求C 的方程;(2)过点()5,0G -的直线l 交C 于D ,E 两点,线段DE 上存在点M 满足DM GE DG EM ⋅=⋅,过G与l 垂直的直线交y 轴于点N ,求GMN 面积的最小值.【答案】(1)221189x y +=(2)7【解析】【分析】(1)根据已知条件和椭圆中,,a b c 的关系,求出,,a b c 的值,可得椭圆的标准方程.(2)设直线l :()5y k x =+,再设()11,D x y ,()22,E x y ,()00,M x y ,把直线方程代入椭圆方程,消去y ,得到关于x 的一元二次方程,根据一元二次方程根与系数的关系,表示出12x x +,12x x ,并用,,120x x x 表示条件DM GE DG EM ⋅=⋅,整理得0x 为定值;再结合弦长公式表示出GM ,利用两点间的距离公式求GN ,表示出GMN 的面积,利用基本(均值)不等式求最值.【小问1详解】由题意知()0,A b ,(),0F c -,因为点4,3b B ⎛⎫- ⎪⎝⎭在椭圆C 上,所以2221619b a b+=⇒218a =,由以AB 为直径的圆经过点F ,知0FA FB ⋅= ,得22403b c c -+=①,又222b c a +=②,由①②得3c =,3b =,所以C 的方程为:221189x y +=.【小问2详解】如图:由题意,直线l 斜率存在且不为0,设直线l 的方程为()5y k x =+,且()11,D x y ,()22,E x y ,()00,M x y ,将()5y k x =+代入221189x y +=,整理可得()2222122050180kxk x k +++-=,()()()2222Δ2041250180kk k =-+->,解得77k -<<,由根与系数的关系可得21222012k x x k +=-+,2122501812k x x k -=+,根据DM GE DG EM = ,得01120255x x x x x x -+=-+,解得()22221212021225018202525121218201051012k k x x x x k k x k x x k ⎛⎫-+-⎪++++⎝⎭===-++-++,设与直线l 垂直的直线方程为()15y x k=-+,令0x =,则5y k =-,即50,N k ⎛⎫- ⎪⎝⎭,故GN ==,()1855GM =--=,记GMN 面积为S ,则12S GM GN =⨯==7272==,当且仅当1k =±时取等号,所以GMN 面积的最小值为7.【点睛】方法点睛:圆锥曲线求取值范围的问题,常见的解决方法有:(1)转化为二次函数,利用二次函数在给定区间上的值域求范围;(2)转化为不等式,利用基本(均值)不等式求最值;(3)转化为三角函数,利用三角函数的有界性求取值范围;(4)转化为其它函数的值域问题,通过分析函数的单调性求值域.19.设点集(){}{}23*1,,,,|0,1,1,n n i M a a a a a i n i =∈≤≤∈N L,从集合n M 中任取两个不同的点()123,,,,n A a a a a ,()123,,,,n B b b b b ,定义A ,B 两点间的距离()1,ni i i d A B a b ==-∑.(1)求3M 中(),2d A B =的点对的个数;(2)从集合n M 中任取两个不同的点A ,B ,用随机变量X 表示他们之间的距离(),d A B ,①求X 的分布列与期望;②证明:当n 足够大时,()24D X n <.(注:当n 足够大时,20n -≈)【答案】(1)12对(2)①分布列见解析,()()212n nE X -=-;②证明见解析【解析】【分析】(1)根据题意分析可知:A ,B 有两个位置的坐标不相等,另一个相等,进而可得结果;(2)①分析可知X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,进而可求分布列,结合组合数性质可求期望;②根据方差公式()()21nk kk D X P X E X =⎡⎤=⋅-⎣⎦∑整理可得()()2121C C C 214n n n n n n D X ⎡⎤<+++⎢⎥-⎣⎦L ,结合组合数性质分析证明.【小问1详解】当3n =时,若(),2d A B =,可知A ,B 有两个位置的坐标不相等,另一个位置的坐标相等,所以共有122322C A A 12=对.【小问2详解】①由题意可知,n M 中元素的个数为2n 个,对于X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,此时所对应情况数为12C 2C 22k k n k k n nn --⋅=⋅种.所以()122C 2C C 21n k n k n n n P X k -⋅===-,故X 的分布列为:X12⋅⋅⋅nP1C 21n n-2C 21n n-⋅⋅⋅C 21n nn-数学期望()1212C C C C C C 12120212121212121n nn n n n nn n n n n n n E X n n =⨯+⨯++⨯=⨯⨯+⨯+------L L ,当2k n ≤≤时,则()()()()()2!!C 2C 2!!2!2!k n k n nn n k n k k n k k n k n k k -++-+=⨯+-+⨯--+-()()()()()()()!!!111!!1!2!1!1!n n n n k k k n k n k k n k k =+=-++----+--+-()()1!C 1!1!k n n n n n k k -⋅==-+-,且1C 0C C nn n n n n n +==⋅=⋅,则()()11C C C 011212121n n n nn n n n E X n n -=+⨯+-⨯++⨯---L ,两式相加得()()01222C C C C 2121n nn n n n n n n n E X ⋅=++++=--L ,所以()()212n nE X -=-;②当n 足够大时,()2n E X ≈,由方差定义()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑22212C C C 12212212212n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++⋅-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L ()()()21212221C C C C 1C 22214n n n n n n n n n n ⎧=+++-+-+⎨-⎩ ()()()()}23212C 33C 11C n n n n n n n n n n n n -⎡⎤-++---⋅+-⋅⎣⎦因为k n ≤,则()()()20n k n k n k k n ---⋅=-≤,当且仅当0k =或k n =时,等号成立,则()()()2221211C C C 212142144n n n n n n n n n n D X ⎡⎤⎡⎤<+++=-=⎢⎥⎢⎥--⎣⎦⎣⎦L ,所以()24D X n <.【点睛】关键点点睛:(2)①利用倒序相加法结合()21C 2C C kn k k n nn k n k n -+-+-+=分析求解;②根据方差公式结合()()20n k n k n ---⋅≤分析证明.。

2024届福建省厦门第一中学高考模拟(最后一卷)数学试题(解析版)

2024届福建省厦门第一中学高考模拟(最后一卷)数学试题(解析版)

2024年普通高等学校招生全国统一考试模拟考数学满分:150分考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知随机变量()23,X N σ ,且()24P x m<<=,()15P x n<<=,则()25P x <<的值为()A.2m n + B.2n m - C.12m - D.12n -【答案】A 【解析】【分析】由正态分布曲线的性质即可得解.【详解】()()()()()112523352415222m n P x P x P x P x P x +<<=<≤+<<=<<+<<=.故选:A.2.已知101mx A x mx ⎧⎫+=≤⎨⎬-⎩⎭,若2A ∈,则m 的取值范围是()A.1122m -≤< B.1122m -≤≤ C.12m ≤-或12m >D.12m ≤-或12m ≥【答案】A 【解析】【分析】将2x =代入101mx mx +≤-,然后转化为一元二次不等式求解可得.【详解】因为2A ∈,所以21021m m +≤-,等价于()()21210210m m m ⎧+-≤⎨-≠⎩,解得1122m -≤<.故选:A3.若抛物线2y mx =的准线经过双曲线222x y -=的右焦点,则m 的值为()A.4- B.4C.8- D.8【答案】C 【解析】【分析】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【详解】因为双曲线222x y -=的右焦点为()2,0,又抛物线2y mx =的准线方程为4mx =-,则24m -=,即8m =-.故选:C4.已知三棱锥A BCD -中,AB ⊥平面BCD ,2AB =,3BC =,4CD =,5BD =,则该三棱锥外接球的表面积为()A.29π4 B.19π2C.29πD.38π【答案】C 【解析】【分析】取BD 中点E ,根据已知可得E 为BCD △的外心,过E 作底面的垂线OE ,使12OE AB =,可得O 为三棱锥外接球的球心,计算球的半径,由球的表面积公式可得结果.【详解】在BCD △中,因为3BC =,4CD =,5BD =,所以222BC CD BD +=,所以BC CD ⊥,取BD 中点E ,则E 为BCD △的外心,且外接圆的半径为1522r BD ==,过E 作底面的垂线OE ,使12OE AB =,又AB ⊥平面BCD ,则O 为三棱锥外接球的球心,所以外接球的半径2222529144R OE BE =+=+=,所以三棱锥外接球的表面积为2294π4π29π4R =⨯=,故选:C.5.1024的所有正因数之和为()A.1023B.1024C.2047D.2048【答案】C 【解析】【分析】根据等比数列前n 项求和公式计算即可求解.【详解】由题意知,1010242=,则1024的所有正因数之和为11012101(12)2222204712⨯-++++==- .故选:C6.二维码与我们的生活息息相关,我们使用的二维码主要是2121⨯大小的特殊的几何图形,即441个点.根据0和1的二进制编码规则,一共有4412种不同的码,假设我们1万年用掉15310⨯个二维码,那么所有二维码大约可以用()(参考数据:lg20.301,lg30.477≈≈)A.11710万年 B.12010万年C.12310万年D.12510万年【答案】A 【解析】【分析】利用取对数法进行化简求解即可.【详解】1 万年用掉15310⨯个二维码,∴大约能用441152310⨯万年,设441152310x =⨯,则44144115152lg lg lg2(lg3lg10)441lg2lg3154410.3010.47715117310x ==-+=--≈⨯--≈⨯,即11710x ≈万年.故选:A .7.在一次数学模考中,从甲、乙两个班各自抽出10个人的成绩,甲班的十个人成绩分别为1210x x x 、、、,乙班的十个人成绩分别为1210,,,y y y .假设这两组数据中位数相同、方差也相同,则把这20个数据合并后()A.中位数一定不变,方差可能变大B.中位数可能改变,方差可能变大C.中位数一定不变,方差可能变小D .中位数可能改变,方差可能变小【答案】A 【解析】【分析】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,表达出两组数据的中位数,根据中位数相同得到5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,中位数不变,再设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,根据公式得到合并后平均数为ω,方差为2s ',2222211(()22s s x y s ωω=+-+-≥',得到结论.【详解】不妨设12101210,x x x y y y ≤≤≤≤≤≤ ,则1210x x x 、、、的中位数为562x x +,1210y y y 、、的中位数为562y y +,因为565622x x y y ++=,所以5566x y y x ≤≤≤或5566y x x y ≤≤≤,则合并后的数据中位数是562x x +或者562y y +,所以中位数不变.设第一组数据的方差为2s ,平均数为x ,第二组数据的方差为2s ,平均数为y ,合并后总数为20,平均数为ω,方差为2s ',{}22222110()10(1010s s x s y ωω⎡⎤⎡⎤=+-++-⎣⎦'⎣⎦+222222221111((((.2222s x s y s x y s ωωωω⎡⎤⎡⎤=+-++-=+-+-≥⎣⎦⎣⎦如果均值相同则方差不变,如果均值不同则方差变大.故选:A.8.若曲线1exax y +=有且仅有一条过坐标原点的切线,则正数a 的值为()A.14B.4C.13D.3【答案】A 【解析】【分析】设切点0001(,)ex ax x +,利用导数的几何意义求得切线方程,将原点坐标代入,整理得20010ax x ++=,结合Δ0=计算即可求解.【详解】设1()e x ax y f x +==,则1()e xax a f x -+-'=,设切点为0001(,)e x ax x +,则0001()e x ax a f x -+-'=,所以切线方程为0000011()e e x x ax ax a y x x +-+--=-,又该切线过原点,所以00000110(0)e e x x ax ax a x +-+--=-,整理得2010ax x ++=①,因为曲线()y f x =只有一条过原点的切线,所以方程①只有一个解,故140a ∆=-=,解得14a =.故选:A【点睛】关键点点睛:本题主要考查导数的几何意义,切点未知,设切点坐标,由导数的几何意义求出切线方程,确定方程的解与根的判别式之间的关系是解决本题的关键.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若1b c >>,01a <<,则下列结论正确的是()A.a a b c <B.log log b c a a >C.a a cb bc <D.log log c b b a c a>【答案】BC 【解析】【分析】由已知可得,由幂函数性质可判断A;由对数函数性质可判断B;由幂函数性质可判断C;由不等式的性质可判断D.【详解】对于A :∵01a <<,幂函数a y x =在(0,)+∞上单调递增,且1b c >>,∴a a b c >,故选项A 错误;对于B :∵01a <<,∴函数log a y x =在(0,)+∞上单调递减,又∵1b c >>,∴log log log 10a a a b c <<=,∴110log log b c c a>>,即0log log b c a a >>,故B 正确;对于选项C :∵01a <<,则10a -<, 幂函数1a y x -=在(0,)+∞上单调递减,且1b c >>,∴11a a b c --<,∴a a cb bc <,故选项C 正确;对于选项D :由选项B 可知:0log log b c a a >>,∴0log log b c a a <-<-,∵1b c >>,∴(log )(log )b c c a b a -<-,∴log log c b b a c a <,故D 错误.故选:BC.10.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C 相切,则a =±C.若圆O 与圆C 恰有两条公切线,则a -<<D.若圆O 与圆C 相交,则公共弦长的最大值为2【答案】AD 【解析】【分析】根据两点的距离公式,算出两圆的圆心距1d ≥,从而判断出A 项的正误;根据两圆相切、相交的性质,列式算出a 的取值范围,判断出B,C 两项的正误;当圆O 的圆心在两圆的公共弦上时,公共弦长有最大值,从而判断出D 项的正误.【详解】根据题意,可得圆22:1O x y +=的圆心为(0,0)O ,半径1r =,圆22:()(1)4C x a y -+-=的圆心为(,1)C a ,半径2R =.对于A ,因为两圆的圆心距1d OC ==≥,所以A 项正确;对于B ,两圆内切时,圆心距||1d OC R r ==-=1=,解得0a =.两圆外切时,圆心距||3d OC R r ==+=3=,解得a =±.综上所述,若两圆相切,则0a =或a =±,故B 项不正确;对于C ,若圆O 与圆C 恰有两条公切线,则两圆相交,||(,)d OC R r R r =∈-+,(1,3),可得13<<,解得a -<<0a ≠,故C 项不正确;对于D ,若圆O 与圆C 相交,则当圆22:1O x y +=的圆心O 在公共弦上时,公共弦长等于22r =,达到最大值,因此,两圆相交时,公共弦长的最大值为2,故D 项正确.故选:AD .11.已知函数()f x 的定义域为R ,()()()eeyxf x f y f x y +=+,且()11f =,则()A.()00f =B.()21ef -=C.()e xf x 为奇函数D.()f x 在()0+∞,上具有单调性【答案】AC 【解析】【分析】根据题意,令0x y ==即可判断A ,令1x =,1y =-,即可判断B ,令y x =-结合函数奇偶性的定义即可判断C ,令y x =即可判断D 【详解】对A :令0x y ==,则有()()()0000eef f f =+,即()00f =,故A 正确;对B :1x =,1y =-,则有()()()1111e 11e f f f -+--=,即()()()1e 1e0f f f =-+,由()00f =,()11f =,故()01e ef =-+,即()21e f -=-,故B 错误;对C :令y x =-,则有()()()eexx f x f f x x x --=+-,即()()()e 0e x x x f f x f -=+-,即()()e exxf x f x --=-,又函数()f x 的定义域为R ,则函数()e x f x 的定义域为R ,故函数()e xf x 为奇函数,故C 正确;对D :令y x =,则有()()()eexxf x f x f x x +=+,即()()22exf x f x =,即有()()22e x f x f x =,则当ln 2x =时,有()()ln 22ln 221ln 2e f f ==,即()()2ln 2ln 2f f =,故()f x 在()0,∞+上不具有单调性,故D 错误.故选:AC三、填空题:本题共3小题,每小题5分,共15分.12.已知复数()2cos isin 1iz θθθ+=∈+R 的实部为0,则tan2θ=______.【答案】43【解析】【分析】利用复数()2cos isin 1iz θθθ+=∈+R 的实部为0,求出tan 2θ=-,再利用二倍角公式得出结论.【详解】 复数()()()()()()2cos isin 1i 2cos sin sin 2cos i2cos isin 1i 1i 1i 2z θθθθθθθθθ+-++-+===∈++-R 的实部为0,2cos sin 0,tan 2θθθ∴+=∴=-.22tan 44tan21tan 143θθθ-∴===--.故答案为:43.13.已知空间中有三点()0,0,0O,()1,1,1A -,()1,1,0B ,则点O 到直线AB 的距离为______.【答案】305【解析】【分析】求出,OA AB 的坐标,求出cos ,OA AB,根据点O 到直线AB 的距离为sin ,OA OA AB 即可求解.【详解】因为()0,0,0O ,()1,1,1A -,()1,1,0B ,所以()()1,1,1,0,2,1OA AB =-=-,所以OA AB == ,()()1012113OA AB ⋅=⨯+-⨯+⨯-=-.所以cos ,OA ABOA AB OA AB⋅==-所以10sin ,5OA AB === .所以点O 到直线AB的距离为sin ,55OA OA AB ==.故答案为:305.14.设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.【答案】2t ≤【解析】【分析】分情况讨论a 不同取值时函数2()u x x ax b =++在[0,4]上的范围,从而确定()f x 的最大值,将对任意实数a ,b ,总存在实数0[0x ∈,4]使得不等式0()f x t 成立,转化为min ][()max t f x ≤恒成立,即可解决.【详解】因为存在0[0,4]x ∈,使得()f x t ≥成立,所以max ()t f x ≤,因为对于任意的实数a ,b ,max ()t f x ≤,所以min ][()max t f x ≤恒成立,设()f x 的最大值为M (b ),令2()u x x ax b =++,二次函数的对称轴为2a x =-,当<02a-,即a>0时,()u x 单调递增,此时()16+4+b u x a b ,当28b a ≥--时,M (b )16+4+a b =,当28b a <--时,M (b )b =-,从而当0a >时,28b a =--时M (b )取最小值,M (b )2+8>8min a =,当40a -<£时,()u x 在[0,)2a -上单调递减,在[2a-,4]上单调递减,2()1644a b u x a b -+≤≤++,所以当21288b a a =--时,2min 1()2888M b a a =-++≥.当84a -≤≤-时,()u x 在[0,2a -上单调递减,在[2a-,4]上单调递减,2()4a b u x b -+≤≤,所以当218b a =时,2min 1()28M b a =≥.当a <-8时,()u x 单调递减,16+4a+()b u x b ≤≤,当28b a ≤--时,M (b )164a b =---,当28b a >--时,M (b )b =,从而当a <-8时,28b a =--时M (b )取最小值,M (b )28>8min a =--.综合得min ()2M b =.所以2t ≤.故答案为:2t ≤【点睛】本题主要考查函数的图象和性质的应用,考查函数的单调性和最值,考查恒成立和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.用1,2,3,4,5这五个数组成无重复数字的五位数,则(1)在两个偶数相邻的条件下,求三个奇数也相邻的概率;(2)对于这个五位数,记夹在两个偶数之间的奇数个数为X ,求X 的分布列与期望.【答案】(1)12(2)分布列见解析,()1E X =【解析】【分析】(1)设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,利用排列数公式求出()n A ,()n AB ,最后根据古典概型的概率公式计算可得;(2)依题意X 的所有可能取值为0,1,2,3,求出所对应的概率,即可得到分布列与数学期望.【小问1详解】设A =“数字2,4相邻”,设B =“数字1,3,5相邻”,则数字2,4相邻时的五位数有2424A A 48=个,数字2,4相邻,数字1,3,5也相邻的五位数的个数为232232A A A 24=,则()()()241482n AB P B A n A ===;【小问2详解】依题意X 的所有可能取值为0,1,2,3,由题意知“X 0=”表示2个偶数相邻,则()242455A A 20A 5P X ===,“1X =”表示2个偶数中间共插入了1个奇数,则()21323355A C A 31A 10P X ===,“2X =”表示2个偶数中间共插入了2个奇数,则()22223255A A A 12A 5P X ===;“3X =”表示2个偶数中间共插入了3个奇数,则()232355A A 13A 10P X ===,所以X 的分布列为X0123P2531015110则X 的期望为()231101231510510E X =⨯+⨯+⨯+⨯=.16.已知在正三棱柱111ABC A B C -中,2AB =,11AA =.(1)已知E ,F 分别为棱1AA ,BC 的中点,求证://EF 平面11A B C ;(2)求直线1A B 与平面11A B C 所成角的正弦值.【答案】(1)证明见解析(2)1510【解析】【分析】(1)G 为1B C 中点,通过证明1//EF A G ,证明//EF 平面11A B C ;(2)以A 为坐标原点,建立空间直角坐标系,向量法求线面角的正弦值.【小问1详解】取1B C 中点G ,连接1A G ,FG .G ,F 分别为1B C ,BC 中点,1//GF BB ∴且112GF BB =,又E 为1AA 中点,11//A E BB ∴且1112A E BB =,1//GF A E ∴且1GF A E =,故四边形1A EFG 是平行四边形,1//EF A G ∴.而EF ⊄平面11A B C ,1A G ⊂面11A B C ,//EF ∴平面11A B C .【小问2详解】如图以A 为坐标原点,AC ,1AA 分别为y ,z 轴建立空间直角坐标系,则()10,0,1A ,)3,1,0B,)13,1,1B ,()0,2,0C ,则())1110,2,1,3,1,0A C AB =-= .设平面11A B C 的法向量为(),,n x y z = ,则1112030A C n y z A B n x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1x =,得3y =,3z =-,(1,3,3n ∴=-.又)13,1,1A B =- ,1332315cos ,1054A B n ∴=⨯.即直线1A B 与平面11A B C 所成角的正弦值是1510.17.三角学于十七世纪传入中国,此后徐光启、薛风祚等数学家对此深入研究,对三角学的现代化发展作出了巨大贡献,三倍角公式就是三角学中的重要公式之一,类似二倍角的展开,三倍角可以通过拆写成二倍角和一倍角的和,再把二倍角拆写成两个一倍角的和来化简.(1)证明:3sin 33sin 4sin x x x =-;(2)若11sin101n n ⎛⎫︒∈⎪+⎝⎭,,*n ∈N ,求n 的值.【答案】(1)证明见解析(2)5n =【解析】【分析】(1)利用两角和的正弦公式及倍角公式证明即可;(2)将sin10︒转为方程314302x x -+=的一个实根,通过函数的单调性及零点存在性定理即可求解.【小问1详解】因为()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()22sin cos cos 12sin sin x x x x x=⋅+-()2332sin 1sin sin 2sin 3sin 4sin x x x x x x =-+-=-;【小问2详解】由(1)可知,31sin 303sin104sin 102︒︒︒=-=,即sin10︒是方程314302x x -+=的一个实根.令()31432f x x x =-+,()()()212332121f x x x x '=-=+-,显然10sin10sin 302︒︒<<=,当102x <<时,()0f x <′,所以()31432f x x x =-+在10,2⎛⎫⎪⎝⎭上单调递减,又3114066f ⎛⎫⎛⎫=⨯> ⎪ ⎪⎝⎭⎝⎭,31111174305552250f ⎛⎫⎛⎫=⨯-⨯+=-< ⎪ ⎪⎝⎭⎝⎭,所以11sin10,65︒⎛⎫∈ ⎪⎝⎭,即5n =.18.已知圆22:(1)16A x y ++=和点()1,0B ,点P 是圆上任意一点,线段PB 的垂直平分线与线段PA 相交于点Q ,记点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)点D 在直线4x =上运动,过点D 的动直线l 与曲线C 相交于点,M N .(ⅰ)若线段MN 上一点E ,满足ME MD ENDN=,求证:当D 的坐标为()4,1时,点E 在定直线上;(ⅱ)过点M 作x 轴的垂线,垂足为G ,设直线,GN GD 的斜率分别为12,k k ,当直线l 过点()1,0时,是否存在实数λ,使得12k k λ=若存在,求出λ的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)12λ=【解析】【分析】(1)根据中垂线的性质可得42QA QB AB +=>=,由椭圆的定义可知动点Q 的轨迹是以,A B 为焦点,长轴长为4的椭圆,从而求出轨迹方程;(2)(ⅰ)设直线l 的方程为y kx m =+,设112200(,),(,),(,)M x y N x y E x y ,与椭圆联立韦达定理,把线段长度比转化为坐标比,代入韦达定理化简即可得点E 在定直线330x y +-=上;(ⅱ)利用坐标表示两个斜率,然后作商,将韦达定理代入即可判断.【小问1详解】由题意知圆心(1,0)A -,半径为4,且QP QB =,2AB =,则42QA QB QA QP PA AB +=+==>=,所以点Q 的轨迹为以,A B 为焦点的椭圆,设曲线的方程为()222210x y a b a b+=>>,则24,22a c ==,解得2,1a c ==,所以2223b a c =-=,所以曲线C 的方程为22143x y +=;【小问2详解】(ⅰ)因为直线l 的斜率一定存在,设直线l 的方程为y kx m =+,因为D ()4,1在l 上,所以41k m +=,由22143y kx m x y =+⎧⎪⎨+=⎪⎩得()()222348430k x kmx m +++-=,()()()()22222Δ81634348430km k m k m =-+-=-+>,设112200(,),(,),(,)M x y N x y E x y ,则()21212224383434m km x x x x k k--+==++,,由ME MD EN DN =得10102244x x x x x x --=--,化简得()()1212120428x x x x x x x ⎡⎤+-=-+⎣⎦,则()202224388428343434m km km x k k k --⎛⎫⎛⎫⨯-⨯=+ ⎪ ⎪+++⎝⎭⎝⎭,化简得00330kx m x ++-=,又因为00y kx m =+,所以00330x y +-=,所以点E 在定直线330x y +-=上.(ⅱ)因为直线y kx m =+过()1,0,所以0k m +=,直线方程为y kx k =-,从而得()4,3D k ,1(,0)G x ,由(ⅰ)知,()221212224383434k k x x x x k k-+==++,2122113,4y k k k x x x ==--,所以()()()()12121212122121214444333x kx k k y x x x x x k x x k x x k x x -----+=⨯==---()()()22222222222222224384434413434282344334k k x x k x k k k k k x k x x k ---+-+-++===⎡⎤⎡⎤⎛⎫+-⎣⎦--⎢⎥ ⎪+⎝⎭⎣⎦,所以存在实数12λ=,使得1212k k =.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.19.对于数列{}n a ,数列{}1n n a a +-称为数列{}n a 的差数列或一阶差数列.{}n a 差数列的差数列,称为{}n a 的二阶差数列.一般地,{}n a 的k 阶差数列的差数列,称为{}n a 的1k +阶差数列.如果{}n a 的k 阶差数列为常数列,而1k -阶差数列不是常数列,那么{}n a 就称为k 阶等差数列.(1)已知20,24,26,25,20是一个k 阶等差数列{}n a 的前5项.求k 的值及6a ;(2)证明:二阶等差数列{}n b 的通项公式为()()()()()121321111222n b b n b b n n b b b =+--+---+;(3)证明:若数列{}n c 是k 阶等差数列,则{}n c 的通项公式是n 的k 次多项式,即0kin ii c nλ==∑(其中iλ(01i k = ,,,)为常实数)【答案】(1)3k =,610a =(2)证明见解析(3)证明见解析【解析】【分析】(1)根据定义直接进行求解,得到3k =,并根据二阶差数列的第4项为5-,求出一阶差数列的第5项为10-,得到方程,求出610a =;(2)令1n n n d b b +=-,根据二阶等差数列的定义得到112213212n n n n d d d d d d b b b ----=-==-=-+ ,再利用累加法求出()()()()()321211112212n b n n b b b n b b b =---++--+;(3)数学归纳法证明出()1,nmi S m n i==∑为n 的1m +次多项式,利用引理可证出结论.【小问1详解】{}n a 的一阶差数列为4,2,1-,5-;二阶差数列为2-,3-,4-;三阶差数列为1-,1-,1-为常数列,故{}n a 为三阶等差数列,即3k =,二阶差数列的第4项为5-,故一阶差数列的第5项为10-,即6510a a -=-,故610a =.【小问2详解】令1n n n d b b +=-,因为{}n b 是二阶等差数列,所以112213212n n n n d d d d d d b b b ----=-==-=-+ ,因此()()()()()()1122113212112n n n n n d d d d d d d d n b b b b b ---=-++++-+=--++- ,所以()()()112211n n n n n b b b b b b b b ---=-++++-+ 1211n n d d d b --=++++ ()()()()()()321211231021n n b b b n b b b =-+-+++-++--+ ()()()()()321211112212n n b b b n b b b =---++--+,命题得证.【小问3详解】证明:先证一个引理:记()1,nmi S m n i==∑,(),S m n 是n 的1m +次多项式,数学归纳法:当1m =时,()()11,12312S n n n n =++++=+ 是n 的2次多项式,假设(),S k n 是n 的1k +次多项式,对0,1,,1k m =- 都成立,由二项式定理,()11101C mm m k k m k n nn +++=+-=∑,规定001=,将n 取0,1,2,…,n ,得101-=,()110111C 1mm k km k ++=+-=∑,()111212C2mm m kkm k +++=+-=∑,……,()11101C mm m k km k n nn +++=+-=∑,求和可得()()111110011C1C2CC ,mmmmm k kk kk k k m m m m k k k k n n S k n +++++====+=++++=∑∑∑∑ ,则()()()()()111101C ,1C ,,m m k m m k mn n S k S m n n m S m -+++=+-=+=∑,故()()()11101C ,,1m m k m k n S k n S m n m -++=+-=+∑是n 的1m +次多项式,引理得证.回到本题,由(2)可知,2阶等差数列的通项是n 的2次多项式,假设k 阶等差数列{}n c 的通项公式是n 的k 次多项式,对于1k +阶等差数列,它的差数列{}n c '是k 阶等差数列,即0kin i i c n λ='=∑,故1111101n k nn i iii i jc c c c jλ--===⎛⎫'=+=+ ⎪⎝⎭∑∑∑,由引理可知,此为n的k次多项式,命题得证.【点睛】数列新定义问题,主要针对于等差,等比,递推公式和求和公式等综合运用,对常见的求通项公式和求和公式要掌握牢固,同时涉及数列与函数,数列与解析几何,数列与二项式定理,数列与排列组合等知识的综合,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。

高考数学模拟试题及答案 (二十套)

高考数学模拟试题及答案 (二十套)
【答案】AC
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小

2023-2024学年上海市徐汇区高三下册高考数学模拟试题(三模)附答案

2023-2024学年上海市徐汇区高三下册高考数学模拟试题(三模)附答案

2023-2024学年上海市徐汇区高三下学期高考数学模拟试题(三模)一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合,,则______.{}1,2,6M ={}2,3N =M N = 2.已知,则______.()()2log ,02,0x x f x f x x >⎧=⎨+≤⎩()1f -=3.已知复数z 满足,则的最小值为______.z i -=z4.已知向量,,则在上的投影向量的模为______.(a = ()b = ab 5.已知,则的最大值为______.2x y +=()y x y -6.已知扇形的弧长为,面积为,则扇形所在圆的半径为______.2π3π7.在中,内角A ,B ,C 的对边是a ,b ,c .若,且,则ABC △(222a b =+⋅b c =______.A =8.将一枚质地均匀的骰子连续抛掷6次,得到的点数分别为1,2,4,5,6,x ,则这6个点数的中位数为4的概率为______.9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是2nx ⎛- ⎝314______.10.已知两个等差数列2,6,10,…,202和2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为______.11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1ax by +=x y +二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.设,则“”是“”的( )x R ∈0x <()ln 10x +<A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.要得到函数的图像,只需将函数的图像( )()ln 2y x =ln y x =A .每一点的横坐标变为原米的2倍B .每一点的纵坐标变为原来的2倍C .向左平移ln2个单位D .向上平移ln2个单位15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .316.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 三、解答题(本大题共有5题,满分78分)17.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知向量,,其中,若,且函数()2sin ,cos 2m x x =ωω ),1n x =ω0ω>()f x m n =⋅的最小正周期为π.()y f x =(1)求的单调增区间;()y f x =(2)在中,若,,求的值.ABC △()2f B =-BC =sin B A =BA BC ⋅18.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.在四面体中,,.D ABC -2AB BC BD AC ====AD DC ==(1)求证:平面ADC ⊥平面ABC ;(2)对角线BD 上是否存在一点E ,使得直线AD 与平面ACE 所成角为30°.若存在求出的值,若不存在说明理由.BEED19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.为了解人们是否喜欢跑步,某机构在一小区随机抽取了40人进行调查,统计结果如下表.喜欢不喜欢合计男12820女101020合计221840(1)根据以上数据,判断能否有95%的把握认为人们对跑步的喜欢情况与性别有关?附:,其中,()()()()()22n ad bc a b c d a c b d -χ=++++n a b c d =+++()2 3.8410.05P χ≥≈(2)该小区居民张先生每天跑步或开车上班,据以往经验,张先生跑步上班准时到公司的概率为,张先生跑步上班迟到的概率为.对于下周(周一~周五)上班方式张先生作出2313如下安排:周一跑步上班,从周二开始,若前一天准时到公司,当天就继续跑步上班,否则,当天就开车上班,且因公司安排,周五开车去公司(无论周四是否准时到达公司).设从周一开始到张先生第一次开车去上班前跑步上班的天数为X ,求X 的分布及数学期望E[X].20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x 21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =答案一、填空题1.;2.;;4.;5.;6.;7.; 8.; {}1,2,3,601-012356π169.; 10.; 11.45166616-11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.【正确答案】16-对于图(A ),沿彩绳展开正四棱柱,则彩绳长度的最小值为对于图(B ),彩绳长度的最小值为16,因为A 比图B 最多节省的彩绳长度.16>16-12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1axby +=x y +构造,(,),(,)OP a y OQ x b ==, ,|||1,1OP OQ OP OQ ==⋅= 4POQ π∠=问题转化为一个等腰直角三角形绕着点转动,OPQ O 因为,所以点位于点的左上方,[0,],[0,]a x b y ∈∈P Q 设,则,QOM θ∠=4POM πθ∠=+所以,||cos ,||4xQN y PM πθθ⎛⎫====+ ⎪⎝⎭所以cos sin 2cos 4x y πθθθθ⎛⎫+=+=+ ⎪⎝⎭)θϕ=+≤所以x y +二、选择题13.B14.D15.C16.D14.D15.C16.D 15.C 16.D15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .3【正确答案】C 对于①, 且与相互独立, 则()()1,3P A P B ==A B ,①错误;()()()()13P A B P A P B P AB ⋃=+-=11153339+-⨯=对于②,()()()(),|3P CAP C A PCA P A ==()()()()()3|1213P CAP CA P A C P CA P C ===-故, 故②正确;()()2|P CA P A C =对于③,则,()()1,||2P C B P C B +=()()()|P CB P C B P B =()()()|,P C B P C B P B=故, 即 (1),()()112233P C B P CB +=()()631P CB P C B +=若互斥,则, 满足(1)式,BC ()()()10,3P BC P C B P C ===故, 即与互斥, 故③正确.故选:C.()0P BC =B C 16.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 【正确答案】D对于选项: 例如, 可知即为等差数列, 也为等比数列,AB 1n a ={}n a 则, 但不存在, 使得所以不为内和数列, 故错误;122a a +=*m N ∈2,m a ={}n a AB 对于选项C: 例如:数列:显然是所有正整数的排列, 可知为内和数列, 2,1,3,4,5,⋯{}n a {}n a 且的伴随数列为递增数列,但不是递增数列, 故C 错误.{}n a {}n a 对于选项D: 因为,对任意, 可知存在,0n a >*1212,,n n N n n ∈<*12,m m N ∈使得,,11123m n a a a a a =+++⋯+22123m n a a a a a =+++⋯+则即,21112120m m n n n a a a a a ++-=++⋯+>21m m a a >所以其伴随数列为递增数列, 故D 正确;故选D.{}n b三.解答题17.(1)(2),,36k k k Z ππ⎡⎤π-π+∈⎢⎥⎣⎦32-18.(1)证明略(2)BEED=19.(1)否(2),分布列如下()6527E X =20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x【正确答案】(1)(2)(3)存在,12e =()504,3,⎛± ⎝04x =(1)由题意可得:,.2c a ==12c e a ∴==(2),椭圆的方程为:5,4a b ==Γ2212516x y += 3.c ==点是椭圆上一点, 且位于轴的上方,若, 则.P Γx 12PF PF =()04P ,若, 设,212F F PF =()P x,y,,226,12516x y =+=()()55,04x ,y ,∈-∈联立解得,.53x =-53y P ⎛=∴- ⎝若, 设, 根据对称性可得.211F F PF =()P x,y 53P ⎛ ⎝综上可得点的坐标为.P ()504,3,⎛± ⎝(3), 椭圆的方程为,2,a b ==Γ221,143x y c +===()210,F ,∴把代入椭圆方程可得, 解得.1x =211,043y y +=>33,122y A ,⎛⎫=∴ ⎪⎝⎭设直线的方程为:,, 设,l ()(01,y k x C x =-())01k x -()()1122,M x ,y N x ,y 联立, 化为()221122y k x x y ⎧=-⎪⎨+=⎪⎩()22223484120,k x k x k +-+-=0,Δ>假设存在定直线, 使得动直线与的交点221212228412,,3434k k x x x x k k -∴+==++00:l x x =l 0l 满足直线的斜率总是成等差数列,则,C ,,AM AC AN 2AC AM AN k k k =+,,()01201233312222111k x y y x x x ----∴⨯=+---()()11221,1y k x y k x =-=-代入化为:而012211111x x x =+---()12121212211111x x x x x x x x +-+=---++, 解得.22220228222234313412813434k k x k k k k -+==∴=---+++04x =因此存在定直线, 使得动直线与的交点满足直线的斜率总是成0:4l x =l 0l C ,,AM AC AN 等差数列.21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =【正确答案】(1)是(2) (3)见解析03m <≤(1) 函数,当时,,3y x =-[1,2]x ∈[1,2]y ∈因此区间是函数的一个“美好区间”.[1,2]3y x =-(2),2()23(1)(3)f x x x x x '=--=+-由得,所以或()f m m =2(3)(12)0m m --=3m =m =当时,在上严格减,所以,满足题意;03m <≤()f x [0,]m ()[(),12]f x f m ∈当时,,所以且,无解;3m >min ()(3)3f x f ==12m ≥()f m m ≤所以,;03m <≤(3)证明:对于任意区间,[],()I a b a b =< 记由已知得在上单调递减, 故(){}|,S f x x I =∈()f x I ()(),S f b ,f a ⎡⎤=⎣⎦因为, 即的长度大于的长度, 故不满足性质①,()()f a f b b a ->-S I 所以若为的 “美好区间”, 必满足性质②), I ()f x 这只需,即只需或,S I ⋂=∅()f a a <()f b b >由显然不恒成立, 所以存在常数使得,()f x x =c ()f c c ≠如, 取,区间满足性质②;()f c c <a c =[],()I a b a b =<综上,函数一定存在 “美好区间”;()f x 记, 则图象连续不断, 下证明有零点:()()g x f x x =-()g x ()g x因为在上是减函数,所以在上是减函数, 记,()f x R ()g x R ()0f t =若, 则是的零点,0t =00x =()g x 若, 则, 即,,0t >()()0f t f t <=()00g >()0g t <由零点存在性定理, 可知存在, 使得,()00x ,t ∈()00g x =若, 则, 即,,0t <()()0f t f t >=()0g t >()00g <由零点存在性定理, 可知存在, 使得,()00x t ,∈()00g x =综上,有零点, 即,()g x 0x ()00f x x =因为的所有 “美好区间”都满足性质②, 故,(否则, 与性质②()f x I 0x I ∉()00f x x I =∈不符),即不属于的任意一个“美好区间”, 证毕.0x ()f x。

2023-2024学年安徽省高考数学仿真模拟试题卷(三模)含解析

2023-2024学年安徽省高考数学仿真模拟试题卷(三模)含解析

2023-2024学年安徽省高考数学仿真模拟试题卷(三模)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数0z ≠,则“1z =”是“1R z z +∈”的()条件.A.充分不必要B.必要不充分C 充要 D.既不充分也不必要【正确答案】A【分析】当1z ==时,即221a b +=,12R z a z+=∈,充分性;取2z =,则15R 2z z +=∈,2z =,不必要,得到答案.【详解】设i z a b =+,,R a b ∈,当1z ==时,即221a b +=,2211i i i 2R i a b z a b a b a z a b a b-+=++=++=∈++,充分性;取2z =,则15R 2z z +=∈,2z =,不必要性.综上所述:“1z =”是“1R z z +∈”的充分不必要条件.故选:A2.若函数sin cos y a x b x =+(其中,a b R ∈,且,0a b >)可化为)y x ϕ=-,则ϕ应满足条件()A.tan ba ϕ=B.cos ϕ=C.tan a bϕ=D.sin ϕ=【正确答案】C【分析】先逆用两角和的正弦公式进行化简,再结合诱导公式,得到22k πϕθπ-=+,进而求得tan a bϕ=.【详解】sin cos y a x b x=+x x ⎫=+⎪⎭)x θ=+,其中tan baθ=,函数sin cos y a x b x =+(其中,a b R ∈,且,0a b >)可化为)y x ϕ=-,∴()sin()cos x x θϕ+=-,即sin()sin 2x x πθϕ⎛⎫+=+- ⎪⎝⎭,∴22k πϕθπ-=+()k Z ∈,∴()tan tan 22k πϕθπ⎛⎫-=+⎪⎝⎭,即cot tan ϕθ=,∴1tan tan a b ϕθ==,故选:C.本题考查了两角和的正弦公式以及诱导公式的应用,意在考查学生对这些知识的理解掌握水平,需熟记公式,属于基础题.3.某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A.0.9B.0.7C.0.3D.0.1【正确答案】D【分析】根据正态分布的对称性求解即可.【详解】由题得:()20.9P x ≥=,故()20.1P x <=,因为6242+=,所以根据对称性得.()()620.1P x P x ≥=<=故选:D.4.中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意为粮食满园、称心如意、十全十美.下图为一种婚庆升斗的规格,把该升斗看作一个正四棱台,忽略其壁厚,则该升斗的容积约为()39.6,1L 1000cm ≈=,参考公式:(13V S S h 下上棱台=++⋅)A.1.5LB.2.4LC.5.0LD.7.1L【正确答案】B【分析】由勾股定理算出高h ,即可由公式求体积.【详解】由题意,正四棱台中,设棱台的高为h ,则22222202112239236711.591.752224h 骣骣琪琪琪=-=-==琪琪琪桫桫桫,故(223120112371.2cm 2.4L 3V 棱台=⨯+≈≈.故选:B5.已知一个古典概型的样本空间Ω和事件A ,B 如图所示.其中()()()()12,6,4,8,n n A n B n A B Ω===⋃=则事件A 与事件B ()A.是互斥事件,不是独立事件B.不是互斥事件,是独立事件C.既是互斥事件,也是独立事件D.既不是互斥事件,也不是独立事件【正确答案】B【分析】由()4n A B = 可判断事件是否为互斥事件,由()()()P AB P A P B =可判断事件是否为独立事件.【详解】因为()12,()6,()4,()8n n A n B n A B Ω==== ,所以()2n A B = ,()4n A B = ,()8n B =,所以事件A 与事件B 不是互斥事件,所以()41123P AB ==,()()68112123P A P B =⨯=,所以()()()P AB P A P B =,所以事件A 与事件B 是独立事件.故选:B.6.已知定义在R 上的函数()f x 满足()()2f x f x =--,且函数()1f x +是偶函数,当[]1,0x ∈-时,()21f x x =-,则20235f ⎛⎫= ⎪⎝⎭()A.925B.1625C.3425D.4125【正确答案】C【分析】由函数(1)f x +是偶函数,可得函数()f x 的图像关于直线1x =对称,从而有()(2)f x f x -=+,再结合()2()f x f x =--可得函数()f x 的周期为4,然后利用周期和()2()f x f x =--将20235化到[]1,0-上即可求解.【详解】因为函数(1)f x +是偶函数,所以(1)(1)f x f x -=+,所以()(2)f x f x -=+,因为()2()f x f x =--,所以()(2)2f x f x ++=,所以(2)(4)2f x f x +++=,所以()(4)f x f x =+,所以函数()f x 的周期为4,所以33()(101204)()53525f f f =⨯+=,因为233334()2(21()55525f f ⎡⎤=--=---=⎢⎥⎣⎦,所以202334525f ⎛⎫=⎪⎝⎭.故选:C.7.已知椭圆E :()222210x y a b a b+=>>的两条弦AB CD ,相交于点P (点P 在第一象限),且AB x ⊥轴,CD y ⊥轴.若:::1:3:1:5PA PB PC PD =,则椭圆E 的离心率为()A.5B.105C.5D.5【正确答案】B【分析】设(),,P m n PA t =,进而得,,,A B C D 的坐标,进而根据对称性得()()3,,2,2A t t C t t ,再代入椭圆方程整理得2235b a =,最后求解离心率即可.【详解】解:设(),,P m n PA t =,则()(),,,3A m n t B m n t +-,()(),,5,C m t n D m t n +-,由题知,A B 关于x 轴对称,,C D 关于y 轴对称,所以30n t n t ++-=,50m t m t ++-=,即n t =,2m t =,所以()()3,,2,2C t t A t t ,所以2222222291441t t a b t t a b ⎧+=⎪⎪⎨⎪+=⎪⎩,即22229144a b a b +=+,所以2253a b=,即2235b a =,所以椭圆E的离心率为5e ===.故选:B8.已知0a b >>,1ab =,设2ab x =,2log ()y a b =+,1z a b=+,则log 2x x ,log 2y y ,log 2z z 的大小关系为()A.log 2log 2log 2x y z x y z >>B.log 2log 2log 2y z x y z x >>C.log 2log 2log 2x z y x z y >>D.log 2log 2log 2y x z y x z>>【正确答案】B【分析】由已知0a b >>,1ab =,可得1=a b,且a >1>b >0,不难判断x ,y ,z 的大小关系01x y z <<<<,再根据对数运算法则及对数函数性质可得大小关系.【详解】∵a >b >0,1ab =,∴可得1=a b ,且a >1>b >0,∴11222a ab x a ==<⋅,222log ()log log 21y a b =+>==,122z a a a a b=+=+=>,又()()22log (1)z y a a b f a a -=-+=>,()120f a a b'=-+>,()f a 单调递增,()()212log (1)0f a f b =-+>>,∴z y ->0,∴01x y z <<<<,∵log 2=log 21x x x +,log 2log 21y y y =+,log 2=log 2+1z z z ,根据对数函数性质可得log 2log 2log 2x z y <<,∴log 2log 2log 2y z x y z x >>.故选B .本题考查对数函数的性质及运算定律,涉及基本不等式和不等式性质的应用,属于综合题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在9x⎛+ ⎝的展开式中,下列结论正确的是()A.第6项和第7项的二项式系数相等B.奇数项的二项式系数和为256C.常数项为84D.有理项有2项【正确答案】BC【分析】根据二项式展开式的特征,即可结合选项逐一求解.【详解】9x⎛⎝的展开式中共有10项,由二项式系数的性质可得展开式中的第5项和第6项的二项式系数相等,故A 错误;由已知可得二项式系数之和为92,且展开式中奇数项的二项式系数和与偶数项的二项式系数和相等,所以奇数项的二项式系数和为82256=,故B 正确;展开式的通项为139922199C C ,09,N rr r r rr T x x x r r ---+⎛⎫==≤≤∈ ⎪⎝⎭,令3902r -=,解得6r =.故常数项为6399C C 84==,故C 正确;有理项中x 的指数为整数,故0r =,2,4,6,8,故有理项有5项,故D 错误.故选:BC10.下列说法正确的是()A.若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B.若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C.设l ,m ,n 为直线,m ,n 在平面α内,则“lα⊥”是“l m ⊥且l n ⊥”的充要条件D.若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补【正确答案】AB【分析】对于选项ABC ,可根据线面平行的判定定理,面面平行的判定定理和线面垂直的判定定理进行判定;对于选项D ,可在长方体中寻找特殊平面进行排除.【详解】选项A ,若存在直线,则由直线和平面平行的判定定理知直线a 与平面α平行,与条件相矛盾,故选项A 正确;选项B ,由面面平行的判定定理可知选项B 正确;选项C ,当直线,m n 不相交时,由线面垂直的判定定理知:l m ⊥且l n ⊥时,得不到l α⊥,故选项C 错误;选项D ,当11//αβ,αβ⊥时,可满足题设条件,此时平面α与平面β所成的二面角为90︒,平面1α与平面1β所成的二面角为0︒,故选项D 错误.故选:AB11.定义在R 上的函数()()π2sin N 3f x x ωω*⎛⎫=+∈ ⎪⎝⎭满足在区间ππ,66⎛⎫- ⎪⎝⎭内恰有两个零点和一个极值点,则下列说法不正确...的是()A.()f x 的最小正周期为π2B.将()f x 的图象向右平移π3个单位长度后关于原点对称C.()f x 图象的一个对称中心为π,06⎛⎫ ⎪⎝⎭D.()f x 在区间π,06⎛⎫- ⎪⎝⎭上单调递增【正确答案】ABC【分析】根据题意可求出ω的值,从而可得到()f x 的解析式,再根据解析式逐项分析即可.【详解】依题可知π23T T <<,于是36ω<<,于是πππ0263ππ3ππ632ωω⎧-≤-+<⎪⎪⎨⎪<+≤⎪⎩,∴45ω<≤,又N ω*∈,∴5ω=,∴()π2sin 53f x x ⎛⎫=+ ⎪⎝⎭,对于A ,由2π2π==5T ω,则()f x 的最小正周期为25π,故A 错误;对于B ,因为ππ4π4π2π2sin 52sin 52sin 52π2sin 533333x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=-=-+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以将()f x 的图象向右平移π3个单位长度后得()2π2sin 53g x x ⎛⎫=+ ⎪⎝⎭,则()2π02sin 3g ⎛⎫== ⎪⎝⎭,所以()g x 不关于原点对称,故B 错误;对于C ,由π7π2sin 166f ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,所以π,06⎛⎫ ⎪⎝⎭不是()f x 图象的一个对称中心,故C 错误;对于D ,由π,06x ⎛⎫∈- ⎪⎝⎭,则πππ5,323x ⎛⎫+∈- ⎪⎝⎭,所以()f x 在区间π,06⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:ABC .12.平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的,已知在平面直角坐标系xOy 中,(2,0)M -,(2,0)N ,动点P 满足||||5PM PN ⋅=,则下列结论正确的是()A.点P 的横坐标的取值范围是⎡⎣B.OP 的取值范围是[]1,3C.PMN 面积的最大值为52D.PM PN +的取值范围是⎡⎤⎣⎦【正确答案】BC【分析】设出点P 的坐标,列出方程并化简整理,放缩解不等式判断A ;利用几何意义并结合求函数值域判断B ;利用三角形面积公式计算判断C ;取点计算判断D 作答.【详解】设点(,)P x y ,依题意,2222[(2)][(2)]25x y x y ++-+=,对于A ,2222222225[(2)][(2)](2)(2)(4)x y x y x x x =++-+≥+-=-,当且仅当0y =时取等号,解不等式22(4)25x -≤得:33x -≤≤,即点P 的横坐标的取值范围是[3,3]-,A 错误;对于B ,2222[(4)4][(4)4]25x y x x y x +++++-=,则224x y ++=显然209x ≤≤,因此||[1,3]OP ==,B 正确;对于C ,PMN 的面积115||||sin ||||222S PM PN MPN PM PN =∠≤=,当且仅当90MPN ∠= 时取等号,当90MPN ∠= 时,点P 在以线段MN 为直径的圆224x y +=上,由222244x y x y ⎧+=⎪⎨++=⎪⎩解得39454x y ⎧=±⎪⎪⎨⎪=±⎪⎩,所以PMN 面积的最大值为52,C 正确;对于D ,因为点(3,0)在动点P 的轨迹上,当点P 为此点时,516PM PN +=+=,D 错误.故选:BC易错点睛:求解轨迹方程问题,设出动点坐标,根据条件求列出方程,再化简整理求解,还应特别注意:补上在轨迹上而坐标不是方程解的点,剔出不在轨迹上而坐标是方程解的点.三、填空题:本题共4小题,每小题5分,共20分.13.已知()()()()1,2,3,4,2,2,3,5A B C D --,则AB 在CD上的投影为______.【正确答案】2105【分析】先求AB ,CD,再求AB ,CD ,AB CD ⋅ ,利用向量夹角余弦公式求夹角,再由投影向量的模长公式求解.【详解】因为()()()()1,2,3,4,2,2,3,5A B C D --,所以()2,2AB =,()1,3CD =- ,所以AB ==,CD == ,264AB CD ⋅=-+= ,设向量AB 与CD 的夹角为θ,5cos 5|||AB CD AB CD θ⋅===,那么AB 在CD上的投影为5210cos 55AB θ==|故答案为.514.已知圆柱的两个底面的圆周都在表面积为20π的球面上,则该圆柱的侧面积的最大值为__________.【正确答案】10π【分析】先求出半径,根据条件列出圆柱底面半径和母线的关系,即可得到侧面积表达式,然后用基本不等式即可求解最大值.【详解】解:设球的半径为R ,圆柱的底面半径为r ,母线为l ,由题意可知,24π20πR R =⇒=,又圆柱的两个底面的圆周都在球面上,则满足22252l r R ⎛⎫+== ⎪⎝⎭,而圆柱的侧面积2πS rl =,0l >,因为22222l l r r lr ⎛⎫+≥⋅= ⎪⎝⎭,当且仅当2l r =,即102r =,l =时等号成立,所以5lr ≤,2π10πS rl =≤,故10π15.已知实数a b c d ,,,成等比数列,且函数()ln 2y x x =+-,当x b =时取到极大值c ,则ad 等于______.【正确答案】1-【分析】通过导函数,求出极值,再利用等比数列的性质,即可求解.【详解】令()()ln 2f x x x =+-,则函数()()ln 2f x x x =+-的定义域为()2,-+∞,导函数11()122x f x x x --'=-=++,当()2,1x ∈--时,()0f x '>,函数()f x 在()2,1--上单调递增,当()1,x ∈-+∞时,()0f x '<,函数()f x 在()1,-+∞上单调递减,所以当=1x -时,函数()ln 2y x x =+-取极大值,极大值为1,所以1,1b c =-=,故bc 1=-,又a b c d ,,,成等比数列,所以1ad bc ==-,故答案为.1-16.如图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关1次,将导致自身和所有相邻(上、下相邻或左、右相邻)的开关改变状态.若从这十六个开关中随机选两个不同的开关先后各按1次(例如:先按()1,1,再按()4,4),则()2,3和()4,1的最终状态都未发生改变的概率为______.()1,1()1,2()1,3()1,4()2,1()2,2()2,3()2,4()3,1()3,2()3,3()3,4()4,1()4,2()4,3()4,4【正确答案】41120【分析】根据开关阵列的性质,结合古典概型的概率公式进行求解即可.【详解】要使得()2,3的状态发生改变,则需要按()1,3,()2,2,()2,3,()2,4,()3,3这五个开关中的一个,要使得()4,1的状态发生改变,则需要按()3,1,()4,1,()4,2这三个开关中的一个,所以要使得()2,3和()4,1的最终状态都未发生改变,则需按其他八个开关中的两个或()1,3,()2,2,()2,3,()2,4,()3,3中的两个或()3,1,()4,1,()4,2中的两个,故所求概率为222853216A A A 41A 120++=.故41120关键点睛:根据开关阵列的判断出:要使得()2,3和()4,1的最终状态都未发生改变,则需按其他八个开关中的两个或()1,3,()2,2,()2,3,()2,4,()3,3中的两个或()3,1,()4,1,()4,2中的两个,是解题的关键.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知{}n a 为等差数列,且11a =,()6423a a a =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:()*12na nb n ⎛⎫=∈ ⎪⎝⎭N ,{}n b 的前n 项和为n S ,求127128n S ≤成立的n 的最大值.【正确答案】(1)n a n =(2)7【分析】(1)代入公式求出公差即可求通项公式;(2)代入等比数列的前n 项和公式即可.【小问1详解】设数列{}n a 的公差为:d ,()6423a a a =-,11a =∴()111533a d a d a d +=+--,∴1d =.∴()1111n a a n d n n =+-=+-=,即n a n =.【小问2详解】()*12na nb n ⎛⎫=∈ ⎪⎝⎭N ,nan =,∴12nn b ⎛⎫= ⎪⎝⎭,∴数列{}n b 为等比数列,所以11112211212n n nS ⎛⎫- ⎪⎝⎭==--由127128nS ≤,即112712128n -≤,化简得:111282n ≤,解得17n ≤≤,()*n ∈N ,所以,要使127128nS ≤成立的n 的最大值为:7.18.已知函数()()sin 0,π2,0f x M x M ϕωϕω⎛⎫>>⎭<⎪⎝=+)的部分图象如图所示.(1)求函数()f x 的解析式;(2)在ABC 中,角,,A B C 的对边分别是,,a b c ,若()2cos cos a c B b C -=,求2f A ⎛⎫ ⎪⎝⎭的取值范围.【正确答案】(1)()π26f x x ⎛⎫=+⎪⎝⎭;(2)1,12⎛⎤⎥⎝⎦.【分析】(1)利用最大值和最小值,求出M ,通过函数的周期求出ω,由经过π,16⎛⎫⎪⎝⎭,求出φ,即可求出()f x 的解析式;(2)利用()2cos cos a c B b C -=,结合正弦定理,求出cos B ,利用函数的解析式2f A ⎛⎫ ⎪⎝⎭的表达式,通过A 的范围求出函数的取值范围.【小问1详解】由图象知函数()f x 的最大值为1,最小值为1-,所以1M =由图象知函数()f x 的周期5ππ4π126T ⎛⎫=-=⎪⎝⎭,所以ω2=,将点π,16⎛⎫⎪⎝⎭代入解析式得πsin φ13⎛⎫+= ⎪⎝⎭,因为πφ2<,所以πφ6=,所以()π26f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】由()2cos cos a c B b C -=得:()2sin sin cos sin cos A C B B C -=,所以()2sin cos sin A B B C =+,2sin cos sin A B A =,因为()0,πA ∈,所以sin 0A ≠,所以1cos 2B =,π3B =,2π3A C +=,由(1)πsin 26A f A ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,又2π03A <<,ππ5π666A <+<,所以π1sin 62A ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,所以1,122A f ⎛⎫⎛⎤∈⎪ ⎥⎝⎭⎝⎦.所以2f A ⎛⎫⎪⎝⎭的取值范围为1,12⎛⎤⎥⎝⎦.19.如图,已知多面体EABCDF 的底面ABCD 是边长为2的正方形,EA ⊥底面ABCD ,//FD EA ,且112FD EA ==.(1)记线段BC 的中点为K ,在平面ABCD 内过点K 作一条直线与平面ECF 平行,要求保留作图痕迹,但不要求证明;(2)求直线EB 与平面ECF 所成角的正弦值.【正确答案】(1)答案见解析(2)6【分析】(1)根据线面平行性质定理,可得所作直线必平行面ABCD 与面ECF 的交线,因此先作两平面交线,再在平面ABCD 内作交线的平行线.(2)建立空间直角坐标系,求直线EB 的方向向量和平面ECF 的法向量,利用向量夹角公式求直线EB 与平面ECF 所成角的正弦值.【小问1详解】延长,AD EF ,设其交点为N ,连接CN ,则CN 为平面ABCD 与平面ECF 的交线,取线段CD 的中点M ,连接KM ,直线KM 即为所求.证明如下:延长,AD EF ,设其交点为N ,连接CN ,则CN 为平面ABCD 与平面ECF 的交线,因为//FD EA ,所以FDA EAN ∽,又12FD EA =,所以12ND NA =,所以ND DA BC ==,又//ND BC ,所以四边形BCND 为平行四边形,所以//CN BD ,取CD 的中点M ,连接KM ,∵,K M 分别为,BC CD 的中点,∴//KM BD ,∴//KM CN .∵CN ⊂平面EFC ,KM ⊄平面EFC ,∴//KM 平面EFC.【小问2详解】以点A 为原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立空间直角坐标系,如图.由已知可得()()()()()0,0,0,0,0,2,2,0,0,2,2,0,0,2,1A E B C F ,所以()()()2,2,2,2,0,2,0,2,1EC EB EF =-=-=-,设平面ECF 的法向量为(,,)n x y z =,则0,0.n EC n EF ⎧⋅=⎪⎨⋅=⎪⎩得020x y z y z +-=⎧⎨-=⎩,取1y =得,1,2x z ==,平面ECF 的一个法向量(1,1,2)n =.设直线EB 与平面ECF 所成的角为θ,则3sin cos ,6E EB n E B B n nθ⋅====⋅.所以直线EB 与平面ECF所成角的正弦值为6.20.放行准点率是衡量机场运行效率和服务质量的重要指标之一.某机场自2012年起采取相关策略优化各个服务环节,运行效率不断提升.以下是根据近10年年份数i x 与该机场飞往A 地航班放行准点率i y (1210i =L ,,,)(单位:百分比)的统计数据所作的散点图及经过初步处理后得到的一些统计量的值.xyt1021ii x=∑101iii x y=∑1021ii t=∑101iii t y=∑2017.580.4 1.5.0.227.71226.8其中()ln 2012i i t x =-,101110i i t t ==∑(1)根据散点图判断,y bx a =+与()ln 2012y c x d =-+哪一个适宜作为该机场飞往A 地航班放行准点率y 关于年份数x 的经验回归方程类型(给出判断即可,不必说明理由),并根据表中数据建立经验回归方程,由此预测2023年该机场飞往A 地的航班放行准点率.(2)已知2023年该机场飞往A 地、B 地和其他地区的航班比例分别为0.2、0.2和0.6.若以(1)中的预测值作为2023年该机场飞往A 地航班放行准点率的估计值,且2023年该机场飞往B 地及其他地区(不包含A 、B 两地)航班放行准点率的估计值分别为80%和75%,试解决以下问题:(i )现从2023年在该机场起飞的航班中随机抽取一个,求该航班准点放行的概率;(ii )若2023年某航班在该机场准点放行,判断该航班飞往A 地、B 地、其他地区等三种情况中的哪种情况的可能性最大,说明你的理由.附:(1)对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()112211ˆnni ii i i i n ni ii i u u vv u vnu v u u unu β====---⋅==--∑∑∑∑,ˆˆv u αβ=-参考数据:ln10 2.30≈,ln11 2.40≈,ln12 2.48≈.【正确答案】(1)()ln 2012y c x d =-+适宜,预测2023年该机场飞往A 地的航班放行准点率84%(2)(i )0.778;(ii )可判断该航班飞往其他地区的可能性最大,理由见解析【分析】(1)根据线性回归方程的计算公式,选择合适的模型计算即可;(2)利用全概率公式和条件概率公式,即可根据概率判断可能性最大的情况.【小问1详解】由散点图判断()ln 2012y c x d =-+适宜作为该机场飞往A 地航班放行准点率y 关于年份数x 的经验回归方程类型.令()ln 2012t x =-,先建立y 关于t 的线性回归方程.由于101102212101226.8101.580.4ˆ427.7101.510i iii i t y t yctt =--=--⨯⨯===-⨯-∑∑,ˆˆ804415744...dy ct =-=-⨯=,该机场飞往A 地航班放行准点率y 关于t 的线性回归方程为ˆ4744.yt =+,因此y 关于年份数x 的回归方程为()ˆ4ln 201274.4yx =-+所以当2023x =时,该机场飞往A 地航班放行准点率y 的预报值为()ˆ4ln 202320127444ln11744424074484....y=-+=+≈⨯+=.所以2023年该机场飞往A 地航班放行准点率y 的预报值为84%.【小问2详解】设1A =“该航班飞往A 地”,2A =“该航班飞往B 地”,3A =“该航班飞往其他地区”,C =“该航班准点放行”,则()10.2P A =,()20.2P A =,()30.6P A =,()10.84P C A =,()20.8P C A =,()30.75P C A =.(i )由全概率公式得,()()()()()()()112232P C P A P C A P A P C A P A P C A =++0.840.20.80.20.750.60.778=⨯+⨯+⨯=,所以该航班准点放行的概率为0.778.(ii )()()()()()()11110.20.840.778P A P C A P A C P A C P C P C ⨯===,()()()()()()22220.20.80.778P A P C A P A C P A C P C P C ⨯===,()()()()()()33330.60.750.778P A P C A P A C P A C P C ⨯===,因为0.60.750.20.840.20.8⨯>⨯>⨯,所以可判断该航班飞往其他地区的可能性最大.21.已知双曲线C :()22221,0x y a b a b-=>,直线1l :2y x =+线C 仅有一个公共点.(1)求双曲线C 的方程(2)设双曲线C 的左顶点为A ,直线2l 平行于1l ,且交双曲线C 于M ,N 两点,求证:AMN 的垂心在双曲线C 上.【正确答案】(1)2211616x y -=(2)证明见解析【分析】(1可得a b =,再联立直线与双曲线利用判别式可得C 的方程;(2)设2l 方程,及M N ,的坐标,由过A 引MN 的垂线交C 于另一点H ,可得点H 为2016,33⎛⎫- ⎪⎝⎭.再证AN MH ⊥即可.【小问1详解】因为双曲线C 2222a b a+=,即22a b =,所以双曲线C 的方程为222x y a -=,联立直线1l 与双曲线C 的方程2222y x x y a⎧=+⎪⎨-=⎪⎩,消去y 得(2222x x a -+=,即))2216480a +++=,因为1l 与双曲线C 仅有一个公共点,所以()22164480a ∆=-+=,解得216a =,故双曲线C 的方程为2211616x y -=.【小问2详解】设(2:2l y x m m =+≠,()11,M x y ,()22,N x y 则M N 、满足222,16,y x m x y =+⎧⎨-=⎩消去y 得2234160x mx m +++=,所以1243x x m +=-,212163m x x +=,如图所示,过A 引MN 的垂线交C 于另一点H ,则AH 的方程为122y x =--.代入2216x y -=得238800x x --=,即4x =-(舍去)或203x =.所以点H 为2016,33⎛⎫-⎪⎝⎭.所以()()()()()()21122122116322162320320443AN MHy y x m x m x m k k x x x x ⎛⎫+ ⎪++++⎝⎭==-+⎛⎫+- ⎪⎝⎭()()()2222212122212122241683163212632316312328016163280m m m m x x x m x x x m m x x x x x m m x +-++++++++==++--+---,22221632611632644m m x m m x -++==----+所以MH AN ⊥,故H 为AMN 的垂心,得证.关键点睛:本题考察直线与圆锥曲线的位置关系,属于压轴题.先求AMN 一条垂线与双曲线的交点H ,再证另两条过交点H 的直线互相垂直,由此得证,其中化简斜率关系是关键,用到了转化及整体消元的思想.22.已知()21ln 22f x a x x x =+-(R a ∈且0a ≠),()cos sin g x x x x =+.(1)求()g x 在[],ππ-上的最小值;(2)如果对任意的[]1,x ππ∈-,存在21,x e e ⎡⎤∈⎢⎥⎣⎦,使得()()212f x ag x x -≤成立,求实数a 的取值范围.【正确答案】(1)-1(2)()1,00,2⎡⎫-+∞⎪⎢⎣⎭【分析】(1)对()g x 求导,因为()g x 为偶函数,求出()g x 在()0,x π∈的单调性,即可求出[],ππ-上的最小值;(2)由(1)知,()g x 在[],ππ-上的最小值为1-,所以21,x e e⎡⎤∃∈⎢⎥⎣⎦,使得()221f x a x --≤成立,即()222221ln 2a x x x x --≥成立,即2222212ln x x a x x --≥,设()212ln x xx x xϕ-=-,1,x e e ⎡⎤∈⎢⎥⎣⎦,即只需()min a x ϕ≥即可.【小问1详解】()sin sin cos cos g x x x x x x x '=-++=,显然()g x 为偶函数,当0x >时,0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x x >,()0g x '>,∴()g x 在0,2π⎛⎫ ⎪⎝⎭单调递增;,2x ππ⎛⎫∈ ⎪⎝⎭时,cos 0x x <,()0g x '<,∴()g x 在,2ππ⎛⎫⎪⎝⎭单调递减;()01g =,22g ππ⎛⎫= ⎪⎝⎭,()1g π=-,∴()g x 在()0,π上的最小值为1-.由偶函数图象的对称性可知()g x 在(),ππ-上的最小值为1-.【小问2详解】先证ln 1≤-x x ,设()ln 1h x x x =-+,则()111x h x x x-'=-=,令()001h x x '>⇒<<,令()01h x x '⇒,∴()h x 在()0,1上单调递增,在()1,+∞上单调递减.()()10h x h ≤=故ln 1≤-x x ①恒成立.由题意可得21,x e e ⎡⎤∃∈⎢⎥⎣⎦,使得()221f x a x --≤成立,即()222221ln 2a x x x x --≥成立.由①可知22ln 10x x ->≥,参变分离得2222212ln x x a x x --≥,设()212ln x x x x xϕ-=-,1,x e e ⎡⎤∈⎢⎥⎣⎦,即只需()min a x ϕ≥即可.()()()()()()2221111ln 1ln 122'ln ln x x x x x x x x x x x x x x x ϕ-⎛⎫⎛⎫----⋅--+ ⎪ ⎪⎝⎭⎝⎭==--由①知ln 1≤-x x 得ln 1x x -≥-,∴1114ln 111202222xx x x x x --++-+=-=>≥令()'01x x e ϕ>⇒<<,令()1'01x x eϕ<⇒<<,∴()x ϕ在1,1e ⎛⎫ ⎪⎝⎭上单调递减,在()1,e 上单调递增.∴()()min 112x ϕϕ==-,∴12a ≥-,又已知0a ≠故a 的取值范围为()1,00,2⎡⎫-+∞⎪⎢⎣⎭.。

2024年高考数学模拟试题及答案

2024年高考数学模拟试题及答案

2024年高考数学模拟试题及答案2024年高考数学模拟试题及答案一、选择题1、下列函数中,既是偶函数又在区间(0, ∞)上单调递增的是()。

A. y = |x|B. y = x^3C. y = log2xD. y = sinx2、已知平面向量a,b满足|a|=1,|b|=2,且a与b的夹角为120°,则(2a-b)·(a+3b)=()。

A. -7 B. -5 C. 1 D. 93、已知函数f(x)=ax^7+bx^5+cx^3+dx+5,且f(-5)=3,则f(5)=()。

A. -7 B. -3 C. 3 D. 7二、填空题1、若等差数列{an}的前n项和为Sn,且a1=4,S4=28,则{an}的通项公式为。

2、已知球O的半径为4,则球O的内接正方体的棱长为。

3、若函数f(x)=log2x,则f(4)的值是。

三、解答题1、已知向量a=(1,2),b=(cosθ,sinθ),设向量ma+b与向量a-mb平行,求tanθ的值。

2、已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-9|,当且仅当x=5时取得最小值,求最小的m和最大的n,使得当x∈[m, n]时,函数f(x)取得最小值。

3、已知正四棱柱ABCD-A1B1C1D1的侧棱长为3,底面边长为2,E为BC中点。

求点B1到平面BDE的距离。

四、选做题1、选修4-1:几何证明选讲在△ABC中,D是BC的中点,E是AD上一点。

求证:EB=EC。

2、选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为圆心、半径为r的圆与直线x=π/2相切。

求圆上点到直线x=π的距离的最大值和最小值。

3、选修4-5:不等式选讲已知a、b、c均为正数,且a+b+c=1。

求证:(1/a)+(1/b)+(1/c)≥9。

五、附加题1、某中学共有学生2000人,其中高一年级共有学生900人,男生500人,女生400人。

高二年级共有学生1100人,男生600人,女生500人。

2024年全国普通高中九省联考仿真模拟数学试题(二)(含答案)

2024年全国普通高中九省联考仿真模拟数学试题(二)(含答案)

2024年高考仿真模拟数试题(二) 试卷+答案注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .1B .3C .6D .1或33.设等差数列{}n a 的前n 项和为n S ,若3510a a +=−,642S =−,则10S =( ) A .12B .10C .16D .20A .32种B .128种C .64种D .256种5.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D −−为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是( )A .1B .2C .3D .4A .[]3,3−B .[]3,5C .[]1,9D .[]3,7二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.三、填空题:本题共3小题,每小题5分,共15分.为 ;此时棱柱的高为 .14.已知正实数,,,a b c d 满足210a ab −+=,221c d +=,则当22()()a c b d −+−取得最小值时,ab = . 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(二)试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A.1 B.3 C.6 D.1或3A.12B.10C.16D.20A.32种B.128种C.64种D.256种答案 C解析若甲、乙都去,剩下的5人每个人都可以选择去或不去,有52种去法;若甲、乙都不去,剩下的5人每个人都可以选择去或不去,有52种去法.故一共有55+=种去法.故选C.22645.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC折起,使得二面角A BC D −−为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是( )A .1B .2C .3D .4A .[]3,3−B .[]3,5C .[]1,9D .[]3,7二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.答案 AD解析 对A :令1x =,0y =,则()()()21210f f f =, 因为()11f =−,所以()01f =,故A 正确;对B :令0x =得:()()()()20f y f y f f y +−=,结合()01f =可得()()f y f y =−, 所以()f x 为偶函数,故B 错误;对C :令1y =可得:()()()()1121f x f x f x f ++−=,因为()11f =−,三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.≤.……………17分综上,不存在正实数M,使得对任意的正整数n,都有n a M。

2024届黑龙江省名校联盟高考模拟测试数学试题及答案

2024届黑龙江省名校联盟高考模拟测试数学试题及答案

黑龙江名校联盟2024届高三模拟测试数学试卷(本试卷满分150分,考试时间120分钟.)注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的姓名、准考证号分别填写在试卷和答题卡规定的位置上.2.答选择题时,选出每小题答案后,用2B 铅笔把答题卡对应题目的答案涂黑,如需改动,用橡皮擦干净后,再涂其它答案.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题卡上相应的区域内,写在本试卷上无效.一、选择题:本题共8个小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足23i z z +=--,则z =( )A.2C.32.已知0,0x y <<,且22x y +=-,则42x y +的最小值为( )A.1C.2D.3.已知集合,A B ,若{}3log 1A xx =∣…,且(]0,2A B ⋂=,则集合B 可以为( )A.{}24xx <∣ B.02x x x ⎧⎫⎨⎬-⎩⎭∣…C.{yy =∣D.{x y =∣4.已知函数()()cos ,02,(0)x x f x x x π⎧⎪=⎨<⎪⎩…,则43f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A.2B.-2C.-4D.45.已知()()1,,,2a m b n == ,向量b 在向量a 方向上的投影向量为12a - ,且ab + 与向量()2,1--共线且方向相反,则( )A.1mn=- B.2m n +=C.2m n -= D.1mn =6.若,,A B C 分别为ABC 的三个内角,则“sin sin A B >”是“()cos cos 0A A C ++<”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.若正四棱柱1111ABCD A B C D -与以正方形ABCD 的外接圆为底面的圆柱的体积相同,则正四棱柱与该圆柱的侧面积之比为( )A.2πD.2π8.已知数列{}n a 的前n 项和为n S ,若123a a ==,且*2,n n ∀∈N …都有()114n n n S S S -+--=0,则()A.{}12n n S S --是等比数列B.13,121,2n n n a n -=⎧=⎨+⎩…C.3,121,2n n n a n =⎧=⎨-⎩… D.548S =二、多选题:本题共4个小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对的得2分,有选错的得0分.9.已知等差数列{}n a 的前n 项和为n S ,若202320240,0S S <>,则下列结论正确的是( )A.{}n a 是递增数列B.10131012a a <C.1012n S S …D.10151008S S >10.关于函数()121cos 224f x x π⎛⎫=- ⎪⎝⎭的图象和性质,下列说法正确的是( )A.58x π=是函数()f x 的一条对称轴B.7,08π⎛⎫⎪⎝⎭是函数()f x 的一个对称中心C.将曲线1sin22y x =向左平移38π个单位可得到曲线()y f x =D.函数()f x 在,02π⎛⎤- ⎥⎝⎦的值域为12⎡⎤⎢⎥⎣⎦11.已知直线:220l ax y a -+-=与圆222:(4)(1)(0)C x y r r -+-=>相交于不同的两点,,M N O 为坐标原点,则()A.直线l 过定点()2,2-B.()2,r ∞∈+C.当3r =时,[]4,6MN ∈D.当5r =时,CM CN ⋅最小值为-2512.在正四棱柱中11111,4,2,,ABCD A B C D AA AB E F -==分别为棱1,AB CC 的中点,记α为过1D EF 三点所作该正四棱柱的截面,则下列判断正确的是( )A.异面直线EF 与直线1AA 所成角的余弦值为23B.α与平面11BCC B 的交线与1BC 平行C.截面α为五边形D.D 点到截面α三、填空题:本题4个小题,每小题5分,共20分.13.已知函数()f x 是定义在R 上的奇函数,当0x <时,()cos 1f x x x =-+,则当0x …时,()f x =__________.14.在平行四边形ABCD 中,()3,,,2BE ED CE AB AD λμλμλμ==+∈+=R__________.15.已知球O 的体积为323π,其内接三棱锥D ABC -的底面ABC 为直角三角形,且90ACB ∠= ,则三棱锥D ABC -的体积的最大值为__________.16.已知()f x '为函数()f x 的导函数,且定义域均为R ,若函数12x f ⎛⎫+⎪⎝⎭'与()f x x -都是偶函数,写出函数()f x x的一个对称中心为__________;()()()()()()()()1121213131412023120241f f f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-++-++-+++-+='''''''⎣⎦⎣⎦⎣⎦⎣⎦'⎣⎦⎣⎦⎣⎦⎣⎦ __________.四、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知等差数列{}n a 公差与等比数列{}n b 公比相同,12361,4,3a b b a ==-=-.(1)求{}n a 和{}n b 的通项公式;(2)记数列{}n c 是将数列{}n a 和{}n b 中的项从小到大依次排列而成的新数列,求数列{}n c 前60项的和60S .18.(本小题满分12分)已知函数()e ,xf x x x =∈R .(1)求函数()e xf x x =单调区间;(2)若过点()()1,P t t ∈R 可以作曲线()y f x =的3条切线,求实数t 的取值范围.19.(本小题满分12分)在四棱锥P ABCD -中,,45,PB AD DAB CDA AD ∠∠⊥== ∥BC ,且24,AD PB AB ===,PD =.(1)证明:平面PCD ⊥平面PAB ;(2)求平面PCD 与平面PBC 夹角的余弦值.20.(本小题满分12分)已知圆()22:2210,R C x mx y m y m m -++-+-=∈.(1)证明:圆C 过定点;(2)当0m =时,点P 为直线:163x yl +=上的动点,过P 作圆C 的两条切线,切点分别为A ,B ,求四边形PACB 面积最小值,并写出此时直线AB 的方程.21.(本小题满分12分)某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点A ,C 之间的距离,如图,B 处为码头入口,D 处为码头,BD 为通往码头的栈道,且100m BD =,在B 处测得,46ABD CBD ππ∠∠==,在D 处测得23,34BDC ADC ππ∠∠==(,,,A B C D 均处于间一测量的水平面内)(1)求,A C 两处景点之间的距离;(2)栈道BD 所在直线与,A C 两处景点的连线是否垂直?请说明理由.22.(本小题满分12分)已知函数()e ln,02xxf x a a =+<.(1)当e a =-时,求函数()f x 的极值;(2)证明:()22ln 0f x a a a ⎛⎫++-⎪⎝⎭….参考答案与解析1.【答案】B【解析】依题意,令i,,z x y x y R =+∈,则i z x y =-,所以23i 3i z z x y +=-=--,所以1,1x y =-=,即1i z =-+,所以z == B.2.【答案】A【解析】因为0,0x y <<,所以242221x y x y +=+≥==,当且仅当222x y =,即21x y ==-时,等号成立,故选A.3.【答案】D【解析】因为3log 1x ≤,所以03x <≤,所以集合(]0,3A =,对于A 选项,不等式24x <的解为(]2,0,2x A B <⋂≠,所以A 选项不合题意;对于B 选项,不等式02xx ≤-等价于()2020x x x -≠⎧⎨-≤⎩,解得[)(]0,2,0,2B A B =⋂≠,所以B 选项不合题意;对于C选项,{[)(]0,,0,2yy A B ∞==+⋂≠∣,所以C 选项不合题意;对于D选项,{(](],2,0,2x y A B ∞==-⋂=∣,符合题意,故选D.4.【答案】C【解析】依题意,44112cos cos cos ,413333222f f ππππ⎛⎫⎛⎫⎛⎫==+=-=--==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,故选C 5.【答案】A【解析】依题意12a ba a aa ⋅⋅==- ,所以22112n m m +=-+①,又a b + 与向量()2,1--共线,()1,2a b n m +=++,所以()()1220n m -+++=②,由①②联立,解得11m n =-⎧⎨=⎩或711m n =-⎧⎨=-⎩,又a b + 与向量()2,1--方向相反,所以711m n =-⎧⎨=-⎩舍去,所以11m n =-⎧⎨=⎩,故选A6.【答案】C【解析】依题意可知,在ABC 中,由正弦定理可知sin sin a bA B=,若sin sin A B >,则a b >,于是A B >,且(),0,A B π∈,函数cos y x =在()0,π上单调递减,所以cos cos A B <,又()cos cos A C B +=-,则()cos cos cos A A C B <-+=,所以满足充分性;且以上过程可逆,因此也满足必要性,故选C.7.【答案】B【解析】依题意,设正四棱柱1111ABCD A B C D -的底面边长为a ,高为1h ,圆柱的高为2h ,则圆柱的底面,则有2212a h h π⎫=⎪⎪⎭,整理得122h h π=,正四棱柱与圆柱的侧面积之比= B.8.【答案】D【解析】依题意,因为()1140n n n S S S -+--=,即()11122422,2n n n n n S S S S S S n +---=-=-≥,又()21122230S S a a -=+-⨯=,所以12,2n n S S n -=≥,又113S a ==,所以数列{}n S 是以3为首项,2为公比的等比数列,所以132n n S -=⨯,所以51234523,1,33612244832,2n n n a S a a a a a n -=⎧==++++=++++=⎨⋅≥⎩,故选D.9.【答案】AC【解析】依题意,()12023202310122023202302a a S a +==<,所以10120a <,()()1202410121013202420242024022a a a a S ++==>,所以101210130a a +>,所以101310120a a >->,所以数列{}n a 的公差大于0,且10131012a a >,所以A 选项正确,B 选项不正确;所以1012S 最小,即1012n S S ≤,所以C 选项正确;101510081015101410131012101110101009101270S S a a a a a a a a -=++++++=<,所以D 选项不正确,故选AC.10.【答案】ABD【解析】依题意,因为()121121cos 2cos 22424f x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭1515cos 24cos 22424x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭令552,,,428k x k k Z x k Z ππππ-=∈=+∈,当0k =时,58x π=,所以58x π=是函数()f x 的一条对称轴,所以A 选项正确(另解:因为5121511cos 2cos4824822f ππππ⎛⎫⎛⎫=-⨯== ⎪⎪⎝⎭⎝⎭,即当58x π=时,函数()f x 取得最大值,所以58x π=是函数()f x 的一条对称轴);令572,,,4228k x k k Z x k Z πππππ-=+∈=+∈,当70,8k x π==,所以7,08π⎛⎫⎪⎝⎭是函数()f x 的一个对称中心,所以B 选项正确(另解:因为7121717cos 2cos 0824822f ππππ⎛⎫⎛⎫=-⨯== ⎪⎪⎝⎭⎝⎭,即78x π=是函数()f x 的零点,所以7,08π⎛⎫⎪⎝⎭是函数()f x 的一个对称中心).对于C 选项,因为()15151313cos 2sin 2sin 2sin 2242422428f x x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=-=- ⎪ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦又将曲线1sin22y x =向左平移38π个单位可得到曲线1313sin 2sin 22824y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以C 选项不正确;因为()1211313cos 2cos 26cos 2242424f x x x x ππππ⎛⎫⎛⎫⎛⎫=-=+-=+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当,02x π⎛⎤∈- ⎥⎝⎦,则332,444x πππ⎛⎫⎛⎤+∈- ⎪ ⎥⎝⎭⎝⎦,所以函数()f x 的值域为12⎡⎤⎢⎥⎣⎦,所以D 选项正确,故选ABD11.【答案】CD【解析】由直线220ax y a -+-=,可化为()()220a x y -+-+=,即直线l 过定点()2,2P ,所以A 选项不正确;因为直线l 与圆C 有总有两个公共点,可得点()2,2P 在圆C 内部,所以222(24)(21)r -+-<,解得r >,所以B 不正确;当3r =时,圆C 的方程为22(4)(1)9x y -+-=,可得圆心()4,1C ,又()2,2P则CP =,可得MN 长的最小值为4=,最大值即为直径6,所以C 选项正确;当5r =时,圆C 的方程为22(4)(1)25x y -+-=,则cos 25cos CM CN CM CN MCN MCN∠∠⋅=⋅=当直线l 过圆心()4,1C ,此时cos 1MCN ∠=-,可得cos AOB ∠的最小值-1,所以CM CN ⋅的最小值为-25故选CD.12.【答案】ACD 【解析】如图,对于A 选项,异面直线EF 与直线1AA 所成的角,即为直线EF 与直线1CC 所成角,连接EC ,则EFC ∠即为直线EF 与直线1CC 所成的角,在Rt EFC 中,1122FC CC ==,EC ==,则3EF ==,所以2cos 3FC EFC EF ∠==,所以A 选项正确;延长DC 交1D F 延长线于H ,连接EH 交BC 于I ,延长HE 交DA 延长线于K ,连接1D K 交1AA 于J ,则五边形1D FIEJ 即为平面1D EF 截该四棱柱得到的截面.即截面α为五边形,所以C 选项正确;α与平面11BCC B 的交线即为FI ,则FI ∥1D K ,又1BC ∥1111,AD AD D K D ⋂=,所以FI 与1BC 不平行,所以B 选项不正确;对于D 选项,由于1112HC HF FC HD HD DD ===,所以2HC CD ==,又14AE KA KE HD KD KH ===,所以23KA =,111ΔKD KH D H KD H ====为等腰三角形,KF ==,所以1ΔKD H的面积为1Δ112KD H S D H KF =⨯==设D 点到截面α的距离为h ,则11D DHK D D KH V V --=,11Δ111323D KH DK HD DD S h ⨯⋅⨯=⨯⨯即1181443233h ⎛⎫⨯⨯⨯⨯=⨯⎪⎝⎭,解得h =D 点到截面α,所以D 选项正确,故选ACD.13.【答案】()cos 1f x x x =+-【解析】当()()0,0,cos 1x x f x x x >-<-=---+,又因为()f x 为R 上的奇函数,所以()()()cos 1f x f x x x -=-=---+,解得()cos 1f x x x =+-,又()00cos010f =+-=,所以当()0,cos 1x f x x x ≥=+-.14.【答案】54-【解析】依题意,可知4BD BE =,则()4CD CB CE CB -=- ,整理得13134444CE CD CB BA BC =+=- ,1344CE AB AD =-- 所以524λμ+=-15.【答案】25681【解析】设AB 的中点为1O ,四面体ABCD 的外接球的球心为O ,因为90ACB ∠= ,所以1O 为ACB 外接圆的圆心,即点1O 为四面体ABCD 的外接球过,,A B C 三点的截面圆的圆心,圆1O 的半径为r ,则2AB r =,因为22224AC BC AB r +==,所以22211222ABCAC BC S AC BC r +=⋅≤⋅=,当且仅当AC BC =时,取等号,即当且仅当ACB 为等腰直角三角形时,ACB 的面积最大,连接1O O 并延长交球面于一点,若使得四面体ABCD 的体积最大,则该交点应为点D ,1DO 即为四面体ABCD 的高,设[)1,0,2OO x x =∈,则有2214,2x r DO x +==+,则()()()2232111112482423333333ABC ABCD V S DO r x x x x x x =⋅≤+=-+=--++四面体,令()321248(02)3333f x x x x x =--++≤<,则()()()2441232333f x x x x x ='--+=-+-,当203x <<时,()0f x '>,当223x <<时,()0f x '<,所以()f x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,23⎛⎫ ⎪⎝⎭上单调递减,所以max 2256()381f x f ⎛⎫==⎪⎝⎭,所以三棱锥D ABC -的体积的最大值为25681.故答案为25681.16.【答案】()0,1;0【解析】依题意,因为()f x x -为偶函数,所以()()f x x f x x -=-+,即()()2f x f x xx-+=-,令()()f x h x x=,则()()2h x h x +-=,所以()h x 关于点()0,1对称,所以函数()f x x的一个对称中心为()0,1,因为12x f ⎛⎫+⎪⎝⎭'均为偶函数,所以1122x x f f ⎪''⎛⎫⎛⎫+=-+ ⎪ ⎝⎭⎝⎭,所以函数()f x '的图象关于直线1x =对称,即()()()()11,2f x f x f x f x '+=-+=''-',又因为()()f x x f x x -=-+,所以()()11f x f x -=--'+',所以()()2f x f x '+-=',()()()()22,422f x f x f x f x ''++''=+++=,所以()()4f x f x ='+',即函数()f x '是周期为4的周期函数,()()411f f -='-',即()()()()31,04f f f f =''-=''()()()()()()112,222,22f f f f f f ''+-=+-=='''-',所以()()221f f '=-='()()312f f '+=',所以()()041f f '==',所以()()242f f '+='所以()()1f x f x ⋅'+'也是周期为4的周期函数,()()()()()()112121313141f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-++-++-+++''''⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣'⎦'()()2023120241f f '='⎡⎤⎡⎤-+⎣⎦⎣⎦()()()()()()()()1212123231f f f f f f f f =⋅+--+⋅+--+''''''''()()()()()()()()3434120232024202320241f f f f f f f f '⋅+--++⋅+-''''''-'()()()()()()()()1223202320244120242023f f f f f f f f =⋅'''''⋅+⋅+++-'''-()()()()()()()()()()5061223344520242025f f f f f f f f f f ⎡⎤='⋅+'''''''+''+-⎣⎦()()120242023f f '--'+()()()()()()()()()()()()506122334450110f f f f f f f f f f f f ⎡⎤=''''''''+'⋅+++'-'-'⎣⎦2023-()()()()()()()()()()506132*********f f f f f f f f ⎡⎤=⎦'''''''++-+-'-⎣()()()506221102023f f f =⨯⨯-+-'''-0=17.【解析】(1)设等差数列{}n a 的公差和等比数列{}n b 的公比为()0t t ≠,因为()362153b a b t a t -=⋅-+=-,即()4153t t -+=-,解得2t =,所以()2212121,22n n n n a n n b b -=+-=-==.(2)数列{}n b 中的项从小到大依次为2,4,8,16,32,64,128,,而506099,119a a ==依题意可知新数列{}n c 的前60项中,数列{}nb 的项只有前6项,数列{}n a 有54项,所以()()601357107248163264S =+++++++++++()5411071262+=+3042=.18.【解析】(1)函数()f x 的定义域为R ,()()1x x x f x e xe e x =+=+',令()0f x '>,解得1x >-,所以函数()f x 的单调递增区间是()1,∞-+令()0f x '<,解得1x <-,所以函数()f x 的单调递减区间是(),1∞--(2)由题意可得()()1e xf x x =+',设切点坐标为()00,x y ,则切线斜率()001e xk x =+⋅,所以切线方程为()()00000e 1e x x y x x x x -=+⋅-,将()1,P t 代入得()2001x t exx =-++.因为存在三条切线,即方程()2001x t e xx =-++有三个不等实数根,则方程()2001x t exx =-++有三个不等实数根等价于函数()0200,1x y t y e x x ==-++的图像有三个交点,设()()21e xg x x x =-++,则()()()12e xg x x x =--+',当()2,1x ∈-时,()()0,g x g x '>单调递增;在(),2∞--和()1,∞+上,()()0,g x g x '<单调递减,()252e g -=-,当x <或x >时,()0g x <,画出()()21e xg x x x =-++的图象如图,要使函数()20,1x y t y exx ==-++的图像有三个交点,需()20g t <<,即250t e -<<,即实数t 的取值范围25,0e ⎛⎫- ⎪⎝⎭,19.【解析】(1)连接BD ,因为45,4BAD AB AD ∠=== ,由余弦定理可得21622410BD =+-⨯= ,所以BD =,在PBD 中,2,PD PB BD ===,则222PD PB BD =+,所以PB BD ⊥,又,PB AD AD BD D ⊥⋂=所以PB ⊥底面ABCD ,依题意可知ABCD 为等腰梯形,AB =,可得2BC =,取AD 中点H ,连接BH ,则2,BC DH BC ==∥DH ,所以四边形BCDH 为平行四边形,DC ∥BH又2BH BA AH ===,所以BH AB ⊥,又,BH PB PB AB B⊥⋂=所以BH ⊥平面PAB ,所以DC ⊥平面PAB ,又DC ⊂平面PCD ,所以面PCD ⊥平面PAB .(2)解法1:如图,建立空间直角坐标系,())()()0,0,0,,,0,0,2B C D P ,)())2,,PC DC BC =-==,设平面PCD 法向量为(),,m x y z =,则20,0PC m z DC m ⋅=--=⋅==,取1z =-,得()1m =-同理,设面PBC 法向量为(),,n a b c =,则20,0PC m c BC n ⋅=-=⋅==,取1a =,得()1,1,0n =,由题意,cos ,||||m n m n m n ⋅〈〉===设平面PCD 与平面PCB 的夹角为θ,则cos |cos ,|m n θ=〈〉=解法2:由(1)可知,PB ⊥平面,ABCD PB ⊂平面,PBC ∴平面PBC ⊥平面ABCD ,过D 作DH BC ⊥,则DH ⊥平面PBC 垂足为,H PC ⊂平面PBC ,则DH PC ⊥,过H 作PC 的垂线,垂足为E ,连DE ,由于,,,,HE PC DH PC HE DH H HE DH ⊥⊥⋂=⊂平面DEH ,所以PC ⊥平面,DEH DE ⊂平面DEH ,故PC DE ⊥,则DEH ∠.2,PB BC AB CD ====,所以4BCP π∠=,sin1,1,sin44DH CD CH DH HE HC ππ======,cos HE DEH DE ∠===所以平面PCD 与平面PBC20.【解析】(1)依题意,将圆C 的方程()222210x mx y m y m -++-+-=化为()2241120x y y x y m ++-+--=令120x y --=,即12x y =-,则22(12)410y y y -++-=恒成立,解得1,0x y ==,即圆C 过定点()1,0(2)当0m =时,圆22:(2)5C x y ++=,直线:163x y l +=设(),P s t ,依题意四边形PACB的面积22PAC S S == ,当PA 取得最小值时,四边形PACB 的面积最小,又PA =,即当PC 最小时,四边形PACB 的面积最小,圆心()0,2C -到直线:163x yl +=的距离即为PC 的最小值,即min min ||PC ==min S ==PACB面积最小值为,此时直线PC 与直线l 垂直,所以直线PC 的方程为22y x =-,与直线l 联立,解得()2,2P ,以PC 为直径的圆的方程为()()()2220x x y y -++-=即22240x y x +--=,又圆22:410C x y y ++-=,两式作差可得直线AB 方程2430x y ++=21.【解析】(1)由题意可知,在BCD 中,2,,10063CBD BDC BD ππ∠∠===所以2366BCD πππ∠π=--=,所以BCD 为等腰三角形,所以100BD DC ==,在ABD 中,2377,2,434121246ABD ADB BAD πππππππ∠∠π∠π==--==--=,100BD =,由正弦定理:sin sin BD ADBAD ABD∠∠=,即10012=,解得AD =在ACD中,3100,4AD DC ADC π∠===,由余弦定理:AC ==所以,A C两处景点之间的距离为(2)在BCD中,由余弦定理BC ==,在ABD 中,因为712ADB π∠=,71sin sinsin 12432ADB πππ∠⎛⎫==+== ⎪⎝⎭由正弦定理:sin sin sin BD AD ABBAD ABD ADB∠∠∠==,即10012=,解得50AB =()BD AC BD BC BA BD BC BD BA⋅=⋅-=⋅-⋅10010050=⨯-⨯(100150100501=⨯-⨯+0≠所以栈道BD 所在直线与,A C 两处景点的连线不垂直.注:第(2)问其他解法,可参考以上标准酌情给分.22.【解析】(1)当a e =-时,()()ln,0,2xxf x e e x ∞=-∈+所以()(),0,xef x e x x∞=-∈+'令()20xef x e x=+'>'在()0,∞+恒成立,所以函数()f x '在()0,∞+单调递增,且()10f '=,所以当()()0,1,0x f x ∈'<,函数()f x 在()0,1上单调递减;当()()1,,0x f x ∞∈+'>,函数()f x 在()1,∞+上单调递增;所以函数()f x 在1x =处取得极小值()()11ln2f e =+,无极大值;..(2)当0a <时,()()ln,0,2xxf x e a x ∞=+∈+所以()(),0,xaf x e x x∞=+∈+'.令()()()2,0xa g x f x g x e x==-'>'在()0,∞+恒成立所以函数()g x 在()0,∞+单调递增,且当0x →时,()xa f x e x ∞=+→-';当x ∞→+时,()x af x e x∞=+→+',所以函数()xaf x e x=+'在()0,∞+存在唯一零点0x ,即()000000,x x a a f x e e x x '=+==-,且当()()00,,0x x f x ∈'<,函数()f x 在()00,x 上单调递减;当()()0,,0x x f x ∞∈+'>,函数()f x 在()0,x ∞+上单调递增所以函数()f x 在0x x =处取得极小值()000ln2xx f x e a =+要证不等式()22ln 0f x a a a ⎛⎫++-≥ ⎪⎝⎭成立,即证()022ln 0f x a a a ⎛⎫++-≥ ⎪⎝⎭成立,即000022ln2ln ln ln 222xx x a e a a a a a a x a ⎡⎤-⎛⎫⎛⎫+++-=++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦002ln x a a a x a -⎛⎫=++- ⎪⎝⎭()002aa x a x -=+-+()0012a x ax ⎛⎫=-++ ⎪⎝⎭()220a a ≥-+=当且仅当001x x =时,即01x =时,等号成立,所以()22ln 0f x a a a ⎛⎫++-≥ ⎪⎝⎭注:第(2)问其他解法,可参考以上标准酌情给分.。

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2120,{23},P xx x Q x m x m P Q =--≤=≤≤-=∅ ∣∣,则实数m 的取值范围是().A .{0m m <∣或4}m >B .{04}m m <<∣C .{3mm <∣或4}m >D .{34}mm <<∣2.某同学统计最近5次考试成绩,发现分数恰好组成一个公差不为0的等差数列,设5次成绩的平均分数为x ,第60百分位数为m ,当去掉某一次的成绩后,4次成绩的平均分数为y ,第60百分位数为n .若y x =,则()A .m n >B .m n=C .m n<D .m 与n 大小无法判断3.吹气球时,气球的体积V (单位:L )与半径r (单位:dm )之间的关系是343V r π=.当4L 3V π=时,气球的瞬时膨胀率为()A .1dm /L 4πB .1dm /L3C .3L /dmD .4L /dmπ4.设实数x ,y 满足22154x y +=)A .B .2-C .D .前三个答案都不对5.记数列{}n a 的前n 项和为n S ,设甲:{}n a 是公比不为1的等比数列;乙:存在一个非零常数t ,使1n S t ⎧⎫+⎨⎬⎩⎭是等比数列,则()A .甲是乙的充要条件B .甲是乙的充分不必要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件6.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ABCD F --的棱长为a ,下列说法中正确的个数有()①此八面体的表面积为2;②异面直线AE 与BF 所成的角为45 ;③此八面体的外接球与内切球的体积之比为④若点P 为棱EB 上的动点,则AP CP +的最小值为.A .1个B .2个C .3个D .4个7.在ABC V 中,2AB AC =,AD 是A ∠的平分线,交BC 于点D ,且AC tAD =,则t 的取值范围是A .3,4⎛⎫+∞ ⎪⎝⎭B .3,14⎛⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭8.已知,,(1,)a b c ∈+∞,且e 9ln11,e 10ln10,e 11ln 9a b c a b c ===,则,,a b c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .c b a>>二、多选题9.下列四个命题正确的是()A .若1i 1z +-=,则1i z --的最大值为3B .若复数12,z z满足12122,2,1z z z z ==+=,则12z z -=C .若()sin sin C A AB A AB B AC C P λλ⎛⎫ ⎪=+∈ ⎪⎝⎭R,则点P 的轨迹经过ABC V 的重心D .在ABC V 中,D 为ABC V 所在平面内一点,且1132+= AD AB AC ,则16BCD ABDS S =△△10.由倍角公式2cos 22cos 1x x =-可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n ∈N 次多项式()110n n n n n P t a t a t a --=+++ (0a ,1a ,…,n a ∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得()A .()3343P t t t=-+B .()424881P t t t =-+C.1sin 544+︒=D.1cos546︒=11.已知n S 是数列{}n a 的前n 项和,且21n n S S n +=-+,则下列选项中正确的是().A .121n n a a n ++=-(2n ≥)B .22n n a a +-=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫- ⎪⎝⎭三、填空题12.已知:平面l αβ= ,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥,3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为.13.数列{}满足()2*114,13n n n a a a a n N +==-+∈,则122017111a a a +++ 的整数部分是.14.极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b +=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.四、解答题15.在数列{}n a 中,已知321212222n n a a a a n -++++= .(1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a + 成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).16.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,左顶点为A ,短轴长为点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.17.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,E 是BC 的中点,点F 在棱AD 上,且PA AD ⊥,2cos5PAE ∠=-,PA =(1)若平面PAB ⋂平面PCD l =,证明://l 平面ABCD ;(2)求平面PEF 与平面PCD 的夹角的余弦值的最大值.18.近年来,购买盲盒成为当下年轻人的潮流之一,为了引导青少年正确消费,国家市场监管总局提出,盲盒经营行为应规范指引,经营者不能变相诱导消费.盲盒最吸引人的地方,是因为盒子上没有标注,只有打开才会知道自己买到了什么,这种不确定性的背后就是概率.几何分布是概率论中非常重要的一个概率模型,可描述如下:在独立的伯努利(Bernoulli )试验中,若所考虑事件首次出现,则试验停止,此时所进行的试验次数X 服从几何分布,事件发生的概率p 即为几何分布的参数,记作()~X G p .几何分布有如下性质:分布列为()()11k P X k p p -==-,1,2,,,k n =⋅⋅⋅⋅⋅⋅,期望()()1111k k E X k p p p+∞-==-⋅=∑.现有甲文具店推出四种款式不同、单价相同的文具盲盒,数量足够多,购买规则及概率规定如下:每次购买一个,且买到任意一种款式的文具盲盒是等可能的.(1)现小嘉欲到甲文具店购买文具盲盒.①求他第二次购买的文具盲盒的款式与第一次购买的不同的概率;②设他首次买到两种不同款式的文具盲盒时所需要的购买次数为Y ,求Y 的期望;(2)若甲文具店的文具盲盒的单价为12元,乙文具店出售与甲文具店款式相同的非盲盒文具且单价为18元.小兴为了买齐这四种款式的文具,他应选择去哪家文具店购买更省钱,并说明理由.19.牛顿在《流数法》一书中,给出了代数方程的一种数值解法——牛顿法.具体做法如下:如图,设r 是()0f x =的根,首先选取0x 作为r 的初始近似值,若()f x 在点00(,())x f x 处的切线与x 轴相交于点1(,0)x ,称1x 是r 的一次近似值;用1x 替代0x 重复上面的过程,得到2x ,称2x 是r 的二次近似值;一直重复,可得到一列数:012,,,,,n x x x x .在一定精确度下,用四舍五入法取值,当()*1,N n n x x n -∈近似值相等时,该值即作为函数()f x 的一个零点r .(1)若32()33f x x x x =++-,当00x =时,求方程()0f x =的二次近似值(保留到小数点后两位);(2)牛顿法中蕴含了“以直代曲”的数学思想,直线常常取为曲线的切线或割线,求函数()e 3x g x =-在点(2,(2))g 处的切线,并证明:23ln31e <+;(3)若()(1ln )h x x x =-,若关于x 的方程()h x a =的两个根分别为1212,()x x x x <,证明:21e e x x a ->-.参考答案:题号12345678910答案C CACBBADABCBC题号11答案AC1.C【分析】化简集合A 后,根据P Q =∅ 分类讨论即可.【详解】由{}2120[3,4]P xx x =--≤=-∣,P Q =∅ ,当Q =∅时,需满足23m m >-,解得3m <;当Q ≠∅时,需满足34m m ≥⎧⎨>⎩,解得4m >,综上3m <或4m >.故选:C 2.C【分析】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,即可求出x 、m ,要使去掉一个数据之后平均数不变,则去掉的一定是2a d +,从而求出n ,即可判断.【详解】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,所以()123425x a a d a d a d a d a d =++++++++=+,又560%3⨯=,所以第60百分位数为23522a d a d m a d +++==+,要使4次成绩的平均分数为y 且y x =,则去掉的数据一定是2a d +,即还剩下a 、a d +、3a d +、4a d +()0,0a d >>,又460% 2.4⨯=,所以第60百分位数为3n a d =+,因为0d >,所以n m >.故选:C 3.A【分析】气球膨胀率指的是气球体积变化的值与半径变化值之间的比值,即rV∆∆,但此题所求的时瞬时变化率,故需要利用导数求解.【详解】因为343V r π=,所以r =,所以12333143r π-⎛⎫'=⨯ ⎪⎝⎭,所以,当43V π=时,12123333314313131433434344r ππππππ-⎛⎫⎛⎫⎛⎫⎛⎫'=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭dm /L .故选:A 4.C【分析】转化为动点到两定点之间距离和,再利用焦点三角形的性质可求最小值.,点(,)P x y 是椭圆22:154x y C +=上的点,设(1,0),(1,0),(0,1)E F A -,如图.记题中代数式为M ,则||||||||||M PA PF PA PE AE =+=+≥=等号当点E ,A ,P 依次共线时取得.因此所求最小值为故选:C.5.B【分析】利用等比数列前n 项和公式,结合充分条件、必要条件的定义判断即得.【详解】设数列{}n a 的首项和公比分别为1a ,(1)≠q q ,则111n n q S a q -=⋅-,取11a t q =-,得1n n S q t +=,显然数列{1}n S t +是等比数列;反之,取1t =,0n a =,此时11n S +=,数列{1}nS t+为等比数列,而{}n a 不是等比数列,所以甲是乙的充分不必要条件.故选:B 6.B【分析】对①:计算出一个三角形面积后乘8即可得;对②:借助等角定理,找到与AE 平行,与BF 相交的线段,计算即可得;对③:借助外接球与内切球的性质计算即可得;对④:空间中的距离和的最值问题可将其转化到同意平面中进行计算.【详解】对①:由题意可得2284S =⨯=表,故①正确;对②:连接AC ,取AC 中点O ,连接OE 、OF ,由题意可得OE 、OF 为同一直线,A 、E 、C 、F 四点共面,又AE EC CF FA ===,故四边形AECF 为菱形,故//AE CF ,故异面直线AE 与BF 所成的角等于直线CF 与BF 所成的角,即异面直线AE 与BF 所成的角等于60CFB ∠=,故②错误;对③:由四边形ABCD 为正方形,有2222222AC BC AB EC AE a =+=+=,故四边形AECF 亦为正方形,即点O 到各顶点距离相等,即此八面体的外接球球心为O,半径为2aR =,设此八面体的内切球半径为r ,则有2112233E ABCD F E ABCD V S r V a ---=⨯==⨯⨯⨯表r =,则此八面体的外接球与内切球的体积之比为33R r ⎛⎫⎪⎛⎫== ⎪⎝⎭对④:将AEB 延EB 折叠至平面EBC中,如图所示:则在新的平面中,A 、P 、C 三点共线时,AP CP +有最小值,则()min 22AP CP a +=⨯=,故④错误.故选:B.【点睛】关键点点睛:本题④中,关键点在于将不共面的问题转化为同一平面的问题.7.A【解析】在ABC V 中,2AB AC =,AD 是A ∠的平分线,由角平分线性质可得2BD ABCD AC==,利用cos cos BAD CAD ∠=∠结合余弦定理化简可得22212CD AC AD =-,再代入cos CAD ∠的式子中消去CD ,通过AC tAD =,化简整理得出3cos 4CAD t∠=,即可得到t 的取值范围.【详解】在ABC V 中,2AB AC =,AD 是A ∠的平分线,∴由角平分线的性质可得2BD ABCD AC==,BAD CAD ∠=∠,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,在ACD 中,由余弦定理得222cos 2AC AD CD CAD AC AD +-∠=⋅,∴22222222AB AD BD AC AD CD AB AD AC AD+-+-=⋅⋅,化简得22222AD AC CD =-,即22212CD AC AD =-,∴22223332cos 2244AD AC AD CD AD CAD AC AD AC AD AC t+-∠===⋅⋅而0,2CAD π⎛⎫∠∈ ⎪⎝⎭,故()3cos 0,14CAD t ∠=∈,∴3,4t ⎛⎫∈+∞ ⎪⎝⎭.故选:A.【点睛】本题考查了三角形内角平分线的性质以及余弦定理在解三角形中的应用,考查了转化能力与计算能力,属于中档题.8.D【分析】构造函数()()e ,1,xf x x x∞=∈+,利用导数讨论其单调性,将问题转化为比较,,,再转化为比较9ln11,10ln10,11ln 9,构造函数()()20ln g x x x =-,利用导数讨论其单调性,利用单调性即可得答案.【详解】由题知,e e e 9ln11,10ln10,11ln 9a b ca b c ===,记()()e ,1,x f x x x ∞=∈+,则()()21e x x f x x-'=,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,故比较,,a b c 的大小关系,只需比较,,的大小关系,即比较9ln11,10ln10,11ln 9的大小关系,记()()20ln ,1g x x x x =->,则()20ln 1g x x x=-+-',记()20ln 1h x x x =-+-,则()21200h x x x=--<',所以()h x 在()1,+∞上单调递减,又()220338ln 81ln 8ln e 0822h =-+-=-<-<,所以,当()8,x ∈+∞时,()0h x <,()g x 单调递减,所以()()()11109g g g <<,即9ln1110ln1011ln 9<<,所以()()()f a f b f c <<,所以a b c <<.故选:D【点睛】本题难点在于构造函数()()e ,1,xf x x x∞=∈+,将问题转化成比较,,的大小关系后,需要再次构造函数()()20ln ,1g x x x x =->,对学生观察问题和分析问题的能力有很高的要求,属于难题.9.ABC【分析】A 根据复数模的几何意义及圆的性质判断;B 利用复数的运算和模的运算求解即可;C 结合重心的性质进行判断;D 利用平面向量基本定理,判断出D 点位置,进而可求.【详解】对A ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1,即动点Z 的轨迹以(1,1)-为圆心,1为半径的圆,1i z --表示动点点Z 的轨迹以(1,1)的距离,由圆的性质知:max |i |z --==113,A 正确;对B ,设i,i,(,,,R)z m n z c d m n c d =+=+∈12,因为12122,2,1z z z z ==+=,所以,m n c d +=+=222244,,m c n d +=+=1,所以mc nd +=-2,所以12()()i z z m c n d -=-+-====,B 正确;对C ,由正弦定理的sin sin AC C AB B ⋅=⋅,即||sin ||sin AC C AB B =,()sin sin sin AB AC AP AB AC AB B AC C AB B λλ⎛⎫ ⎪∴==+ ⎪⎝⎭,设BC 中点为E ,如图:则AB +AC =2AE,则||sin AP AE AB Bλ=2 ,由平面向量的共线定理得,,A P E 三点共线,即点P 在边BC 的中线上,故点P 的轨迹经过ABC V 的重心,C 正确;对D ,如图由已知点D 在ABC V 中与AB 平行的中位线上,且靠近BC 的三等分点处,故有,,ABD ABC ACD ABC BCD S S S S S ===1123 1111236ABC ABC S S ⎛⎫--= ⎪⎝⎭ ,所以13BCD ABDS S =△△,D 错误.故选:ABC 10.BC【分析】根据两角和的余弦公式,以及二倍角的正余弦公式化简可得3cos34cos 3cos x x x =-,根据定义即可判断A 项;根据二倍角公式可推得()424cos 8cos 8cos 1P x x x =-+,即可得出B 项;根据诱导公式以及A 的结论可知,3cos544cos 183cos18︒=︒-︒,2sin 54cos 362cos 181︒=︒=︒-.平方相加,即可得出25cos 188︒+=,进而求出C 项;假设D 项成立,结合C 项,检验即可判断.【详解】对于A 项,()cos3cos 2cos 2cos sin 2sin =+=-x x x x x x x ()222cos 1cos 2cos sin x x x x=--()()222cos 1cos 2cos 1cos x x x x =---34cos 3cos x x =-.由切比雪夫多项式可知,()3cos3cos x P x =,即()33cos 4cos 3cos P x x x =-.令cos t x =,可知()3343P t t t =-,故A 项错误;对于B 项,()cos 4cos 22x x =⨯()2222cos 2122cos 11x x =-=⨯--428cos 8cos 1x x =-+.由切比雪夫多项式可知,()4cos 4cos x P x =,即()424cos 8cos 8cos 1P x x x =-+.令cos t x =,可知()424881P t t t =-+,故B 项正确;对于C 项,因为36218︒=⨯︒,54318︒=⨯︒,根据A 项3cos34cos 3cos x x x =-,可得3cos 544cos 183cos18︒=︒-︒,2cos 362cos 181︒=︒-.又cos 36sin 54︒=︒,所以2222cos 36cos 54sin 54cos 541︒+︒=︒+︒=,所以,()()22324cos 183cos182cos 1811︒-︒+︒-=.令cos180t =︒>,可知()()223243211t tt -+-=,展开即可得出642162050t t t -+=,所以42162050t t -+=,解方程可得258t ±=.因为cos18cos320t =︒>︒,所以258t =,所以,2cos 362cos 181︒=︒-512184=⨯=,所以,sin 54cos36︒=︒=C 项正确;对于D 项,假设1cos546︒=,因为1sin 544︒=,则22221si c s n o 5445⎫︒=+≠⎪⎪⎝⎭⎝⎭︒+,显然不正确,故假设不正确,故D 项错误.故选:BC.【点睛】方法点睛:根据题意多项式的定义,结合两角和以及二倍角的余弦公式,化简可求出()()34cos ,cos P x P x ,换元即可得出()()34,P t P t .11.AC【分析】对于A ,由21n n S S n +=-+,多写一项,两式相减即可得出答案.对于B ,由121n n a a n ++=-(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥.对于C ,由分析知22n n a a +-=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案.对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<< ,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=-+,当()2121n n n S S n -≥=-+-,,两式相减得:121n n a a n ++=-(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=-(2n ≥),所以()+122+11=21n n a a n n ++=-+,两式相减得:22n n a a +-=(2n ≥),所以B 不正确.对于C ,21n n S S n +=-+ ,令1n =,则211S S =-+,1211a a a +=-+,因为10a =,所以21a =.令2n =,则324S S =-+,112324a a a a a ++=--+,所以32a =.因为22n n a a +-=(2n ≥),而312a a -=,所以22n n a a +-=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列.偶数项是以21a =为首项,2为公差的等差数列.则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++ 5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=-+,令1n =,则211S S =-+,1211a a a +=-+,则2121a a =-+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a -=--+=+,同理:()4311=552223a a a a -=-+=-+,()5411=772324a a a a -=--+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<< ,解12a a <得:113a <,解23a a <得:114a >-,解34a a <得:114a <,解45a a <得:114a >-,解56a a <得:114a <,所以1a 的取值范围是11,44⎛⎫- ⎪⎝⎭,所以D 不正确.故选:AC.【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=-,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.12.5【分析】作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,证明DE EC ⊥,先求出EC ,再得CD .【详解】如图,作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,因为//AE BD 且AE BD =,所以ABDE 是平行四边形,所以//DE AB ,4DE AB ==,因为,AB AC AB BD ⊥⊥,所以,ED AC ED AE ⊥⊥,AC AE A ⋂=,所以BD ⊥平面AEC ,CE ⊂平面AEC ,所以ED CE ⊥,3AC AE ==,若60CAE ∠=︒,则3CE =,5CD ==,若120CAE ∠=︒,则23sin 60CE =⨯︒=,CD =故答案为:5【点睛】本题考查异面直线所成角的应用,都可空间两点间的距离.解题关键是作出异面直线所成的角.构造三角形,在三角形中求线段长.13.2【详解】因为()2*114,13n n n a a a a n N +==-+∈,所以211(1)0n n n n n a a a a a ++-=->⇒>,数列{}单调递增,所以1(11)0n n n a a a +-=->,所以111(1)1111n n n n na a a a a +--=--=,所以121122111111111111()()()11111n n n n n S a a a a a a a a a a a =+++=-+-++-=------ ,所以20172017131m S a ==--,因为143a =,所以22223444131313133133133()1,()1,()12,33999818181a a a =-+==-+==-+> ,所以20172016201542a a a a >>>>> ,所以201711a ->,所以20171011a <<-,所以201512331a <-<-,因此m 的整数部分是2.点睛:本题考查了数列的综合应用问题,其中解答中涉及到数列的通项公式,数列的裂项求和,数列的单调性的应用等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,本题的借助数列递推关系,化简数列为111111n n na a a +=---,再借助数列的单调性是解答的关键.14.103tyx -+-=(或330x ty -+=);【分析】(1)根据已知直接写出直线AB 的方程;(2)求出cos ,OP n →→〈〉=sin PMB ∠利用基本不等式求解.【详解】解:(1)由题得AB :4143x ty-+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t→=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉==sin PMB ∠==,即()min sin PMB ∠=.故答案为:103tyx -+-=.15.(1)2n n a =(2)14337【分析】(1)根据数列的前n 项和求数列的通项公式,一定要分1n =和2n ≥讨论.(2)首先弄清楚新数列前55项的构成,再转化为错位相减法求和.【详解】(1)当1n =时,12a =;当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a ----⎛⎫⎛⎫=++++-++++ ⎪ ⎪⎝⎭⎝⎭()2212n n =--=,所以122nn a -=⇒2n n a =,2n ≥.当1n =时,上式亦成立,所以:2n n a =.(2)由()123155n n ⎡⎤+++++-=⎣⎦ ⇒10n =.所以新数列前55项中包含数列的前10项,还包含,11x ,21x ,22x ,31x ,32x ,L ,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=,()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+ .设123935719T a a a a =++++ 1239325272192=⨯+⨯+⨯++⨯ 则234102325272192T =⨯+⨯+⨯++⨯ ,所以()1239102322222192T T T -=-=⨯+⨯+++-⨯ 101722=-⨯-.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【点睛】关键点点睛:本题的关键是要弄清楚新数列前55项的构成.可先通过列举数列的前几项进行观察得到规律.16.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,2y M x +,同理226(4,)2y N x +,由斜率公式计算即可.【详解】(1)因为2b =b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;(2)由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为−2,0,所以直线PA 的方程为=+2,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.(1)证明见解析(2)14【分析】(1)证明出//CD 平面PAB ,利用线面平行的性质可得出//CD l ,再利用线面平行的判定定理可证得结论成立;(2)计算出cos PAB ∠的值,以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立空间直角坐标系,设()0,,0F a ()02a ≤≤,利用空间向量法结合二次函数的基本性质可求得平面PEF 与平面PCD 的夹角的余弦值的最大值.【详解】(1)证明:因为四边形ABCD 正方形,所以//AB CD .因为CD ⊂/平面PAB ,AB ⊂平面PAB ,所以//CD 平面PAB .又因为CD ⊂平面PCD ,平面PAB ⋂平面PCD l =,所以//CD l .因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:由题意可得AE ==,PE =因为四边形ABCD 是正方形,所以AB AD ⊥.又因为PA AD ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以AD ⊥平面PAB .因为//AD BC ,所以⊥BC 平面PAB ,因为PB ⊂平面PAB ,所以,BC PB⊥.则PB ===.所以,222cos 2PA AB PB PAB PA AB +-∠==⋅以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的空间直角坐标系.点P 到平面yAz的距离为()cos π1AP PAB -∠=,点P 到平面xAy2==.则()1,0,2P -,()2,2,0C ,()0,2,0D ,()2,1,0E ,设()0,,0F a ()02a ≤≤,则()3,2,2PC =-,()2,0,0CD =- ,设平面PCD 的法向量为()111,,x n y z = ,则1111322020PC n x y z CD n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,取11y =,可得()0,1,1n = .设平面PEF 的法向量为()222,,m x y z = ,()3,1,2PE =-,()1,,2PF a =- ,则22222232020PE m x y z PF m x ay z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩,取24y =,可得()22,4,31m a a =-- .设平面PEF 与平面PCD 的夹角为α,则cos m n m nα⋅==⋅ 令[]11,3a t +=∈,则cosα==.当1512t =时,211484013t t ⎛⎫-⨯+⎪⎝⎭取得最小值,最小值为143,所以cos α75a =.故平面PEF 与平面PCD 的夹角的余弦值的最大值为14.18.(1)①34;②73(2)应该去乙店购买非盲盒文具,理由见解析【分析】(1)①明确第二次只需买到其余的三种文具盲盒的任意一款即可求解;②结合已知由几何分布的性质即可求解.(2)由随机变量以及相应的均值结合几何分布的性质即可求解.【详解】(1)①由题意可知,当第一次购买的文具盲盒已经确定时,第二次只需买到其余的三种文具盲盒的任意一款即可,所以34p =;②设从第一次购买文具后直到购买到两种不同款式的文具盲盒所需要的购买次数为X ,则由题意可知3~4X G ⎛⎫ ⎪⎝⎭,又1Y X =+,所以()()()4711133E Y E X E X =+=+=+=.(2)由题意,在乙店买齐全部文具盲盒所花费的费用为18472⨯=元,设从甲店买齐四种文具盲盒所需要的购买次数为Z ,从第一次购买到1i -种不同款式的文具开始,到第一次购买到i 种不同款式的文具盲盒所需要的购买次数为随机变量i Z ,则5~4i i Z G -⎛⎫ ⎪⎝⎭,其中1,2,3,4i =,而1234Z Z Z Z Z =+++,所以()()()441234114425124533i i i E Z E Z Z Z Z E Z i===+++===+++=-∑∑,所以在甲店买齐全部文具盲盒所需费用的期望为()1210072E Z =>,所以应该去乙店购买非盲盒文具.19.(1)1.83(2)22e e 30x y ---=,证明见解析(3)证明见解析【分析】(1)根据题意分别计算出12,x x ,取2x 得近似值即为方程()0f x =的二次近似值;(2)分别求出(2)g ,(2)g ',即可写出函数()g x 在点(2,(2))g 处的切线方程;设2()ln 1,1ex m x x x =-->,证明出2()(e )m x m ≤,得出2(3)(e )m m <,即可证明;(3)先判断出1201e x x <<<<,然后辅助证明两个不等式()()()1e 1e 1e h x x x ≥-≤≤-和()(01)h x x x ≥<≤即可.【详解】(1)2()361f x x x '=++,当00x =时,(0)1f '=,()f x 在点(0,3)-处的切线方程为3y x +=,与x 轴的交点横坐标为(3,0),所以13x =,(3)46f '=,()f x 在点(3,54)处的切线方程为5446(3)y x -=-,与x 轴的交点为42(,0)23,所以方程()0f x =的二次近似值为1.83.(2)由题可知,2(2)e 3g =-,()e x g x '=,2(2)e g '=,所以()g x 在(2,(2))g 处的切线为22(e 3)e (2)y x --=-,即22e e 30x y ---=;设2()ln 1,1e x m x x x =-->,则211()em x x '=-,显然()m x '单调递减,令()0m x '=,解得2e x =,所以当2(1,e )x ∈时,()0m x '>,则()m x 在2(1,e )单调递增,当2(e ,)x ∈+∞时,()0m x '<,则()m x 在2(e ,)+∞单调递减,所以2222e ()(e )ln e 10em x m ≤=--=,所以2(3)(e )m m <,即2233ln 310ln 31e e --<⇔<+.(3)由()ln h x x x x =-,得()ln h x x '=-,当01x <<时,ℎ′>0;当1x >时,ℎ′<0,所以ℎ在0,1上单调递增,在1,+∞上单调递减,所以1x =是ℎ的极大值点,也是ℎ的最大值点,即()max ()11h x h ==,又0e x <<时,()0h x >,e x >时,()0h x <,所以当方程()h x a =有两个根时,必满足1201e x x <<<<;曲线()y h x =过点()1,1和点()e,0的割线方程为1(e)1e y x =--,下面证明()()()1:e 1e 1e h x x x ≥-≤≤-,设()()()()1e 1e 1eu x h x x x =--≤≤-,则()1e 11ln ln lne e 1u x x x -⎛⎫=-+=-'- ⎪-⎝⎭,所以当1e 11e x -<<时,()0u x '>;当1e 1e e x -<<时,()0u x '<,所以()u x 在1e 11,e -⎛⎫ ⎪⎝⎭上单调递增,()()10u x u ≥=;在1e 1e ,e -⎛⎫ ⎪⎝⎭上()u x 单调递减,()()e 0u x u ≥=,所以当1e x ≤≤时,()0u x ≥,即()1()e (1e)1ef x x x ≥-≤≤-(当且仅当1x =或e x =时取等号),由于21e x <<,所以()()221e 1e a f x x =>--,解得2e e x a a >-+;①下面证明当01x <≤时,()h x x ≥,设()()ln ,01n x h x x x x x =--<≤=,因为ln 0x ≤,所以当01x <≤时,()f x x ≥(当且仅当1x =时取等号),由于101x <<所以()11a h x x =>,解得1x a ->-,②①+②,得21e e x x a ->-.【点睛】关键点睛:第三问的难点在于辅助构造出两个函数不等式,这样再利用函数单调性,得到相关不等式,然后进行估计21x x -的范围.。

2024年西藏高考数学全真模拟试题及答案

2024年西藏高考数学全真模拟试题及答案

2024年西藏高考数学全真模拟试题及答案注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )A .24πB .28πC .32πD .36π2.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-3.若集合M ={1,3},N ={1,3,5},则满足M∪X=N 的集合X 的个数为( ) A .1 B .2 C .3D .44.集合}{220A x x x =--≤,{}10B x x =-<,则AB =( )A .}{1x x < B .}{11x x -≤< C .{}2x x ≤D .{}21x x -≤<5.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种6.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( )A .5B .11C .20D .257.已知双曲线2222:1(0,0)x y E a b a b-=>>满足以下条件:①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点(4,2)P 的幂函数()f x x α=的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是( ) A .312+ B .512+ C .32D .51+8.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( )A .2223S S ,且B .2223S S ,且C .2223S S ,且D .2223S S ,且9.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-10.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10B .16C .20D .2411.设函数()22cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .7212.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,4二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。 若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时 间由本人负责。不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答 题卡上填涂姓名、考生号、考场号和座位号。 4
不能提前交卷离场 按照规定,在考试结束前,不允许考生交卷离场。如考生确因患病等原因无法坚持到考 试结束,由监考老师报告主考,由主考根据情况按有关规定处理。 5

与直线
相交,所得弦长为 2
③设 A、 B 为两个定点, m为常数,
,则动点 P 的轨迹为椭圆
④若椭圆的左、右焦点分别为 对称点 M的轨迹是圆
F1、 F2,P 是该椭圆上的任意一点,则点
F2 关于∠F1PF2 的外角平分线的
其中真命题的序号为
(写出所有真命题的序号) .
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤)
A. 90 个
B . 120 个
C. 180 个
D . 200 个
10.下列说法正确的是 ( ) A.“x2=1”是“ x=1”的充分不必要条件 B.“ x= - 1”是“x2-5x- 6=0”的必要不充分条件
C.命题“
使得
”的否定是:“
均有

D.命题“若 α=β,则 sin α=sin β”的逆否命题为真命题
高考数学模拟试题 ( 一)
一、选择题(本题Βιβλιοθήκη 12 个小题,每题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合
要求的,请把符合要求一项的字母代号填在题后括号内
.)
1. 已知集合 M={x∣ -3x - 28 ≤0},N = {x|
-x-6 >0} ,则 M∩N 为( )
A.{x| 4 ≤x< -2 或 3<x≤7} C.{x|x ≤ -2 或 x> 3 }
的图像( )
A. 向左平移 个单位
B. 向右平移 个单位
C. 向左平移 个单位
D. 向右平移 个单位 5. 如图,是一程序框图,则输出结果中
()
A.
B.
C.
D.
6.平面
的一个充分不必要条件是( )
A. 存在一条直线
B. 存在一个平面
C. 存在一个平面
D. 存在一条直线
7.已知以 F1( -2,0 ), F2( 2,0 )为焦点的椭圆与直线 长轴长为( )
11. 设等比数列
的公比 q=2, 前 n 项和为 ,则
()
A. 2
B. 4
C.
D.
12.设曲线
在点 (3,2) 处的切线与直线 ax+y+1=0 垂直,则 a=( )
A. 2
B . -2
C.
D.
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分.把答案直接填在题中的横线上 . )
13. 已知 最小值
不要把文具带出考场 考试结束,停止答题,把试卷整理好。然后将答题卡放在最上面,接着是试卷、草稿纸。 不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。请把文具整理好,放在 座次标签旁以便后面考试使用,不得把文具带走。 6
外语听力有试听环
外语考试 14:40 入场完毕,听力采用 CD 播放。 14: 50 开始听力试听,试听结束时,会有“试听到此 结束”的提示。听力部分考试结束时,将会有“听力部分到此结束”的提示。听力部分结束后,考生可以 开始做其他部分试题。
B. {x|-4 <x≤ -2 或 3≤x< 7 } D. {x|x < -2 或 x≥3}
2. A.2-i
在映射 f 的作用下对应为
,求 -1+2i 的原象( )
B.-2+i
C.i
D.2
3. 若 A. a>b> c
B .b> a> c
,则( ) C .c> a> b
D. b>c> a
4. 要得到函数 y=sin2x 的图像,可以把函数
六大注意 1
考生需自己粘贴答题卡的条形码 考生需在监考老师的指导下,自己贴本人的试卷条形码。粘贴前,注意核对一下条形码 上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。如果无误,请将 条形码粘贴在答题卡的对应位置。万一粘贴不理想,也不要撕下来重贴。只要条形码信息无 误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。 2
有且仅有一个交点,则椭圆的
A.
B.
C.
D.
8.O 是平面上一定点, A、 B、 C是平面上不共线的三个点,动点 P 满足 ,则 p 的轨迹一定通过△ ABC 的 ( )
A. 外心
B. 重心
C. 内心
D. 垂心
9. 设 {a n} 是等差数列,从 {a 1,a 2,a 3, …,a 20} 中任取 3 个不同的数,使这 3 个数仍成等差数列,则这样不 同的等差数列最多有 ( )
, .
,则 的
14. 如图是一个几何体的三视图,根据图中数据
可得几何体的表面积为

15. 已知 (1+x)+(1+x) 2+(1+x) 3+…+(1+x) n=a0+a1x+a2x+…+a nx n,
若 a1+a2+…+a n-1 =29-n, 则自然数 n 等于

16. 有以下几个命题:
①曲线 x2-(y+1) 2=1 按 a=(-1,2) 平移可得曲线 (x+1) 2-(y+3) 2 =1
拿到试卷后先检查有无缺张、漏印等
拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常 小。如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生 号、考场号、座位号。写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪 处理。
3
注意保持答题卡的平整
17.(本小题满分 12 分)
求函数 y=7-4sinxcosx+4cos 2x-4cos 4x 的最大值与最小值 . 18. (本小题满分 12 分) 同时抛掷 3 个正方体骰子,各个面上分别标以数( 1, 2, 3, 4,5, 6),出现向上的三个数的积被 4 整除的事件记为 A. ( 1)求事件 A发生的概率 P(A) ; ( 2)这个试验重复做 3 次,求事件 A 至少发生 2 次的概率; ( 3)这个试验反复做 6 次,求事件 A 发生次数 ξ 的数学期望 . 19. (本小题满分 12 分) 如图所示,已知四棱锥 P-ABCD的底面是直角梯形 , ∠ABC=∠BCD=9°0 ,AB=BC=PB=PC=2CD=侧2面, PBC⊥ 底面 ABCD,O是 BC的中点, AO交 BD于 E. (1) 求证: PA⊥BD; (2) 求证:平面 PAD⊥平面 PAB; (3) 求二面角 P-DC-B. 20. (本小题满分 12 分) 如图, M是抛物线 y 2=x 上的一点,动弦 ME、 MF分别交 x 轴于 A、 B 两点,且 MA=MB. ( 1)若 M为定点,证明直线 EF 的斜率为定值; ( 2)若 M为动点,且∠ EMF=9°0 , 求△ EMF 的重心 G的轨迹方程 . 21. (本小题满分 12 分)
相关文档
最新文档