信号与系统实验报告——信号采样与重构 声音的延时与混响

合集下载

实验三 信号采样与重建(实验报告)

实验三 信号采样与重建(实验报告)

《信号与系统》实验报告学院 专业 班级姓名 学号 时间实验三 信号采样与重建一、实验目的1、进一步学习MATLAB 的函数及其表示。

2、掌握及验证信号的SHANNON 采样定理。

3、由采样序列重构恢复原信号。

二、实验内容1、对连续时间信号y(t)=sin(24πt)+ sin(40πt),它有12Hz 和20Hz 两个等幅度分量。

用MATLAB 作图求出Nyquist 频率2fmax 。

t in 1/4sec.y (t )Analog Signalt in 1/12sec.s i n (24*p i *t )t in 1/20sec.s i n (40*p i *t )作图法判断频谱法判断2、设连续信号x(t)=exp(-1000|t|)时A、求傅利叶变换X(jw)。

(先书面求出变换公式,可判断出在2000Hz以上,其频谱幅度已经很小,因此,该处频率就可近似当成信号的最高频率)。

B、现在取采样频率fs=5000Hz,可得到信号序列x1[n],求离散DFT频谱X1(e jw)C、减小采样频率至fs=1000Hz,则可得到序列x2[n],求频谱X2(e jw)D、分别针对x1[n]与x2[n],试重建恢复(用三次样条函数或sinc函数)出对应的连续信号x1(t)与x2(t),并与原信号x(t)作对比。

最后根据抽样定理的知识,简单说明采样频率的大小对信号重建质量的影响。

5000Hz采样序列的重构情况 1000Hz采样序列的重构情况三、思考题:①连续时间信号的傅利叶变换matlab求法,这里采用的近似公式是什么?②从序列重构连续信号所采用的matlab函数是什么?采用三次样条内插函数,即利用Xa=spline(nTs,X,t)来实现。

其中X和nTs分包含在nTs 时刻和样本X(n)的数组,但存在一些误差。

③shannon采样定理中的信号Nyquist频率是指什么?与采样频率有什么不同?Nyquist频率是指是指最低允许的抽样率,是带限信号频率宽度的2倍,并且Nyquist 频率信号带宽是采样频率的一半。

信号与系统软件实验实验报告

信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。

二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。

计算机配置为_____处理器,_____内存,_____硬盘。

三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。

对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。

2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。

输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。

3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。

通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。

4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。

采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。

四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。

2、按照实验内容的要求,依次进行各项实验操作。

在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。

然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。

对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。

通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。

在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。

通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。

信号与系统采样实验报告

信号与系统采样实验报告

实验5采样采样定理给定了一些条件,在这些条件之下,一个带限的连续时间信号能够完全用它的离散样本表示。

所得到的离散时间信号)(][nT x n x c =包含了在连续时间信号中的全部信息。

只要这个连续时间信号是充分在频率上带限的,即T j X c π≥Ω=Ω,0)(。

当满足这一条件时,原连续时间信号能够完全用样本][n x 之间的内插予以重建。

如果][n x 满足采样定理,就有可能完全在离散时间域中处理][n x 而得到另一个序列,这个序列本该以不同的采样率对)(t x c 采样而得到。

这个处理称为采样率转换。

离散时间系统的灵活性对于连续时间LTI 系统的实现提供了一种强有力的手段,这就是连续时间信号的离散时间系统处理。

在这一技术中,一个带限的连续时间输入被采样,用一个离散时间系统所得到的样本,然后将这个离散时间系统的输出样本进行内插,给出连续时间输出信号。

本章练习将研究涉及信号采样和重建中的许多问题。

注意,该章用Ω代表连续时间频率变量,而用ω代表离散时间频率变量。

§5.1由欠采样引起的混叠目的这个练习讨论信号经采样后其频谱的变化以及由于欠采样而在而在带限内插重建信号上引起的混叠效果。

相关知识如果一个连续时间信号)(t x 每隔T 秒采样一次,那么信号的样本就形成了离散时间序列)(][nT x n x =。

奈奎斯特采样定理说的是,如果)(t x 的带宽小于s π=Ω2,即2,0)(s c j X Ω≥Ω=Ω,那么)(t x 就完全可以由它的样本)(nT x 予以重建。

带限内插或信号重建是最容易将)(t x 首先乘以冲激串后而看出来的 ∑∞-∞=-=n p nT t nT x t x )()()(δ 用一个截止频率2s Ω的理想低通滤波器对)(t x p 滤波,就能从)(t x p 中将)(t x 恢复出来。

定义)(t x r 为低通过滤)(t x p 而得到的重建信号。

若)(t x 的带宽大于2s Ω,那么样本)(nT x 就不能完全确定)(t x ,)(t x r 一般说来不等于)(t x 。

信号与系统实验报告——信号采样与重构 声音的延时与混响

信号与系统实验报告——信号采样与重构 声音的延时与混响

《信号与系统》——课程设计实验一信号的采样与重构一、实验内容:1.应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

2.加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差。

3. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

二、实验原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

(2)采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:>各处为零;(对信a、必须是带限信号,其频谱函数在号的要求,即只有带限信号才能适用采样定理。

)b 、 取样频率不能过低,必须>2 (或>2)。

一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T 的幅值调制器。

图2 信号的采样(4) 信号重构设信号)(t f 被采样后形成的采样信号为)(t f s ,信号的重构是指由)(t f s 经过内插处理后,恢复出原来信号)(t f 的过程,又称为信号恢复。

三、实验步骤及代码(一).%%%%%%%%%%% 产生一个连续sin ()信号 %%%%%%%%%%%%%%%%%%f=100;t=(1:50)/2000; %时间轴步距 x=sin(2*pi*t*f); figuresubplot(211);plot(x); %绘制x(t)的图形图片号加底框 xlabel('t');ylabel('x(t)');title('连续时间信号sin ()的波形'); %图片命名 grid;n=0:255; %长度N=256; %设采样点的N 值 Xk=abs(fft(x,N));subplot(212); %频域波形 plot(n,Xk);axis([0 N 1.2*min(Xk) 1.2*max(Xk)]); %可用axis 函数来调整图轴的范围 xlabel('时域频谱波形图');ylabel('|Xk|');title('信号sin()的频谱波形');(二)%%%%%%%%%%%%对原始信号进行采样并滤波重构 %%%%%%%%%%%% t1=3*t;f1=sin(2*pi*t1*f);figuresubplot(211);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('欠采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fa=filter(B,A,f1);subplot(212);plot(fa)xlabel('t');ylabel('fa(t)');title('欠采样信号重构后的波形');t2=0.5*t;f2=sin(2*pi*t2*f);Figure,subplot(211); stem(t2,f2);xlabel('kTs');ylabel('f(kTs)');title('临界采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fb=filter(B,A,f2);subplot(212);plot(fb),xlabel('t'),ylabel('fb(t)');title('临界采样信号重构后的波形');t3=0.2*t;f3=sin(2*pi*t3*f);figuresubplot(211); stem(t3,f3);xlabel('kTs');ylabel('f(kTs)');title('过采样的信号波形');[B,A]=butter(2,450/500);[H,w]=freqz(B,A,512,2000);fc=filter(B,A,f3);subplot(212);plot(fc)xlabel('t');ylabel('fc(t)');title('过采样信号重构后波形');四、实验总结经过此次MATLAB课程设计我学到了很多知识和学习方法。

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(2)通过实验,了解数字信号采样转换过程中的频率特征。

(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。

二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。

Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。

程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。

分别显示输入输出序列在时域和频域中的特性。

程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。

实验报告五_信号的采样与恢复

实验报告五_信号的采样与恢复
TS
称抽样频率。
s t
t
τ
TS
图 5-1 矩形抽样脉冲 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经
过平移的原信号频率。平移的频率等于抽样频率 f s 及其谐波频率 2 f s 、 3 f s „„。当抽 样信号是周期性窄脉冲时,平移后的频率幅度按
sin x
课程名称:
信号与系统
实验项目名称:
信号的采样与恢复
学院:
信息工程
专业:
电Hale Waihona Puke 信息指导教师:报告人: 学号: 班级:
实验时间:
实验报告提交时间:
教务部制
实验目的与要求:
1、了解信号的采样方法与过程以及信号恢复的方法。 2、验证抽样定理。
实验内容:
1、观察抽样脉冲、抽样信号、抽样恢复信号。 2、观察抽样过程中,发生混叠和非混叠时的波形。
采样信号 1
恢复信号 1
采样信号 2
恢复信号 2
采样信号 3
恢复信号 3
实验结果与分析
1.由实验原理理论得当选用
fs>2 fmax 采样频率对连续信号进行
采样,信号采样后能不失真地还原,但实验中往往不能达到理想的 效果。 如实验中对频率为 500hz 的正弦波信号采样并通过低通滤波 器恢复时,当 fs=4 fmax=1968hz 时,信号采样后能不失真地还原。 2.若原信号为方波或三角波,可用示波器观察到离散的采样信 号,但由于本装置难以实现一个理想的低通滤波器,以及高频窄脉 (即冲激函数) ,所以方波或三角波的离散信号经低通滤波器后只 能观测到它的基波分量,无法恢复原信号。实验结果 2 和 3 验证了 这一结果。实验结果显示方波采样后的信号是一系列谐波的合成, 从细节图中可以明显的看出方波没有完全恢复,而是转变成一系列 谐波的合成波。 因为方波或者三角波分解成傅里叶级数后存在频率 很高的谐波分量,在本实验条件下无法还原成原信号,只能是低频 波的合成,还原后图像是原信号的大致波形。 3. 实验中由于采样信号不是标准的冲击信号,低通滤波器也 不能达到标准理论值,所以非标准的正余弦信号恢复不到原信号。

信号与系统实验总结

信号与系统实验总结

信号与系统实验总结引言信号与系统是电子工程、通信工程和控制工程等学科中的基础课程之一。

通过实验,我们可以深入了解信号与系统的基本概念和工程应用,加深对理论的理解,并提高实际操作的能力。

本文将对信号与系统实验进行总结,主要包括实验目的、实验原理、实验步骤、实验结果及分析等内容。

实验一:信号的采样与重构实验目的通过实验学习信号的采样与重构过程,掌握采样定理及重构滤波器的设计方法。

实验原理信号的采样是将连续时间下的信号转换成离散时间下的信号的过程。

采样过程中需要满足采样定理,即采样频率要大于信号带宽的两倍。

采样定理的基本原理是避免采样过程中发生混叠现象。

信号的重构是将离散时间下的信号恢复为连续时间下的信号的过程。

重构过程中需要使用重构滤波器对采样信号进行滤波,以恢复原始信号。

实验步骤1.连接信号发生器和示波器,并设置信号发生器的输出信号为正弦波。

2.改变信号发生器的频率,观察示波器上采样信号的形状。

3.根据采样定理计算信号的理论最大采样频率,并将信号发生器的频率设置为该值。

4.连接重构滤波器和示波器,并观察重构滤波器输出信号的形状。

5.改变重构滤波器的参数,观察重构信号的变化。

实验结果及分析在实验中,我们观察到当信号发生器的频率超过采样定理的最大采样频率时,示波器上的采样信号出现混叠现象,即无法完整地还原原始信号。

而当信号发生器的频率等于或小于采样定理的最大采样频率时,重构滤波器能够较好地恢复原始信号。

实验结果表明,采样定理是保证信号采样和重构过程正确进行的基本条件。

实验二:线性时不变系统的时域响应实验目的通过实验学习线性时不变系统的时域响应,掌握线性时不变系统的时域特性及系统输出的计算方法。

实验原理线性时不变系统的特性由其冲击响应函数或单位冲击响应函数来描述。

系统的输入信号通过系统的冲击响应函数或单位冲击响应函数进行卷积运算,得到系统的输出信号。

实验步骤1.连接信号发生器、线性时不变系统和示波器,并设置信号发生器的输出信号为正弦波。

信号与系统实验报告(00002)

信号与系统实验报告(00002)

信号与系统实验报告(00002)信号与系统是电子信息专业的一门重要课程,是研究信号与系统特性及其处理方法的学科。

本次实验中,我们学习了离散信号的采样和重构,了解了离散信号的采样定理和重构方法。

一、实验目的1. 了解采样和重构的基本概念和原理;2. 掌握离散信号的采样和重构方法;3. 学习MATLAB软件的使用,实现离散信号的采样和重构。

二、实验原理采样:将连续时间信号x(t)在时间轴上等间隔取样,得到一系列的样本点x(nT),则x(nT)为离散时间信号。

采样定理是:在任意带限信号中,采样频率大于最大频率的两倍时(即fs>2fmax),能够完全重构原信号,其中fmax为信号的最高频率成分。

重构:对离散信号进行插值恢复,得到连续时间信号x(t)。

插值重构方法主要有零阶保持、插值多项式、样条插值等。

三、实验步骤1. 绘制示波器测试信号,包括正弦信号、方波信号、三角形信号;2. 利用MATLAB软件编写程序进行采样,设置采样周期T和采样频率fs,得到离散信号;3. 对离散信号进行插值恢复,通过更改插值方法:零阶保持、一次插值、样条插值等,观察重构信号的差异。

四、实验结果及分析1. 绘制示波器测试信号在实验室中,我们使用示波器测试仪器观察了三种不同的测试信号:方波信号、正弦信号和三角形信号,并对其进行了记录和分析。

对于离散信号采样来说,方波信号是最合适的信号。

2. 采样在完成信号采样时,我们使用MATLAB软件的系统函数进行采样,输入需要采样的数据和采样周期,可以准确地得到离散信号。

3. 插值和重构我们使用了三种不同的插值方法分别对离散信号进行插值重构,包括零阶保持、一次插值和样条插值。

在零阶保持方法中,重构的信号呈现出了一个高度离散化的状态。

而一次插值方法实现了信号的比较平滑的重构,同时样条插值方法可以实现更为平滑的结果。

因此,样条插值方法是一种更为实用和常用的方法。

五、结论。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号与系统分析实验报告

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一,连续时间信号和离散时间信号的时域分析。

本实验旨在通过对连续时间信号和离散时间信号的时域分析,加深对信号与系统的理解。

首先我们将连续时间信号和离散时间信号分别进行采样和重构,然后进行时域分析,得出相应的结论。

实验步骤:1. 连续时间信号的采样和重构。

我们选取了一段正弦信号作为连续时间信号,通过模拟采样和重构的过程,我们得到了采样后的离散时间信号,并将其进行重构,得到了重构后的连续时间信号。

2. 离散时间信号的采样和重构。

同样地,我们选取了一段离散时间信号,进行了模拟采样和重构的过程,得到了采样后的离散时间信号,并将其进行重构,得到了重构后的离散时间信号。

实验结果与分析:1. 连续时间信号的时域分析。

通过对连续时间信号的采样和重构,我们发现在一定条件下,采样后的离散时间信号能够完美地重构成原始的连续时间信号。

这说明连续时间信号的信息是完整的,没有丢失。

2. 离散时间信号的时域分析。

对于离散时间信号的采样和重构,我们也得到了类似的结论,即在一定条件下,采样后的离散时间信号能够完美地重构成原始的离散时间信号。

结论与总结:通过本次实验,我们对连续时间信号和离散时间信号的时域分析有了更深入的了解。

我们明白了采样和重构的过程,并且得出了结论,在一定条件下,采样后的信号能够完美地重构成原始信号。

这对于我们理解信号与系统的基本原理具有重要的意义。

实验二,信号的傅里叶变换。

本实验旨在通过对信号的傅里叶变换,了解信号在频域上的特性,并掌握信号的频谱分析方法。

实验步骤:1. 连续时间信号的傅里叶变换。

我们选取了不同类型的连续时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

2. 离散时间信号的傅里叶变换。

同样地,我们选取了不同类型的离散时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

实验结果与分析:1. 连续时间信号的频谱分析。

通过对连续时间信号的傅里叶变换,我们发现不同类型的信号在频域上有着不同的频谱特性,有些信号的频谱集中在低频段,而有些信号的频谱集中在高频段。

信号的采样与恢复实验报告

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告篇一:实验2:连续信号的采样和恢复电子科技大学实验报告(二)学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理:实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。

xpT(t))图3.4-1实际采样和恢复系统采样脉冲:p(t)??F?pT(j?)?T2?T???k(:信号的采样与恢复实验报告)2?ak?(??k?s)其中,?s?,ak??sin(k?s?/2)Tk?s?/2F,T。

采样后的信号:xs(t)xs(j?)?1T??x(j(?k?k?s)当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。

四、实验目的与任务:目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。

七、实验步骤:打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。

图1观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。

按“F4”键把采样脉冲设为10khz。

3、点击ssp软件界面上的按钮,观察原始正弦波。

4、按图2的模块连线示意图连接各模块。

图2观察采样波形的模块连线示意图5、点击ssp软件界面上的按钮,观察采样后的波形。

信号与系统 实验报告

信号与系统 实验报告

信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。

本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。

二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。

三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。

其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。

2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。

采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。

重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。

四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。

然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。

最后,将重建得到的信号与原始信号进行对比,分析重建误差。

实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。

而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。

2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。

例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。

同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。

实验结果表明,不同系统对信号的频率特性有着明显的影响。

高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。

通过调节滤波器的参数,可以实现对信号频率的选择性衰减。

五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。

本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。

实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。

首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。

然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。

实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。

实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。

通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。

在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。

实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。

实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。

我们通过输入不同频率和幅度的信号,观察系统的输出响应。

实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。

通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。

实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。

通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。

实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。

实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。

结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。

实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告连续信号的采样与重构实验报告信号与系统上机实验报告学院:电⼦信息学院班级:080112022 / 23姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构⼀、实验⽬的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察⽋采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定⽅法。

⼆、实验内容和原理信号的采样与恢复⽰意图如图2.5-1所⽰2 / 232 / 23图2.5-1 信号的抽样与恢复⽰意图抽样定理指出:⼀个有限频宽的连续时间信号)(t f ,其最⾼频率为m ω,经过等间隔抽样后,只要抽样频率sω不⼩于信号最⾼频率mω的⼆倍,即满⾜m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相⽐没有失真,只有幅度和相位的差异。

⼀般把最低的抽样频率ms ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s的频谱将产⽣混迭现象,此时将⽆法恢复原信号。

2 / 23f(t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期sT ⾮常⼩,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s的幅度频谱为)(ωsF ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利⽤低通滤波器(其截⽌频率满⾜mscmωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所⽰。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进⾏必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作⽤是滤除截⽌频率以外的信号,恢复出与原信号相⽐⽆失真的信号)(0t f 。

信号与系统实验报告4

信号与系统实验报告4

信号与系统实验报告4信号与系统实验报告实验四信号抽样与恢复⼀、实验⽬的学会⽤MA TLAB实现连续信号的采样和重建⼆、实验原理1.抽样定理若是带限信号,带宽为, 经采样后的频谱就是将的频谱在频率轴上以采样频率为间隔进⾏周期延拓。

因此,当时,不会发⽣频率混叠;⽽当时将发⽣频率混叠。

2.信号重建经采样后得到信号经理想低通则可得到重建信号,即:其中:所以:上式表明,连续信号可以展开成抽样函数的⽆穷级数。

利⽤MATLAB中的来表⽰,有,所以可以得到在MATLAB中信号由重建的表达式如下:我们选取信号作为被采样信号,当采样频率时,称为临界采样。

我们取理想低通的截⽌频率。

下⾯程序实现对信号的采样及由该采样信号恢复重建三.实验内容验证实验原理例5-1 Sa(t)的临界采样及信号重构;例5-2 Sa(t)的过采样及信号重构和绝对误差分析程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截⽌频率该成wc=1.1*wm ,添加⼀个误差函数例5-3 Sa(t)的⽋采样及信号重构和绝对误差分析程序和例4-2类似,将采样间隔改成Ts=1.5*pi/wm , 滤波器截⽌频率该成wc=wm=1上机实验内容:设,由于不是严格的频带有限信号,但其频谱⼤部分集中在[0 ,2] 之间,带宽wm 可根据⼀定的精度要求做⼀些近似。

试根据以下两种情况⽤M AT L A B实现由f(t)的抽样信号fs(t) 重建f(t) 并求两者误差,分析两种情况下的结果。

(1) wm=2 , wc=1.2 wm , Ts=1 ;(2) wm=2 , wc=2 , Ts=2.5;(1).解答:wm=2; %信号带宽wc=1.2*wm; % 滤波器截⽌频率Ts=1; % 采样间隔ws=2*pi/Ts; %采样⾓频率n=-100:100; %时域采样电数nTs=n*Ts; % 时域采样点f=0.5*(1+cos(nTs)).*(heaviside(nTs+pi)-heaviside(nTs-pi));Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); % 信号重构t1= -15:0.5:15;error=abs(fa -0.5*(1+cos(t)).*(heaviside(t+pi)-heaviside(t-pi)));f1=0.5*(1+cos(t1)).*(heaviside(t1+pi)-heaviside(t1-pi));subplot(311);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('f(t)=0.5*(1+cost)*(u(t+pi) -u(t-pi)) 的临界采样信号'); subplot(312);plot(t,fa)xlabel('t');ylabel('fa(t)');title('由f(t)=0.5*(1+cost)*(u(t+pi) -u(t-pi)) 的临界采样信号重构sa(t)');grid;subplot(313);plot(t,error);grid on;title('原始函数和重构函数的误差');图像如下:(2)。

信号与系统实验报告

信号与系统实验报告

信号与系统实验教程(实验报告)班级: 自动化一班姓名: 韩晓晖学号:20134317西南交通大学信息科学与技术学院二◦一五年五月二十日实验一连续时间信号的采样实验目的 进一步加深对采样定理和连续信号傅立叶变换的理解。

实验步骤1 •复习采样定理和采样信号的频谱F s 2F o则该信号可以由它的采样值x(n) x a (nT s )重构。

否则就会在x(n)中产生混 叠。

该有限带宽模拟信号的2F o 被称为奈奎斯特频率。

必须注意,在x a (t)被采样以后,x(n)表示的最高模拟频率为F s /2Hz (或 )。

采样信号的频谱为原信号频谱以采样频率为周期的周期延托: 2 •熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分 析模拟信号。

然而如果用时间增量足够小的很密的网格对 X a (t)采样,就可得到 一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分 析。

令t 是栅网的间隔且t T s ,贝UX G (m) X a (m t) (2)可以用一个数组来仿真一个模拟信号。

不要混淆采样周期T s 和栅网间隔t , 因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系 也可根据(2。

近似为:X a (jw) x G (m)e jwmt t t x G (m)e jwmt(3)m m 现在,如果x a (t)(也就是x G (m))是有限长度的。

则公式(3)与离散付利 叶变换关系相似,因而可以用同样的方式以 MATLAB 来实现,以便分析采样现 象。

如果采样频率F s 大于有限带宽信号 X a (t)带宽F o 的两倍,即1 X p (jw)-T k X(j(w kw s )) X( j(w kw s ))三、实验内容1.通过例1熟悉用MATLAB 语言实现描绘连续信号的频谱的过程,并在 MATLAB 语言环境中验证例1的结果;例1 令X a (t) e 10呷1,求出并绘制其傅立叶变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》——课程设计实验一信号的采样与重构一、实验内容:1.应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

2.加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差。

3. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

二、实验原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

(2)采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:>各处为零;(对信a、必须是带限信号,其频谱函数在号的要求,即只有带限信号才能适用采样定理。

)b 、 取样频率不能过低,必须>2 (或>2)。

一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T 的幅值调制器。

图2 信号的采样(4) 信号重构设信号)(t f 被采样后形成的采样信号为)(t f s ,信号的重构是指由)(t f s 经过内插处理后,恢复出原来信号)(t f 的过程,又称为信号恢复。

三、实验步骤及代码(一).%%%%%%%%%%% 产生一个连续sin ()信号 %%%%%%%%%%%%%%%%%%f=100;t=(1:50)/2000; %时间轴步距 x=sin(2*pi*t*f); figuresubplot(211);plot(x); %绘制x(t)的图形图片号加底框 xlabel('t');ylabel('x(t)');title('连续时间信号sin ()的波形'); %图片命名 grid;n=0:255; %长度N=256; %设采样点的N 值 Xk=abs(fft(x,N));subplot(212); %频域波形 plot(n,Xk);axis([0 N 1.2*min(Xk) 1.2*max(Xk)]); %可用axis 函数来调整图轴的范围 xlabel('时域频谱波形图');ylabel('|Xk|');title('信号sin()的频谱波形');(二)%%%%%%%%%%%%对原始信号进行采样并滤波重构 %%%%%%%%%%%% t1=3*t;f1=sin(2*pi*t1*f);figuresubplot(211);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('欠采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fa=filter(B,A,f1);subplot(212);plot(fa)xlabel('t');ylabel('fa(t)');title('欠采样信号重构后的波形');t2=0.5*t;f2=sin(2*pi*t2*f);Figure,subplot(211); stem(t2,f2);xlabel('kTs');ylabel('f(kTs)');title('临界采样的信号波形');[B,A]=butter(2,450/500); %设置低通滤波器参数[H,w]=freqz(B,A,512,2000);fb=filter(B,A,f2);subplot(212);plot(fb),xlabel('t'),ylabel('fb(t)');title('临界采样信号重构后的波形');t3=0.2*t;f3=sin(2*pi*t3*f);figuresubplot(211); stem(t3,f3);xlabel('kTs');ylabel('f(kTs)');title('过采样的信号波形');[B,A]=butter(2,450/500);[H,w]=freqz(B,A,512,2000);fc=filter(B,A,f3);subplot(212);plot(fc)xlabel('t');ylabel('fc(t)');title('过采样信号重构后波形');四、实验总结经过此次MATLAB课程设计我学到了很多知识和学习方法。

仅凭我在信号与系统课上所学的那点知识是不够的。

所以为了做好这次的课程设计,我上网搜索了许多与此有关的知识,这个过程中我也学会了好多。

在这次设计中,我学到了对信号的采样定理的应用,以及信号的重构,并通过观察MATLAB所生成的频谱图,进一步了解了有关信号的采样与重构,对信号的采样程度进行比较其误差,了解不同采样程度的重构信号和原信号所产生的差异。

网上有很多类似的程序而且很多都是对sinc()函数做的,我就想能不能换个连续函数试试,不过在换的过程中我也发现了不少的问题,调试也一直出错让人很头疼。

不过功夫不负有心人,就算是一点一点的扣,程序我也完全看懂了,很是欣慰。

实验二 语音信号的处理——延时和混响一、实验目的:1.加深对线性时不变系统的理解2.加深对滤波器滤波特性的理解3.掌握信号混响原理,并利用matlab 实现。

二、实验内容:选择语音信号作为分析的对象,对其进行频谱分析,在时域将信号加入混响,再分析其频谱,并对原始信号频谱进行比较三、实验原理1. 混响效果主要是用于增加音源的融合感。

自然音源的延时声阵列非常密集、复杂,所以模拟混响效果的程序也复杂多变。

常见参数有以下几种:(1)混响时间:(2)高频滚降:(3)扩散度:(4)预延时: (5)声阵密度:(6)频率调制:(7)调治深度:2.延时就是将音源延迟一段时间后,再欲播放的效果处理。

依其延迟时间的不同,可分别产生合唱、镶边、回音等效果。

3.设计集中混响器(滤波器),实现混响。

(1) 单回声滤波器,系统函数为:()1,1mH z a z a -=+<(2) 单重回声滤波器:1(),11N N mmaz H z a a z ---=<- (3) 无限个回声滤波器:(),11mmzHz a a z --=<- (4) 全通结构混响器,(),11m ma z Hz a a z--+=<-四、实验步骤1获取一段语音信号[x1,fs,bits]=wavread('F:\applause.wav');2进行频谱分析及延时处理x1=x1(:,1);subplot(221);plot(x1); %做原始语音信号的时域图形title('原始语音信号');grid on;xlabel('时间 n');ylabel('音量 n');y1=fft(x1); %做length(x1)点的FFTy1=fftshift(y1);%平移,是频率中心为0derta_fs = fs/length(x1); %设置频谱的间隔,分辨率Subplot(222)plot([-fs/2:derta_fs:fs/2-derta_fs],abs(y1));%画出原始语音信号的频谱图title('原始语音信号的频谱');grid on;3.用设计的混响器对信号进行处理并分析比较y2=[x1;zeros(200,1)];y3=y2+z;%混响后信号叠加(两个信号必须长度相等)Figure,plot(y3);title('混响的时域图');grid on;Y3=fft(y3);%混响信号fft变换Y4=fftshift(y3);%平移,中心为0频率derta_Fs = Fs/length(y3);figure,plot([-Fs/2:derta_Fs: Fs/2-derta_Fs],abs(Y4)); title('混响后的频域图');grid on;Bz=[0,0,0,0,0,0,0,0,0,0,1];Az=[1,0,0,0,0,0,0,0,0,0,-a];yy1=filter(Bz,Az,x1);subplot(223);plot(yy1);title('无限个回声滤波器时域波形');grid on;YY1=fft(yy1);YY2=fftshift(yy1);%平移至中心为0频率derta_fs = fs/length(yy1);subplot(224);plot([-fs/2:derta_fs: fs/2-derta_fs],abs(YY2));title('无限个回声滤波器频谱图 ');grid on;五、实验总结:通过本此的课程设计对信号处理有了更进一步的熟悉,实际操作加深了对课本上的知识的理解。

通过上网搜索资料,查阅课本及课外书籍,动手设计滤波器,采集语音,语音分析等工作,加强了对MATLAB程序的编写能力以及对信号处理的相关知识的理解。

平时所学的知识如果不加以实践的话等于纸上谈兵。

实验二的内容网上有现成的程序,于是我也找了一些进行比较,发现都是大同小异,关键是要能够理解实验的内涵及原理。

在读程序的过程中遇到了一些不懂的地方:fftshift的功能 FFTSHIFT is useful for visualizing the Fourier transform with the zero-frequency component in the middle of the spectrum.对自己的以后的要求是:因为要考信号的研究生,以后也是免不了要编程序,先学着自己去读懂程序,然后自己去试着编写这些程序。

相关文档
最新文档