混频电路设计3

合集下载

混频器设计

混频器设计

图9-5 混频 器频谱分布
四、双频三阶交调与线性度
1、混频器三阶交调系数 三阶交调系数 Mi 的定义为
13
骣 P ç三阶交调分量功率 ÷= 10 lg wm 3 M i (dB )= 10 lg ç ÷ ç 有用信号功率 ÷ Pif 桫
其值为负分贝数,单位常用 dBc,其物理含义是三阶交 调功率比有用中频信号功率 小的分贝数。三阶交调功率 Pwm 3 随输入微波信号功率 Ps 的变化斜率较大,而中频功 率 Pif 随 Ps 的变化呈正比关 系,基本规律是 Ps 每减小 1dB,Mi 就改善 2dB,如图 7、6 所示。
Pno F= Pns
(9-1)
式中 Pno——-当系统输入端噪声温度在所有频率上都是标准温 度T0 = 290K时,系统传输到输出端的总噪声资用功率; Pns——仅由有用信号输入所产生的那一部分输出的噪声资用功 率。 根据混频器具体用途不同,噪声系数有两种。
一、噪声系数和等效噪声温度比 3
1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率 fs 端口的信源热噪声是 kT0∆f,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是
a r (dB )= 10 lg
(r s + 1)
4r s
2
+ 10 lg
(r i + 1)
4r i
2
(9-9)
混频器微波输入口驻波比ρs 一般为 2 以下。αρ的典型值约为 0.5~1dB。
二、变频损耗
2、混频二极管的管芯结损耗 管芯的结损耗主要由电阻 Rs 和电容 Cj 引起,参见图 9-2。在混频过程 中,只有加在非线性结电阻 Rj 上的信号功率才参与频率变换,而 Rs 和 Cj 对 Rj 的分压和旁路作用将使信号功率被消耗一部分。结损耗可表示为

混频与鉴频器的设计

混频与鉴频器的设计

混频与鉴频器的设计混频器和鉴频器是无线通信系统中非常重要的组件,它们分别用于信号的混频和鉴频。

混频器的主要作用是将高频信号和低频信号相乘,从而将高频信号转换成中频或基带信号,以便进行信号处理。

而鉴频器则用于将调制信号解调为原始信号。

混频器的设计通常需要考虑以下几个方面:1.混频器的工作频率范围:混频器的工作频率范围决定了它在不同应用中的适用性。

设计中需要选择合适的转换技术和电路拓扑,以确保混频器在所需的频率范围内具有良好的性能。

2.混频器的转换损耗:混频器在信号转换过程中会引入一定的转换损耗,也就是信号的功率损失。

设计中需要通过合适的电路参数和材料选择来降低转换损耗,并提高混频器的效率。

3.混频器的非线性特性:混频器在工作时会引入非线性失真,例如互调失真和交调失真。

这些失真会导致频谱扩展和杂散分量增加,对无线通信系统的性能造成影响。

因此,设计时需要选择合适的电路结构和优化电路参数,以减少非线性失真。

4.混频器的隔离度和带外抑制:混频器在混频过程中会引入一些杂散分量,它们可能会干扰其他无线设备或频段的信号。

设计中需要通过增强隔离度和带外抑制能力,以降低对其他信号的干扰。

鉴频器的设计也需要考虑类似的因素,同时还需要关注以下几点:1.鉴频器的解调效率:鉴频器的解调效率决定了解调后的信号质量。

设计中需要选择合适的解调方法和电路参数,以提高鉴频器的解调效率。

2.鉴频器的带宽和选择性:鉴频器通常需要适应不同带宽的信号,例如窄带和宽带信号。

设计时需要选择合适的电路结构和调整电路参数,以实现所需的带宽和选择性。

3.防止锁定和抗混叠:鉴频器设计需要考虑避免频率偏移和频率混叠的问题。

通过合适的信号处理技术和滤波器设计,可以提高鉴频器的抗干扰能力。

4.鉴频器的抗噪声性能:鉴频器中通常存在一定的噪声,例如热噪声和杂散噪声。

设计时需要选择合适的放大器和滤波器来提高鉴频器的抗噪声性能。

总体而言,混频器和鉴频器的设计需要综合考虑频率范围、转换损耗、非线性特性、隔离度、带宽、选择性、解调效率、抗锁定和抗噪声性能等因素。

实验七混频器的仿真设计

实验七混频器的仿真设计
➢ 信号功率和本振功率应同步加到混频二极管上; ➢ 二极管要有直流通路和中频输出通路; ➢ 二极管和信号回路应尽量匹配,以便取得较大旳信号功率; ➢ 本振与混频器之间旳耦合量应能调整,以便选择合适旳工作状态; ➢ 中频输出端应能滤掉高频分量(信号和本振)
混频器电路旳主要技术指标 • 变频损耗 • 噪声系数 • 端口隔离度 • 驻波比 • 动态范围 • 三阶交调系数 • 镜频克制度 • 交调失真
电流在工作点用泰勒级数展开:
i f (E0 UL cosLt US cosSt)
f (E0 UL cosLt) f '(E0 UL cosLt)US cosSt
Байду номын сангаас
1 2!
f
''(E0
UL
cos Lt )(U S
cos St )2

定义二极管旳时变电导g(t)为
g
t
= di dv
= v=E0 +ULcosLt
i2 gnVs cos(nL s )t
i1 gnVs cos(nL s )t n
输出: i i2 i1 2gnVs cos 2i 1L s t
n为偶数旳高次谐波电流被完全抵消,只剩余奇次谐波电 流(n=2i+1),所以电路本身抵消了二分之一高次谐波电流 分量。
3、镜像回收混频器 (a)给出了分支线电桥旳信号和本振输入端都放置了平行耦合 镜像带阻滤波器,在该处它们镜像开路。因为该处距二极管 约为λSg/4, 因而在两个二极管输入接点处镜像信号被短路到 地。(b) 在接近连接二极管端口处有一耦合微带线作带阻滤波 器,该滤波器由两段1/4镜频波长旳短线构成,一段终端开路, 另一段与主传播线平行,形成平行耦合微带线。位置要调整 到刚好使镜频和本振二次混频后旳中频和一次混频旳中频同 相叠加,可回收镜频能量,提升混频器性能。

5.4混频器电路设计实例

5.4混频器电路设计实例

图5.4.6 LT5512 1900MHz下变频器 (PCS/UMTS应用)应用电路原理图、 元器件布局图与印制板图
5.4.5 基于LT5500的1.8~2.7GHz LNA/混 频器电路


LT5500是一个包含有低噪声放大器(LNA)、一个混 频器和一个LO缓冲器的接收器前端IC,采用SSOP-24 封装,可应用于IEEE 802.11和802.11b DSSS及FHSS、 高速无线LAN和区域性环路。 LT5500的工作电压为1.8~5.25V,电流消耗33mA,待 机模式电流消耗2~25A。LT5500的LNA有高增益和 低增益两种工作模式。在2.5GHz频段,LNA高增益模 式具有13.5dB的增益和4dB的噪声系数(NF),在低 增益模式具有14dB的增益和一个+8dBm的IIP3。混 频器由一个有双平衡混频器单元的单端输入差分对组 成。在2.5GHz频段,在10dBm的LO输入功率时,混 频器具有5dB的转换增益和2.5dBm的IIP3。3个端口 的隔离度,LO-IF隔离度达36dB,LO-RF隔离度达36dB, RF-LO隔离度达40dB。混频器中频输出频率范围是 200~450MHz。
图5.4.1 T0785的应用电路原理图和印制板图
5.4.2 基于LT5511的400~3000MHz 上变频器电路



LT5511混频器芯片内部包含一个差分本振缓冲放大器、双 平衡混频器和偏置/使能电路,它的LO、RF和IF端口能够 与宽频率范围内的各种放大器匹配。高性能的本振缓冲器 允许使用一个单端的本机振荡器源,不需要使用不平衡变 压器。 LT5511射频输出频率范围为400~3000MHz,本振输入频 率范围为400~2700MHz,中频输入频率范围为10~ 300MHz。LT5511在IF输入信号电平为5dBm,在射频输 出频率为950MHz时,IIP3为+17dBm。在射频输出频率为 1900MHz时,IIP3为+15.5dBm。输入1dB压缩点为 +6dBm。本振输入功率15~5dBm,本振缓冲器驱动电 平为10dBm。电源电压范围为4.0~5.25V,电流消耗 65mA。采用TSSOP-16封装形式。 LT5511的950MHz应用电路原理图和印制板图如图5.4.2所 示,元器件参数见表5.4.2。

混频器电路设计

混频器电路设计

混频器电路设计
混频器电路是一种广泛应用于通信、雷达、测量等领域的电路,主要功能是将两路不同频率的信号合并成一路,以获得混频信号。

混频器电路的设计主要涉及以下几个方面:
1. 混频器类型选择:混频器电路通常可以选择三种类型的混频器,即互补式、抑制式和反向式混频器。

不同类型的混频器具有不同的性能特点和优缺点,需要根据具体应用场景选择。

2. 设计频率选择:混频器的输入频率范围和输出频率范围需要根据具体应用需求确定,同时考虑到混频器的增益和带宽等参数。

3. 传输线设计:混频器电路中的传输线设计对混频器的性能有很大影响。

传输线具有传输延时、传输损耗等参数,需要合理选择设计参数来优化混频器电路的性能。

4. 滤波器设计:混频器电路常常需要加入滤波器,去除不需要的频率分量,保留所需频率分量,以提高混频器电路的选择性和干扰抑制能力。

5. 电路布局与封装:混频器电路的布局和封装方式对混频器电路的性能和可靠性有很大影响,需要合理设计和选择。

综上所述,混频器电路的设计需要综合考虑电路类型、频率、传输线、滤波器及电路布局等因素,以达到优化性能、选择性和干扰抑制能力的目的。

ADS射频电路课程设计——混频器设计与仿真

ADS射频电路课程设计——混频器设计与仿真

混频器的设计与仿真设计题目:混频器的设计与仿真学生姓名: ____________________________学院: _______________________________专业: _______________________________指导老师: ____________________________学号: _______________________________ 期:2011年12月20 日•、射频电路与ADS既述 (3)1、............................................................... 射频电路概述32、................................................................... ADS既述3 1、混频器的设计. (7)1. 混频器的基本原理 (7)2、混频器的技术指标 (9)三、混频器的设计 (9)1、3 D B定向耦合器的设计.................................................. .9...…1.1、建立工程............................................................ 9.......1.2、搭建电路原理图 (10)1.3、设置微带线参数 (11)1.4、耦合器的S参数仿真 (12)2、............................................................. 完整混频器电路设计173、低通滤波器的设计 ................................................................... 2.错误!未定义书签四、混频器性能仿真 (23)1、....................................................... 混频器功能仿真231.1、仿真原理图的建立 (23)1.2功能仿真 (25)2、....................................................... 本振功率的选择273、混频器的三阶交调点分析 (28)3.1、三阶交调点的测量 (28)3.2、三阶交调点与本振功率的关系 (31)4、混频器的输入驻波比仿真 (31)五、设计总结 (33)一、射频电路与ADS既述1、射频电路概述射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF电路”或“微波电路”等等。

三极管混频电路

三极管混频电路

实验报告册课程: 高频电子线路实验实验: 三极管混频电路班级: 09电信2班姓名: 林小龙学号: 20090662224 日期: 年月日一、实验目的①通过实验熟悉三极管混频电路的工作原理。

②掌握三极管混频电路的混频增益的测试方法。

二、实验原理混频, 又称为变频, 是一种信号频率变换过程, 指将信号的某一个频率或频段变换成我们需要的另一种频率或频段。

能完成这种频率变换过程的电路就叫做变频器, 也称混频器。

三极管混频电路是超外差接收机中广泛应用的电路。

它的主要特点通过混频(变频)实现高频信号的频率变换。

从而将一个较大的频率空间内的接收频率转变成为一个固定的较低的频率。

因而,主放大电路可以按照这个频率进行设计,从而保证整机的增益、通带等性能指标。

实验电路如图1-1所示。

接收到的高频信号(由高频信号发生器产生)送到混频管的基极。

本机振荡信号(由高频信号发生器产生)送到混频管的发射极。

由于三极管的非线性作用,将产生一个差频信号(中频)由集电极输出并由LC谐振回路选出。

送到中频放大电路。

图1—1 三极管混频电路三、实验电路图1-1所示电路为实验电路,它是本振信号从发射极注入式的晶体管混频电路。

具有较高的混频增益。

本实验电路要求完成的技术指标:输出中频f I=465KHz,通频带2△f0.7=6KHz,增益A>20dB,R L=1 kΩ。

电路主要元件参数:晶体管CS9018,β=60,查手册知在f0=300MHz,I C=2mA,Vcc=9V 条件下测得y参数为g ie=2mS,Cie=12PF,goe=250μs,Coe=4pF,yfc=40mS,yre=350μS。

如果工作条件发生变化,则上述参数值仅作为参考。

要得到晶体管的y参数也可由混合π参数计算出y参数。

中频变压器参数:L=4μH,Q0=100,P1=0.6,P2=0.3。

回路电容C1=10PF,C2=(5~20)PF,在调谐过程中使用微调电容C2,调整中心频率。

混频电路设计课程设计

混频电路设计课程设计

混频电路设计课程设计一、教学目标本节课的教学目标是让学生掌握混频电路的基本原理和设计方法,能够运用所学知识分析和解决实际问题。

具体目标如下:1.知识目标:(1)了解混频电路的定义和作用;(2)掌握混频电路的基本组成部分及其工作原理;(3)掌握混频电路的设计方法,能够根据实际需求进行设计。

2.技能目标:(1)能够运用所学知识分析和解决混频电路的实际问题;(2)能够运用现代教育技术手段,如计算机仿真等,进行混频电路的设计和验证;(3)能够团队合作,进行混频电路设计的创新和优化。

3.情感态度价值观目标:(1)培养学生对科学研究的兴趣和热情,提高学生的科学素养;(2)培养学生团队合作的精神,提高学生的社会责任感;(3)培养学生勇于创新、追求卓越的品质。

二、教学内容根据教学目标,本节课的教学内容如下:1.混频电路的定义和作用;2.混频电路的基本组成部分及其工作原理;3.混频电路的设计方法及步骤;4.混频电路设计的实际应用案例。

三、教学方法为了实现教学目标,本节课将采用以下教学方法:1.讲授法:讲解混频电路的基本原理、设计方法和实际应用;2.讨论法:学生进行小组讨论,分享设计经验和心得;3.案例分析法:分析实际应用案例,帮助学生更好地理解和掌握混频电路的设计;4.实验法:安排实验室实践环节,让学生亲自动手进行混频电路的设计和验证。

四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识;2.参考书:提供相关领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作课件、视频等多媒体资料,增强课堂教学的趣味性和生动性;4.实验设备:准备实验所需的设备器材,确保实验教学的顺利进行。

五、教学评估为了全面、客观地评估学生的学习成果,本节课将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解程度;2.作业:布置相关的设计实践作业,评估学生对混频电路设计方法的掌握程度;3.实验报告:通过实验报告,评估学生在实验过程中的操作技能和问题解决能力;4.期末考试:设置期末考试,涵盖本节课的重点知识,评估学生对混频电路知识的整体掌握程度。

混频电路实验报告收获(3篇)

混频电路实验报告收获(3篇)

第1篇一、实验背景混频电路是无线通信系统中至关重要的组成部分,它负责将高频信号与本地振荡信号混合,产生中频信号,以便于后续的处理和传输。

本次实验旨在通过搭建混频电路,观察其工作原理,并分析其性能。

二、实验目的1. 了解混频电路的基本原理和结构;2. 掌握混频电路的设计与搭建方法;3. 分析混频电路的性能指标,如频率响应、增益、噪声系数等;4. 培养实验操作能力和分析问题能力。

三、实验原理混频电路的基本原理是利用非线性元件(如二极管、三极管等)的非线性特性,将两个不同频率的信号混合,产生新的频率。

本实验采用二极管混频电路,其工作原理如下:1. 本地振荡信号(LO)和高频信号(RF)分别输入混频电路的两个端口;2. 非线性元件将两个信号进行混合,产生新的频率,包括和频、差频等;3. 通过滤波器选择所需的中频信号(IF)。

四、实验内容1. 搭建混频电路实验平台;2. 输入本振信号和射频信号,观察输出中频信号;3. 测量中频信号的频率、幅度等性能指标;4. 分析混频电路的性能,如频率响应、增益、噪声系数等。

五、实验步骤1. 搭建混频电路实验平台,包括信号源、混频电路、滤波器、示波器等;2. 连接本振信号和射频信号,调整信号幅度;3. 观察示波器上中频信号的波形,记录频率、幅度等数据;4. 测量中频信号的频率、幅度等性能指标;5. 分析混频电路的性能,如频率响应、增益、噪声系数等。

六、实验结果与分析1. 实验结果:搭建的混频电路成功实现了本振信号和射频信号的混合,产生了中频信号。

中频信号的频率约为30MHz,幅度约为1V。

2. 分析:(1)频率响应:混频电路的频率响应较好,在中频附近具有较高的增益,且在两侧有一定的频率范围;(2)增益:混频电路的增益约为20dB,满足实际应用需求;(3)噪声系数:混频电路的噪声系数约为3dB,相对较低,有利于提高系统的信噪比。

七、实验收获1. 通过本次实验,深入了解了混频电路的基本原理和结构,掌握了混频电路的设计与搭建方法;2. 提高了实验操作能力和分析问题能力,为今后从事无线通信领域的研究奠定了基础;3. 深化了对非线性电路理论的理解,为今后研究其他非线性电路提供了借鉴;4. 增强了团队合作意识,培养了与他人沟通、协作的能力。

混频器的设计与仿真

混频器的设计与仿真

目录前言 (1)工程概况 (1)正文 (2)3.1设计的目的及意义 (2)3.2 目标及总体方案 (2)3.2.1课程设计的要求 (2)3.2.2 混频电路的基本组成模型及主要技术特点 (2)3.2.3 混频电路的组成模型及频谱分析 (2)3.3工具的选择—Multiusim 10 (3)3.3.1 Multiusim 10 简介 (3)3.3.2 Multisim 10的特点 (3)3.4 混频器 (3)3.4.1混频器的简介 (4)3.4.2混频器电路主要技术指标 (4)3.5 混频器的分类 (5)3.6详细设计 (5)3.6.1混频总电路图 (5)3.6.2 选频、放大电路 (5)3.6.3 仿真结果 (6)3.7调试分析 (9)致谢 (9)参考文献 (9)附录元件汇总表 (10)混频器的设计与仿真前言混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。

在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。

特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。

移动通信中一次中频和二次中频等。

在发射机中,为了提高发射频率的稳定度,采用多级式发射机。

用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。

由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

工程概况混频的用途是广泛的,它一般用在接收机的前端。

除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。

单硅机后级混频电路

单硅机后级混频电路

单硅机后级混频电路单硅机后级混频电路一、前言单硅机(Monolithic Microwave Integrated Circuits)简称为MMIC(Microwave Monolithic Integrated Circuits),是在单晶片上实现的各种射频功能器件,具有小体积、重量轻、可缩短时间设计、高功率、较低成本等显著优点。

为了充分发挥MMIC功率积聚和低噪声收益的优势,一般会在MMIC的输入后面加一级后级混频放大器,一般称之为MMIC后级混频电路。

二、 MMIC后级混频放大器设计方法1、设计目标本文介绍单硅机后级混频放大器的设计方法,其基本目标是:(1)保证放大器输出功率;(2)保证放大器纹波和噪声指标满足要求;(3)输入和输出阻抗相匹配;(4)具有一定的功率动态范围;(5)尽可能的低功耗运行。

2、放大器设计步骤(1)根据系统需要,放大器设计的基本参数,如:输入输出阻抗、放大器增益,动态范围、纹波等指标;(2)确定放大器基本结构;(3)确定放大器的组件参数;(4)进行原理图连接以及PCB绘制;(5)检测组装的放大器;(6)总结放大器的工作性质和测试数据等。

三、 MMIC后级混频放大器电路特性分析1、增益和负载匹配MMIC后级混频放大器的增益具有很大的动态范围,一般大于20dB,可以满足系统的需要。

同时,放大器的输入和输出阻抗要符合设计要求,一般50Ω,可以通过采用合适的均衡器满足要求,从而提高放大器的增益。

2、噪声特性MMIC后级混频放大器的噪声指标要求很高,一般在3dB以内,主要取决于放大器结构、组件参数和工艺等因素。

3、纹波MMIC后级混频放大器的纹波也是一个十分重要的参数,一般都要求低于-35dBc/Hz,因此,设计放大器时,使用低频相位误差和低频噪声的低频增益环节有助于改善放大器的纹波情况。

四、结论MMIC后级混频放大器的设计是一种复杂的工作,要求掌握多方面的知识,从而确保放大器的各项性能指标能够满足系统的要求。

单硅机后级混频电路

单硅机后级混频电路

单硅机后级混频电路
单硅机后级混频电路是一种用于无线通信系统中的关键电路,它可以将不同频率的信号混合在一起,以便在接收端进行解调和处理。

在现代通信系统中,单硅机后级混频电路扮演着至关重要的角色,它可以实现高效的频谱利用和信号处理,从而提高通信系统的性能和可靠性。

单硅机后级混频电路通常由多个混频器和滤波器组成,其中混频器用于将输入信号的频率转换到所需的中频段,而滤波器则用于去除不需要的频率分量。

在混频器中,通常会使用局部振荡器来产生参考信号,以便与输入信号进行混频。

通过合理设计混频器和滤波器的参数,可以实现对输入信号的精确处理和转换。

在单硅机后级混频电路中,需要考虑的关键参数包括混频器的转换增益、转换损耗、输入输出阻抗匹配等,以及滤波器的通带和阻带特性。

通过优化这些参数,可以实现对不同频率信号的有效混合和处理,从而实现通信系统的高性能和稳定性。

除了混频器和滤波器之外,单硅机后级混频电路还可能包括放大器、功率分配器等辅助电路,以实现对信号的增强和分配。

这些辅助电路的设计和优化也对整个混频电路的性能起着至关重要的作用。

总的来说,单硅机后级混频电路是无线通信系统中不可或缺的一部分,它通过将不同频率的信号混合在一起,实现了高效的信号处理
和频谱利用。

在未来的通信系统中,随着技术的不断发展和进步,单硅机后级混频电路的设计和优化将会变得更加重要,以满足日益增长的通信需求和挑战。

希望通过不断的研究和创新,可以进一步提高单硅机后级混频电路的性能和可靠性,为通信系统的发展做出更大的贡献。

模拟电路混频器设计

模拟电路混频器设计

模拟电路混频器设计在模拟电路设计中,混频器是一个重要的组件,用于将不同频率的信号进行混合。

本文将介绍模拟电路混频器的设计原理和步骤,以及一些常见的混频器电路结构。

一、设计原理在模拟电路中,混频器是将两个或多个不同频率的信号进行非线性运算,产生新的频率组合的电路。

混频器广泛应用于无线通信系统、雷达系统、视频处理等领域。

混频器的主要原理是利用非线性元件(如二极管、晶体管)的非线性特性,将输入信号的频率进行线性非线性转换,产生输出信号。

在混频器中,输入信号通常有两路,分别为射频信号(RF)和本地振荡信号(LO)。

混频器的输出信号一般为中频信号(IF)。

根据输入和输出信号的频率关系,混频器可分为上变频和下变频两种。

二、设计步骤下面以单二极管环形混频器为例,介绍混频器的设计步骤。

1. 选择工作频率首先确定混频器的工作频率范围,根据具体需求选择射频和本地振荡信号的频率。

2. 确定器件参数根据所选的工作频率,选择合适的二极管。

常用的二极管有硅二极管和砷化镓二极管,其特性参数包括最大工作频率、截止频率、反向击穿电压等。

3. 绘制电路图根据混频器的电路结构,绘制混频器的电路图。

对于单二极管环形混频器,电路图包括二极管、匹配网络和偏置电源。

4. 设计匹配网络在混频器中,匹配网络的设计非常重要。

它主要用于确保输入输出的阻抗匹配,提高混频器的性能。

匹配网络的设计需要考虑负载阻抗、源阻抗、谐振频率等因素。

5. 确定偏置电源混频器中的二极管需要合适的偏置电源,以确保其处于合适的工作状态。

偏置电源的设计需考虑二极管的导通和截止状态。

6. 进行仿真和验证完成混频器的设计后,进行电路仿真和验证。

利用电路仿真软件,验证混频器的性能指标,如增益、带宽等。

三、常见的混频器电路结构除了单二极管环形混频器,常见的混频器电路结构还包括平衡混频器、同步混频器、开关混频器等。

每种电路结构都有其特点和适用范围。

平衡混频器采用互补输入电路,可以大大降低非线性失真,适用于高要求的应用场景。

三极管混频电路

三极管混频电路

三极管混频电路混频电路图1 混频器原理框图电路及工作原理1.、T为混频管,B-E结非线性;(υs+υL)→B-E 结非线性,→分量,线性传送到C-E结→经LC中频带通滤波(中心频率为ωI)→实现混频。

2、电路分析图中,输入信号υs=V sm cosωc t,输出中频回路LC调谐在ωI=ωL-ωs 上,如将(V BBO+υL)作为三极管的等效基极偏置电压,用V BB(t)表示,称时变基极偏压,其中υL=V Lm cosωL t为本振电压。

若υs很小时,V Lm>>V sm即可视混频管参数是受V BB(t)控制的时变网络,对υS而言,该电路分析方法可近似采用时变参数时小信号谐振放大器的分析方法称之为等效线性时变系统分析方法。

3、混频电路的组成模型及频谱分析图a 是混频电路的组成模型,可以看出是由三部分基本单元电路组成。

分别是相乘电路、本级振荡电路和带通滤波器(也称选频网络)。

当为接收机混频电路时,其中U s (t)是已调高频信号。

U l (t)是等幅的余弦型信号,而输出则是U i (t)为中频信号。

混频电路的基本原理:^ 图2中,U s (t)为输入信号,U c (t)为本振信号。

U i (t)输出信号。

分析:当st sm s cos U (t)U ψ= 则(t)(t)U U (t)U c s p = = ct cm st sm cos U cos U ψψ = ct st cos cos Am ψψ 其中:cm sm U U Am =对上式进行三角函数的变换则有()t c st 1p cos cos Am t U ψψ=:)t]-(c s)t c [cos(Am 21s c ψψψψos ++ 从上式可推出,U p (t)含有两个频率分量和为(ψc +ψS ),差为(ψC -ψS )。

若选频网络是理想上边带滤波器则输出为]t Amcos[21(t)U s c i ψψ+=. 若选频网络是理想下边带滤波器则输出:]t -Amcos[21(t)U s c i ψψ=.工程上对于超外差式接收机而言,如广播电视接收机则有ψc >>ψS .往往混频器的选频网络为下边带滤波器,则输出为差频信号,]t -Amcos[21(t)U s c i ψψ=为接收机的中频信号。

混频电路的主要技术指标

混频电路的主要技术指标

混频电路的主要技术指标
混频电路主要是用于调频收发机中的调制与解调环节,其核心部件为混频器。

混频器的主要作用是将两路信号进行混合,产生不同的频率信号,经过滤波、放大等处理后,用于发射或解调。

混频电路的主要技术指标如下:
1. 频率范围:混频器能够混合的信号频率范围是其重要的技术指标之一。

通常情况下,混频器在接收模式下的频率范围应覆盖所需的整个接收频带,发射模式下的频率范围应符合所需的整个发射频带。

2. 转换增益:转换增益是指混频器将输入的信号混合后,输出信号的增益大小。

通常情况下,我们希望混频器的转换增益尽可能大,这样可以减小后续电路的噪声贡献。

3. 转换损耗:转换损耗是指混频器将输入的信号混合后,输出信号与输入信号之间的损耗。

通常情况下,我们希望混频器的转换损耗尽可能小,这样可以减少整个电路的信号衰减。

4. 本振抑制:混频器在混合两路信号时,会产生本振信号,这会导致信号干扰和失真。

因此,混频器的本振抑制能力也是其重要的技术指标之一。

5. 择频性能:混频器不仅会将输入信号混合产生新的频率信号,也会产生杂散频率信号。

因此,混频器的择频性能也是需要考虑的。

综上所述,混频电路是广泛应用于通信领域的重要电路之一,其技术指标对于整个系统的性能有着重要的影响。

在设计混频电路时,需要根据实际需求选择合适的混频器,并根据具体场景进行适当的优化,以达到最佳的性能表现。

5.4 混频器电路设计实例

5.4  混频器电路设计实例

图5.4.3 MC13143应用电路原理图和印制板图
图5.4.4 采用16:1变压器的窄带中频输出电路
ห้องสมุดไป่ตู้
图5.4.5 采用LC匹配网络的窄带中频输出电路
5.4.4 基于LT5512的DC~3GHz 下变频器电路
LT5512是一个宽带的、高线性度的混频器集成电路, 芯片内部包含一个射频缓冲放大器、一个差分的LO (本机振荡器)缓冲器放大器、双平衡混频器和偏置/ 使能电路。集成的RF缓冲放大器改善了LO-RF隔离度, 不需要精确的外部偏置电阻。 LT5512采用的是一个高线性度的无源二极管混频器电 路结构,混频器变换增益1dB。RF输入频率范围DC~ 3000MHz,LO输入频率范围DC~3000MHz,IF输出频 率范围DC~2000MHz。
在印制板的底部放置LO信号导线,可以提高LO隔离和 元器件安装密度。允许在LNA输出端和混频器输入端间 放置匹配元件或级间滤波器。在LNA和混频器输出端的 上拉电感旁尽可能近地放置接地旁路电容。VCC线必 须为低阻抗和采用宽带电容来去耦。去耦电容应尽可 能接近VCC引脚端。尽可能避免使用长导线,长的RF 导线将导致信号辐射,减弱隔离和增加损耗。
LT5512具有高IIP3:在950MHz时为+20dBm,在 1900MHz时为+17dBm。SSB噪声系数在1900MHz时为 14dB。集成的LO缓冲器不易受LO驱动电平的影响,可 以使用单端或差分LO信号,LO输入功率为−15~ −5dBm,具有高的LO-RF隔离度,具有使能控制功能。 LT5512电源电压范围为4.5~5.25V,电流消耗74mA, 低功耗模式电流消耗100µA。LT5512采用4mm×4mm QFN封装形式。 LT5512 1900MHz下变频器(PCS/UMTS应用)应用电 路原理图、元器件布局图和印制板图如图5.4.6所示, 元器件参数见表5.4.3。

混沌电路的详解

混沌电路的详解
R1
220 15V
R4 22k
v1 iL
L
17mH
R
v2
R
1.5k
C2
100nF
iNL
C1
10nF

O

O
15V
iL
L
17mH
1.5k
15V
15V
RNL
C2
100nF
C1
10nF
R6 R2 220
2.2k
R6
3.3k
R5 22k
蔡氏电路状态方程为:
G G dv 1 (v2 v1 ) v1 dt C1 C1 1 G d v2 iL (v1 v2 ) dt C2 C2 d iL 1 v2 L dt
混沌电路常用的微分方程 在混沌电路的分析与设计中常用的几个非线性 微分方程与迭代方程是: (1) 李纳德(Lienard)方程
f ( x) x g ( x) 0 x
(2) 范德波尔(Van Der Pol)方程 ( x 2 1) x x 0 x (3) 杜芬(Duffing)方程
(8)负阻尼振荡器
x y y a(1 x 2 ) y x3 b cos( ft )
典型混沌电路及其分析
蔡氏电路 1983年美国科学家蔡少棠发明了蔡氏混沌电路,促进了 现代非线性电路理论的发展。
蔡氏电路的原理如左图所示。用有源电路实现的一种蔡 氏电路如右图所示,其中虚线框中的电路就是双运算放大 器非线性电阻电路。虚线框外的电路与左图中的完全相同。
为了对混沌电路有一个初步的了解,下面介绍 如下图所示的最简单的混沌电路,该电路称为林 森混沌电路。电路由电阻R、电感L、变容二极管 D和一个外加输入信号u组成。如果元件值取 R=200,L=100µ H,变容二极管D选1N4001型, 输入信号u是频率f=2MHz、振幅值Um可以变化 的正弦波电压。

混频器电路设计

混频器电路设计

混频器电路设计
混频器是一种用于将不同频率的信号合成为一个复合信号的电路。

它在通信、广播、雷达、无线电和音频设备中得到广泛应用。

在本文中,我们将介绍混频器电路的设计和实现。

混频器电路是由两个输入端口和一个输出端口组成的。

其中一个输入端口用于输入高频信号,另一个输入端口用于输入低频信号。

输出端口则输出了这两个信号的混合信号。

混频器电路的核心是非线性器件,它可以将两个输入信号相乘并产生一个输出信号。

这个输出信号包含了原始信号的和、差和乘积。

混频器电路有许多不同的类型,包括同轴、波导、微带和集成混频器。

其中,微带混频器是最流行的类型之一。

微带混频器使用基于微带线的电路板,它可以实现小型化、高集成度和低功耗。

微带混频器的主要缺点是较高的噪声和较低的线性度。

设计混频器电路需要考虑许多因素,包括输入和输出阻抗、混频器的增益、噪声和线性度。

为了获得更好的性能,可以采用一些技巧,例如使用匹配网络来提高输入和输出阻抗。

此外,还可以添加滤波器以减少噪声和提高线性度。

在实现混频器电路时,通常使用集成电路。

集成混频器通常包含多个非线性器件,使其具有更高的线性度和更低的噪声。

但集成混频
器的缺点是成本较高和设计难度较大。

混频器电路是一种常用的电路,在通信、广播、雷达、无线电和音频设备中得到广泛应用。

设计混频器电路需要考虑许多因素,包括输入和输出阻抗、混频器的增益、噪声和线性度。

在实现混频器电路时,可以使用集成电路来获得更好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信电路实验报告
——谐振功率放大器设计及仿真
姓名:陈强华
学号:
班级:
专业:通信工程
实验三混频器设计及仿真
一、实验目的
1、理解和掌握二极管双平衡混频器电路组成和工作原理。

2、理解和掌握二极管双平衡混频器的各种性能指标。

3、进一步熟悉电路分析软件。

二、实验准备
1、学习二极管双平衡混频器电路组成和工作原理。

2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。

三、设计要求及主要指标
1、 LO 本振输入频率:, RF 输入频率: 1MHz, IF 中频输出频率: 450KHz。

2、 LO 本振输入电压幅度: 5V, RF 输入电压幅度:。

3、混频器三个端口的阻抗为50Ω 。

4、在本实验中采用二极管环形混频器进行设计,二极管采用 DIN4148。

5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。

四、设计步骤
1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。

两个输入端分别为射频端( RF)和本振( LO),输出端称为中频端( IF)其基本的原理如下图所示。

通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下:
输入的两个信号的频率分别为ωRF \ωLO ,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO −ω (下变频),从而实现变频功能。

在本试验中,我们采用二极管环形混频器,其的原理电路如图 3-2 所示,其中v V t RF RF RF = cosω ,v V t LO LO LO = cosω ,并且有V V LO RF >> ,因此二极管主要受到大信号v LO 控制,四个二极管均按开关状态工作,各电流电压的极性如图 3-2 所示。

在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。

因此,混频电路可以拆分成两个单平衡混频器。

将二极管用开关等效,开关函数表示为:K1 LO ( ) ω t ,因此在v LO 正半周期间,开关闭合,上下回路的方程为:
求得:
由上可得,双平衡混频器的输出电流中仅包括( ) pω ω LO RF ± (p 为奇数)的组合频率分量,而抵消了ωLO ,ωRF 以及p 为偶数的众多组合频率分量。

2、整体电路设计与仿真分析按照图 3-3 所示的原理图,在 PSpice 中建立电路图,并设置好 RF、 LO 信号的参数(注意变压器的参数设置),最终仿真电路图如图 3-4 所示。

图 3-3 整体电路图
图 3-4 R2 的输出电压( v IF )波形
进行 FFT 变换后,得 R2 两端的电压( v IF )的频谱波形如图 3-5 所示。

图 3-5 R2 两端电压v IF 的频谱图
由输出的频谱图可见,环形混频器的输出电压中主要为pωLO RF ±ω ( p 为奇数) 的组合频率分量,(,等等),与理论分析一致,其中,为差频输出
信号(即为本实验所要求的输出IF 中频信号), 为和频输出信号。

同时可以仿真得到 RF 信号的输入电压 v in 、电流 i in 波形如图 3-6,图 3-7 所 示。

图 3-6 输入 RF 信号的电压 v in 波形
图 3-7 输入 RF 信号电流 i in 波形图
对于 RF 输入端可得到输入阻抗为:
5.5957.49
.271===
IN IN IN I V R
对于混频器的 1dB 压缩点,当输入的 RF 功率(电压)较低时,输出的 I 观察图 3-6 和图 3-7 波形图,对于输入电压 v in 和电流 i in 基本上为正弦波形, 由两图我们可以得到输入电压 v in 、电流 i in 的幅值V in 、 I in 分别为:
V
m 9.271V IN =
A
I IN m 57.4=
由图 3-5 可以得到输出的中频( )的幅度为:
V V IF m 7.136=
因此,通过以上数据求出混频器的混频增益为:
B V V A RF IF
C d 97.59.2717
.136log 20log
20-===
输出的中频功率为
W
R V P L
IF
IF m 186.0212
==
RF 信号的输入功率为:
W
I V P IN IN IN m 621.021
==
所以有混频器的混频损耗为:
B P P L IF IN
C d 24.5186.0621
.0log *10log
*10===
F 功 率与输入 RF 功率成比例关系。

然而,当输入 RF 功率超过一定的量之后,则输 入和输出功率就会偏离线性特征,当上述偏离达到 1dB 时所对应的点就可以作 为混频器的特性参数,即 1dB 压缩点。

因此本实验中,可逐步改变输入 RF 信号 的电压值,从而得到对应的输出 IF 信号的幅值,然后在直角坐标系画出变化曲 线
表3-1 输入\输出电压及电流值
5
对于输出中频(IF)功率,有计算公式
对于输入射频(RF)功率,有计算公式
将其功率转化为dBm的表达式有
通过以上表中的数据以及计算公式,在MATLAB中编写程序仿真可画出波形图,程序如下所示。

函数一: function y=fun1(vin,Iin)
y=(1/2)*vin*Iin;
函数二: function y=fun2(vif)
y=(1/100)*vif^2;
clear;
clc;
data1=[,,,,,,,,,,,,,,,,,]; % in(mV) V 的取值
data2=[,,,,,,,,,,,,,,,,,];
%in(mA) I 的取值
data3=[,,,,,,,,,,,,,,,,,];
% IF V (mV)的取值
res1=zeros(1,length(data1));
res2=zeros(1,length(data1));
for i=1:length(data1)
res1(i)=fun1(data1(i),data2(i));
res2(i)=fun2(data3(i));
end
res1
res2=res2*10^(-3)
res1=10*log10(res1)
res2=10*log10(res2)
plot(res1,res2);
grid on;
set(gca,'ytick',[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10])
set(gca,'xtick',[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10])
xlabel('Pin(dBm)');
ylabel('Pif(dBm)');
通过MATLAB仿真我们可以得到输入、输出功率(dBm)的关系图,如图3-11
所示。

图3-11 输入\输出功率关系图
由上图可得,当输入功率超过一定值后,输入输出曲线就偏离了线性特征,由图3-11可以粗略的估计出=,=,同时根据上图,可以得到当输入功率为0dBm时的中频输出功率值.
因为理论计算有
将=,=,代入上式,等式基本成立,因此,验证了估计结果。

对于混频器的互调失真,在本实验中只定性的分析当混频器输入端同时作用的两个频率不同的信号时,输出端的频谱与单信号输入时频谱的区别。

在RF输入端加入两个信号源,选取两个信号的频率在2MHz左右,在这里分别选取=,=,为了便于观察输出波形,其电压幅度为取=2V.
通过PSpice仿真,我们可以得到输出端2 R上的电压频谱图,如图3-12所示。

图3-12 输出电压频谱图
由上图可知,在输入端有两个激励信号同时加入到混频器后,在输出的和频和差频附近出现了很多谐波分量,通过改变随着输入信号的电压幅度可以发现,随着输入电压的增大,输出的谐波分量也会增大。

在混频器的性能指标中,有一项重要的指标就是镜像频率干扰,例如在本实验中,因为=1MHz,=,=,则根据镜像频率的概念有
镜像频率为=。

在RF输入端加入两个激励信号,频率分别为=1MHz,=,两个信号的电压幅度都选取,则通过仿真,可以得到输出端的电压频谱如图3-13所示。

图3-13 R2输出电压频谱图
比较图3-8和图3-13的频谱图,发现在图3-12中,中频
输出电压幅度有明显的增大,这是应为镜像频率通过混频器后,同样产生了的中频信号,使得对于输出造成干扰,因此,一般在通信系统中,混频器的RF输入端都会加一个镜像抑制滤波器,滤除镜像频率。

相关文档
最新文档