地震波运动学理论
2.地震波动力学
E A f W
2 2
上式说明:波的能量E与振幅A的平方、频率f的平方
以及介质的密度成正比。
能量密度:包含在பைடு நூலகம்质中,单位体积内的能量称为能
量密度。
E 2 2 A f W
上式说明:波的能量密度也正比于振幅A的平方。
波的强度I:波前面上,单位时间t、单位面积S的能量
E W Vt S 2 I V A tS tS tS
式中V为速度。因此,波的强度I正比于振幅A的平方。
地震波的吸收:实际介质中,对地震波的能量具有不同
程度的吸收作用。
品质因素Q:地震波的吸收可以用品质因素描述。Q定
义:在一个周期(或一个波长距离)内,
振动损耗能量E与总能量E之比的倒数
1 E E ; Q 2 2E
E
2 E Q E
Q值越大,能量损耗越小,介质越接近完全弹性
吸收系数 :波在粘滞介质中传播时,它的振幅被吸收
衰减,衰减的快慢有吸收系数确定
式中为波长。
Q
f
Q V
面 波 瑞利波:在自由表面上产生的沿自由表面传播的 面波。地震勘探中的面波指瑞利波。 勒夫波:分布在低速层与高速层分界面上,与SH
波类似,又称横面波。
(2) 地震波的传播特点: 对于P波,波动方程为:
2u 2 2u 2u 2u ( 2 2 2) 2 t x y z
对于S波,波动方程为:
2u 2u 2u 2u ( 2 2 2) 2 t x y z
P波、S波速度为:
2 Vp Vs
E (1 ) (1 )(1 2 )
E (1 )
地震波运动学理论
第二章地震波运动学理论一、名词解释1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。
2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。
3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在岩层中传播的一种通俗说法。
地震波由一个震源激发。
4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。
地震子波看作组成一道地震记录的基本元素。
5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。
6.射线:是用来描述波的传播路线的一种表示。
在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。
这是一条假想的路径,也叫波线。
射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。
7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。
地震勘探中,沿测线画出的波形曲线,也称波剖面。
8. 折射波:当入射波大于临界角时,出现滑行波和全反射。
在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。
在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。
入射波以临界角或大于临界角入射高速介质所产生的波9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。
当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。
10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。
地震勘探原理 第4章地震波速度
n
x2
vi hi
i1 (vm 2 vi 2 )1/ 2
时,可以把反射波的传播时间和炮检距以x2的幂级数展开
t 2 t02 i x2i i 1
这个级数是收敛的。Vm是n层中最大的层速,
n
t0 ti i 1
40
4.2.2 均方根速度VR
t2
t02
x2 vR 2
(
vQ vR
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
5
1 1
v v f vm
式中,V是岩石实际速度 ;Vf是孔隙流体中的速度;Vm 是岩石基质的速度;Φ是岩石的孔隙度。
23
4.1.6 与孔隙度和流体性质的关系
在上述公式中速度还受孔隙流体压力的影响,流体压
力降低,流体压力这项的百分比影响就变小,当流体
压力接近大气压时,其影响变得最小。因此在实际条
件下,时间平均方程必须用一个压差调节系数C加以修
18
4.1.5 地震波速度与埋藏深度的 关系
一般来说,随深度的增加地震波速度增 大。不同的地区,速度随深度变化的垂 直梯度可能相差很大。一般地说,在浅 处速度梯度较大;深度增加时,梯度减 小。
19
4.1.5 地震波速度与埋藏深度的 关系
20
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
地震勘探原理总结
《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。
几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。
射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。
这样的假想路径称为通过P点的波线或射线。
振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。
波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。
视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。
这样的结果叫做简谐波的视速度和视波长。
全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。
雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。
透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。
地震波动力学特征运动学特征
地震波动力学特征运动学特征咱今儿个就来唠唠“地震波动力学特征运动学特征”,听着名字是不是有点绕口?别急,咱一块儿慢慢捋顺。
你瞧,地震这玩意儿,就像一个不请自来的老朋友,敲门都不打招呼就来了。
咱得先搞清楚它是怎么个动法儿,不然哪天它真来了,咱可就懵圈了。
地震波分两种,一种叫体波,它像个大力士似的,从地心往外冲,横冲直撞;另一种叫面波,顾名思义,它就在地表上晃悠,像个醉汉似的,摇摇晃晃。
先说说体波吧,它又分P波和S波。
P波,学名叫纵波,顾名思义,它是直着来的,像一群小兵兵排着队,咚咚咚地往前冲。
你家里的杯子啊、花瓶啊,都得跟着它一起跳舞。
P波来得快,速度像个火箭似的,但它的破坏力倒不算太大。
接着是S波,横波,它可不像P波那么规矩,它横着来,地上的东西都得跟着它摇摆。
S波的破坏力可大了,搞不好你家里的墙都得裂开个大口子。
记得我小时候,村里来过一次地震,那会儿我正抱着个大西瓜准备啃,结果S波一来,西瓜就从我手里蹦了出去,摔了个稀巴烂。
再说面波,这家伙可就更有意思了。
面波就像是地震的“后续部队”,在地表上横冲直撞。
有种叫雷利波,它就像个大铁球滚过地表,地皮都跟着它起伏。
还有一种叫洛夫波,这家伙更狠,它在地表上扭来扭去,像个扭秧歌的,扭得房子都跟着它摇摆。
你想想,这地震波一波接着一波,地表上的东西哪能受得了?就像你家里的老太太在跳广场舞,一个人跳没事,一群人跳起来,那动静可就大了。
地震波也一样,单个儿的波还好对付,但它们一群群地来,那破坏力就不得了了。
咱再来说说这些波的动力学特征吧。
动力学,这词儿听着高大上,其实就是说它们怎么动,怎么互相作用。
地震波在传播过程中,就像一群小孩儿玩传话游戏,一个传一个,信息越传越变形。
这不光是波的传播,还有土壤、岩石这些地质结构的参与。
比如说,P波和S波在传播过程中,会遇到各种障碍物。
它们就像是一群小孩儿在玩捉迷藏,遇到墙就得绕道,遇到洞就得钻进去。
这些障碍物对波的传播影响可大了,有的波会反射回去,有的波会折射改变方向,还有的波会直接穿透过去。
第2章地震勘探频谱分析
地震勘探原理主讲人:王守东地震勘探原理第2章地震波运动学理论第3章地震资料采集方法与技术第5章地震资料解释的理论基础23第2+章地震信号的频谱分析频谱分析的数学基础是付立叶(Fourier)分析。
第2+章地震信号的频谱分析第二节傅里叶展式的重要性质第四节线性时不变系统的滤波方程5第一节频谱分析概述二、频谱图6一、信号的合成与分解一、信号的合成与分解一、信号的合成与分解一、信号的合成与分解就是利用付立叶方法来对振动信号进行分解并进而对它进行研究和处理的一种过程。
9一、信号的合成与分解一个复杂的振动信号,可以看成是由许多简谐分量叠加而成;那许多简谐分量及其各自的振幅、频率和初相,就叫做那复杂振动的频谱11狄利克莱(Dirichlet)条件狄利克莱(Dirichlet)条件,任意一个区段内,1)信号f(t)除有限个间断点外都连续,2)仅有有限个极大和极小值。
这是傅里叶级数展开的充分必要条件。
能分解的振动曲线不能分解的振动曲线12第一节频谱分析概述二、频谱图13二、频谱图2、频谱的描述141、函数的傅里叶展开ωωπωd e S t u t j )(21)(∫∞∞−=dte t u S t j ∫∞∞−−=ωω)()(注意:S(ω)是复值函数1、函数的傅里叶展开15 1、函数的傅里叶展开171、函数的傅里叶展开182、频谱的描述频宽Δω= ω2-ω1二、频谱图2、频谱的描述19第一节频谱分析概述二、频谱图2021第2+章地震信号的频谱分析第二节傅里叶展示的重要性质第四节线性时不变系统的滤波方程22第二节傅里叶展示的重要性质二、线性叠加定理四、时延定理23一、唯一性定理所谓唯一性是说u (t )和S (ω)是一一对应的。
给定了u (t ),只能求出一种展式,而不可能求出互不相等的两种展式,反过来,给了一个展式,也只能定出一种u (t ),而不可能得到两个不同的u (t )。
用符号表示出来就是)()(ωS t u ↔24二、线性叠加定理设有N 个函数以及N 个常数(可以是实数,也可以是复数))(),(),(21t u t u t u N L L Na a a L L ,,21)()()()()(22112211ωωωN N N N S a S a S a u a t u a t u a +++↔↔+++L L L L 则有)(,)(),(21ωωωN S S S L L )()(),(21t u t u t u N L L 的频谱分别是25三、时标变换定理)()/(ωa aS a t u ↔)()(ωS t u ↔)/(1)(a S aat u ω↔设则或26四、时延定理设τ是一个实值常量,而则有)()(ωS t u ↔()()j u t S e ωττω±±↔U(t-τ)和u(t)的关系定理的含意:1)在时间曲线上,两者差τ。
地震勘探原理题库讲解
第一章地震波的运动学第一节地震波的基本概念第二节反射地震波的运动学第三节地震折射波运动学第二章地震波动力学的基本概念第一节地震波的频谱分析第二节地震波的能量分析第三节影响地震波传播的地质因素第四节地震记录的分辨率第三章地震勘探野外数据的野外采集第一节野外工作方法第二节地震勘探野外观测系统第三节地震波的激发和接收第四节检波器组合第五节地震波速度的野外测定第四章共中心点迭加法原理第一节共中心点迭加法原理第二节多次反射波的特点第三节多次叠加的特性第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素第五章地震资料数字处理第一节提高信噪比的数字滤波第二节反滤波第三节水平迭加第四节偏移归位第五节地震波的速度第六章地震资料解释第一节地震资料构造解释工作概述第二节时间剖面的对比第三节地震反射层位的地质解释第四节各种地质现象在时间剖面上的特征和解释第五节地震剖面解释中可能出现的假象第六节反射界面空间位置的确定第七节构造图、等厚图的绘制及地质解释第八节水平切片的解释一、名词解释第一章地震波的运动学1、波动(难度90区分度30)2、波前(难度89区分度31)3、波尾(难度89区分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34)7、波线(70 、 33) 8、射线(72 、 40)9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47)15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、动校正(60、 60) 19、几何地震学(70 、 35)第二章地震波动力学的基本概念1、动力学(70 、 40)2、物理地震学(71、 35)3、频谱(50 、 50)4、波的发散(90 、 30)5、波散(90 、 31)6、频散(80、 35)7、吸收(70 、 40 )8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40)第三章地震勘探野外数据的野外采集1、规则干扰波(90、30)2、不规则干扰波(90、30)3、观测系统(80、35)4、多次覆盖(65、50) 5、共反射点道集(70、45)6、检波器组合(90、30)7、方向特性(75、30)8、方向效应(90、30)第四章共中心点迭加法原理1、共中心点迭加(70、40)2、水平迭加(60、40)3、剩余时差(60、50)第五章地震资料数字处理1、偏移迭加(75、30)2、平均速度(85、30)3、均方根速度(80、30)4、迭加速度(70、40)第六章地震资料解释1、标准层(50、40)2、绕射波(40、50)3、剖面闭合(30、60)4、三维地震(70、30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30)二、填空题第一章1、振动在介质中的传播就是()。
地震波运动学多层介质反射波时距曲线
v1
v2
vi
第二种方法是采用平均速度法。即把某一个界面以上的介质用具有平
均速度vav和厚度为H的均匀介质来代替。用下面公式 计算该界面的反 射波时距曲线。
t平均
1 vav
x2 4H 2
n
hi
n
其中vav
i 1
n ( hi )
,
H
hi
i 1
v i1 i
25-25
Seismic Wave Kinetics
用引入平均速度的办法,就可以把三层介质问题转化为均匀介质 问题,并可以把三层介质的时距曲线近似地看成双曲线。
引入平均速度是对层状介质的一种简化方案。它的准则是两种情 况下t0相等,或者说两条时距曲线在(x=0;t=t0)点重合。
实际地层剖面中,不只三层而是很多层,这时仍可以用上述方法, 用不同的平均速度值,把各个界面的上覆介质简化为均匀介质,
计算地震波传播的总时间t,以及 相应的接收点离开激发点距离x。
当计算出一系列(t、x)值后,就 可具体画出R2界面反射波时距曲 线。
25-8
Seismic Wave Kinetics
地震勘探原理及方法
下面找出计算(t,x)的公式。波从震源 O出发,透过界面R1,其传播方向必然满 足透射定律,即:
在地震勘探中对客观存在复杂的地层剖面,根据对问题研 究的深入程度,对成果精度的要求等因素,建立了多种地 层介质结构模型,主要有三种:
• 均匀介质
• 层状介质
• 连续介质
25-3
Seismic Wave Kinetics
地震勘探原理及方法
均匀介质 所谓均匀介质是认为反射界面R以上的介质是均 匀的,即层内介质的物理性质不变,地震波传播速度是一 个常数v。界面R是平面,界面可以是水平的或倾斜的。
地震波的运动学特征
地震波的运动学特征
地震波是指由地震震源产生的,随着地震能量扩散而在地球内部传播的波动现象。
它具有以下运动学特征:
1. 传播方式:地震波在地球内部的传播方式分为纵波和横波两种,其中纵波的传播速度较快,而横波的传播速度较慢。
2. 波向:地震波的传播方向由波源、传播距离和介质性质等因素决定,大地震常会产生多个传播方向的地震波。
3. 波速:地震波的传播速度受到地球内部不同介质的影响,从而在不同介质中具有不同的速度,一般来说,波速越高,能量传输效果越好。
4. 能量:地震波的能量由地震震源产生,随着波向扩散而逐渐弱化,能量的强度与地震震源的大小和位置有关。
5. 频率:地震波的频率是指波浪中振动的周期,地震波的频率范围很广,从几十秒到几百赫兹不等,不同频率的地震波对建筑物的破坏程度也不同。
1.1地震波动力学_1_c1
1.2 纵波与横波
纵波与横波的特点
1.2 纵波与横波
横波的传播特征
1.2 纵波与横波
1.2.2 振动图和波剖面
波的相位、波的振幅、视周期、视频率、视波 长、波数
1.2 纵波与横波
球面波传播与纵波传播
1.2 纵波与横波
球面波的质点位移
1.2 纵波与横波
1.2.3 地震波的频谱
1.1 弹性波理论基础
1.1.1 理想介质和粘弹性介质
理想介质:完全弹性体,外力取消后,能 够立即完全地恢复为原来状态 的物体。
粘弹性介质:塑性体,外力去掉后,仍保 持其受外力时ຫໍສະໝຸດ 形态。1.1 弹性波理论基础
1.1.1 应力、应变与弹性常数
应力:法向应力,切应力
1.1 弹性波理论基础
1.1.1 应力、应变与弹性常数
地震子波 振幅谱 相位谱 傅立叶正变换 傅立叶反变换
1.2 纵波与横波
1.2.4 地震波的能量、吸收与衰减 地震波的能量 与球面扩散
1.2 纵波与横波
1.2.4 地震波的能量、吸收与衰减 波的吸收衰减
第1篇 地震勘探
地震勘探:研究人工激发的地震(弹性)波在浅 层岩、土介质中的传播规律。 波传播的动态特征的两方面: 运动学特征:波传播的时间与空间的关系; 动力学特征:波传播中其振幅、频率、相位等的 变化规律。
1 地震波动力学
1.1 1.2 1.3 1.4 1.5 1.6 1.7 弹性理论基础 纵波与横波 地震波的传播 地震面波 地震波的绕射 反射地震记录道的形成 地震勘探的地质基础
应变:线应变 体应变 切应变 转动
1.1 弹性波理论基础
弹性常数
胡克定律: f = -k x
地震勘探原理各章节的复习要点(重点)
《地震勘探原理与解释》复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、掌握基本概念,如地震子波、波面、射线、振动图、波剖面、视速度、视波长、全反射、雷克子波。
2、掌握基本原理,如反射定律、透射定律、Snell定律、惠更斯原理、费马原理等。
3、地震波的分类。
§2.2 常速单界面的反射波特征及时距关系1、基本概念:时距曲线、时距曲面、时间场、自激自收、共激发点、偏移距、初至时间、纵测线、同相轴、正常时差、倾角时差、动校正等。
2、基本原理:虚震源原理、讨论时距曲线的实际意义、直达波时距曲线及方程、反射波时距曲线及方程、反射波时距曲线的主要特点。
§2.3 变速多界面的反射波特征及时距关系1、基本概念:均匀介质、层状介质、连续介质、参数方程、平均速度、射线方程、等时线方程、回折波、最大穿透深度等。
2、基本原理:水平层状介质和连续介质情况下讨论反射波时距曲线的基本思路;水平层状介质和连续介质情况下反射波时距曲线的主要特点。
§2.4 地震折射波运动学1、基本概念:折射波盲区、初至波、续至波、交叉时、信噪比等。
2、基本原理:产生折射波的条件;利用折射波法研究地下地层起伏的基本依据;折射波与反射波的主要差异。
3、分析理解:单界面(水平和倾斜)直达波、反射波与折射波时距曲线之间的关系;三层介质情况下折射波的时距曲线及其特点;折射波法在地震勘探中的应用。
§2.5 地震波动力学理论及应用本节不作为考试内容。
第三章地震资料采集方法与技术§3.1 野外工作概述1、掌握基本概念:低(降)速带、频散、群速度、相速度、多次波、虚反射、鸣震、交混回响。
2、掌握基本内容:试验工作内容、生产工作过程、激发条件、接收条件、调查干扰波的方法、干扰波的类型、各种干扰波的主要特点、面波特点、压制面波的方法、海上地震勘探的特点与特殊性、海上特殊干扰波、海上震源等。
地震发生的科学原理
地震发生的科学原理地震是地球表面突然释放的能量,是地球内部岩石在地壳运动中发生破裂和位移的结果。
地震的发生是由于地球内部的构造和地壳板块运动引起的,具体来说,地震的发生是由地壳板块在构造运动中受到应力积累,当应力超过岩石的承受能力时,岩石就会发生破裂,释放出巨大的能量,形成地震。
地震的发生有很多科学原理可以解释,其中包括板块构造理论、地壳运动理论、地震波传播理论等。
下面将详细介绍地震发生的科学原理。
1. 板块构造理论地球的外部由地壳和上部的部分地幔组成,地壳和上部地幔的岩石层被分为若干块状板块,这些板块在地球表面上漂浮并不断运动,这就是板块构造理论。
板块构造理论认为地球的外部是由若干块状板块组成的,它们在地球表面上不断运动,板块之间的相互作用导致地震的发生。
当两个板块之间的相互作用导致板块之间的应力积累到一定程度时,岩石就会发生破裂,释放出能量,形成地震。
板块构造理论解释了地震为什么经常发生在板块边界附近,例如环太平洋地震带、喜马拉雅地震带等地区。
2. 地壳运动理论地壳运动理论认为地球的地壳是一个动态的系统,地壳板块不断运动,包括板块的相互碰撞、挤压、拉伸等运动。
地壳运动导致地球表面的地形变化,也是地震发生的重要原因之一。
地壳板块的相互运动导致板块之间的相互作用,产生应力积累,当应力积累到一定程度时,岩石就会发生破裂,释放出能量,形成地震。
地壳运动理论解释了地震为什么经常发生在地质构造活跃的地区,例如地震带、断裂带等地区。
3. 地震波传播理论地震波是地震释放能量后在地球内部传播的波动,地震波传播理论是研究地震波在地球内部传播规律的理论。
地震波传播理论认为地震波在地球内部传播的速度和路径受到地球内部岩石的物理性质和结构的影响。
地震波传播的速度和路径可以揭示地球内部的结构和性质,通过地震波的传播路径和速度可以研究地球内部的构造和岩石性质。
地震波传播理论是研究地震的重要理论基础,也为地震监测和预测提供了重要依据。
04-1-地震波的时距关系
V
1 4h 2 X 2 4hx sin
V
O* 倾斜平界面的反射波时距曲线
可变换成
t2
( X 2h sin )2 1
(2h cos V )2
(2h cos ) 2
上式即为倾斜界面的反射波时距方程,为双曲线。
2)时距曲线的特点
时距曲线的弯曲情况
• 视速度定理
t
s v
s' v*
s sin
s'
v* vs' v
s sin
A
△ S‘ B
△ t,△s
由此式可见,视速度一方面反映真速
度,另方面又受传播方向影响,故也 成为识别各种地震波的特征之一。
走时曲线斜率 k dt
dX
反射波时距曲线
t OA AS 2
V
V
h2
(X 2)2
(1) 极小点
X m 2h sin
极小点对应虚震源,其坐标为
tm
2h c os
V
显然,极小点向界面上升端偏移了Xm,时距曲线对称于通过极 小点的纵轴。
(2) t0
X 0
当X=0,可得t0时间坐标为
t0
2h V
则反射界面法向深度
h
1 2
V
t0
界面水平时,极小点就在t0点。
O*
时距曲面:波的到达时间是二维观测坐标(x,y)的函数
成t0时间。 t x tn t0
t x tn t0
正常时差校正(动校正)意义:校正后,时距曲线的几何 形态与地下反射界面的起伏形态有了直接的联系。
3.时距曲线的弯曲情况
用视速度定理讨论:Va
地震波运动学第六节——折射波运动学1
通过E点作这两个球面的公切面,就得到折射波的 波前,如图中的EE′所示,而波线是垂直波前的。
不难证明,折射波的射线和分界面的法线之间的夹 角等于临界角θc
由图可见,∠C′EE′和∠ NEA′都是∠ NEE′的余角,从 而两角相等。在直角三角形ΔC′EE′中,有 sin ∠C′EE′=C′E′/C′E. 前已说明C′E′=2R1= C′E · V1/V2 ,从而 sin∠C′EE′=V1/V2。 这正是临界角满足的关系,结果就有 ∠NEA′= ∠C′EE′= θc
左图,两条直线同相轴在A点上方相交,这表明:波I的所有 射线是互相平行的,波Ⅱ的所有射线也是互相平行的,但这 两个波的射线并不平行,因为两条同相轴的斜率不相同。在A 点,这两个波的到达时间相等,但两个波在A点出射的两条射 线并不平行。 右图,一条弯曲的同相轴与一条直线同相轴在A点上方的B点 处相切,这表明两个波的同相轴在B点有相同的斜率和相同的 到达时间,也即是两个波出射到A点的射线是重合的。
二、折射波的形成和传播规律
在前面已经提到,当界面下部介质波速V2大于上部
介质波速V1,波的入射角等于临界角时,透射波就
会变成沿界面以V2速度传播的滑行波。 滑行波的传播引起了新的效应:因为两种介质是密 接的,为了满足边界条件,在第一种介质中要激发 出新的波动,即地震折射波。
本节从几何地震学出发导出折射波的传播规律。
当界面速度大时,时距曲线较平缓,反之,时距曲 线较陡。这是水平界面折射波时距曲线的特点之一。
2、水平界面折射波时距曲线方程
在S点接收,折射波所走的路程为 OA1B1S,所需时间为
F1
0
当x=0时 这说明折射波时距曲线延长 后与时间轴交于ti,ti的数值 如上式所示。这个ti称为与时 间轴的交叉时,这是折射波 时距曲线与反射波时距曲线 的又一区别。 折射波时距曲线的始点坐标 可以从右图直接得出
地震波运动学(12学时)
第一章地震波运动学(12学时)第一节地震波场概述一、波1、定义:振动在介质中传播叫波。
振动:质点在平衡位置附近的往返运动。
2、形成波的必要条件:振源和传输波的弹性介质。
质点绕平衡位置振动,一个质点带动另一个质点,于是便形成波。
还有关于波动的感性认识,可通过观察水面上各点的运动来得到,如果将一块石头扔进平静的湖水中,水面上就会出现一圈圈的波纹,水面的这种运动,就是最直观的一种波动。
水面上被石头打中的那一点叫波源,因为所有的波纹都似乎从那一点“发源的”应该注意每一条波纹都不是固定在水面上,而是不断变化,不断运动,任何固定的画面,都不能真正代表运动过程。
不难看出,当波纹从源向外传播时,湖水并不会从波源向四周流动,如果水面上漂浮着一片小树叶,我们将会看到,当小树叶受到“波及”时,它并不向湖岸运动,而是看来似乎是一上一下振动,实际上每个水面的质点都是就地近似地做圆周运动。
当石头刚刚掉下去时,水面上被石头打中的那一部分就开始下陷,后来在表面张力等的作用下,那一部分水面不开始上升,这样被打中的一部分水面就首先开始振动起来而形成波源。
但是水面是一个整体,它的各个部分是互相联系,一部分,一经振动,势必牵动周围的其它部分也随后振动起来,这些被牵动的振动,就通过水面上各个相邻的联系,而由近及远地传播开去,在这个例子中,振动是沿着水面传播的,这种传播振动的物质叫媒质找介质,一般所说的波或波动就是振动在周围介质中的传播,振动在介质中传播是需要时间的,当波源开始振动一段时间后,远处的介质才开始振动,这就是说振动是以一定的速度在介质中传播的,这个速度叫做该介质的波速,波速的大小取决于介质的性质或状态,也决定于波动的本身的某些特征,必须指出波的传播速度和各部分介质本身的振动以速度,就像水波的传播速度和水面质点的振动速度是完全不同的两个概念,在地震勘探中,了解各种地层中地震波的传播速度是十分重要的,这个问题以后要详细讲,而地面质点的振动速度则反映在地震波的波形,经过微分以后的数值上,一般是不研究的。
地震波原理
地震波原理地震波是由地球内部的能量释放而产生的一种波动。
这种能量释放通常是由地震活动引起的,包括地壳运动、板块运动等。
地震波的传播具有一些基本原理,分为两大类:体波和面波。
1.体波(BodyWaves)P波(纵波):P波是一种纵波,是地震波中传播速度最快的波。
P波在固体、液体和气体中均可以传播。
P波的传播方向是沿着波的传播方向,即振动方向与传播方向一致。
P波的振动速度大致是S波的1.7倍。
S波(横波):S波是一种横波,传播速度比P波慢。
S波只能在固体中传播,无法穿过液体和气体。
S波的振动方向垂直于波的传播方向。
S波相对于P波来说,对岩石的破坏性较大。
2.面波(SurfaceWaves)Love波:Love波是横波,振动方向是垂直于波的传播方向。
Love波主要沿地表传播,对地表的破坏性相对较小。
Rayleigh波:Rayleigh波是一种复杂的波动,是横波和纵波的结合。
Rayleigh波主要沿地表传播,具有类似海浪的运动。
Rayleigh波对地表的破坏性相对较大,但能量逐渐减小。
地震波传播的基本原理:1.波的起源:地震波的起源通常是地球内部的能量释放,例如地壳运动或板块运动。
2.能量传播:地震波通过岩石和地球的其他物质传播。
不同类型的波在不同的介质中传播,速度也不同。
3.波的传播方向:P波和S波是体波,其传播方向是从震源向各个方向传播。
面波则主要沿地表传播。
4.波的振动方向:P波和S波的振动方向不同,这在地震记录中有明显的区别。
5.波的影响:地震波的传播引起地面的震动,这会导致建筑物和其他结构的震动,可能引发地质灾害。
地震波的传播是地震学研究的基础,通过观测地震波的行为,地震学家可以了解地球内部的结构和地震源的特性。
地震波的特性和传播讲解
应用几何方程求出相对应的应变分量:
x y z 0, xy yz 0
xz
w1 u df1(x VSt) (x VSt) d
x z d (x VSt) x
d
f1( )
x VSt
说明弹性介质的每一个点都始终处于z及x方向的简单剪切状态。
1
2
;
sin sin
3 1
Vsb Vsa
B1 B2 B5 0
a sin 21(B1 B2 ) B5b sin 23 0
地震波的传播规律
内容
一 地震波在介质中的传播 1 平面波的传播 2 球面波的传播 惠更斯-菲涅尔原理 克希霍夫积分解
二 地震波在介质分界面处的传播 1 面波 2 地震波在界面处的反射和透射 3 地震波的能流密度和几何扩散
一 地震波在介质中的传播
1 平面波的传播 当地震波在离震源足够远处,波前变得足够平,
d
f1( )
x Vpt
其余的应变分量都等于零,说明弹性介质的每一个点 都始终处于方向的简单拉压状态。
由物理方程求应力分量:
x
t
2 x
(
2) x
E (1 ) (1)(1 2)
x
y
t
2 y
x
E (1 )(1
2 )
x
z
t
2 z
x
E (1 )(1
2 )
x
xy yz zx 0
各个正应力分量之间的关系为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章地震波运动学理论一、名词解释1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。
2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。
3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在岩层中传播的一种通俗说法。
地震波由一个震源激发。
4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。
地震子波看作组成一道地震记录的基本元素。
5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。
6.射线:是用来描述波的传播路线的一种表示。
在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。
这是一条假想的路径,也叫波线。
射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。
7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。
地震勘探中,沿测线画出的波形曲线,也称波剖面。
8. 折射波:当入射波大于临界角时,出现滑行波和全反射。
在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。
在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。
入射波以临界角或大于临界角入射高速介质所产生的波9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。
当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。
10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。
11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。
即波沿测线方向传播速度。
12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。
波的反射和透射与分界面两边介质的波阻抗有关。
只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。
13.纵波:质点振动方向与波的传播方向一致,传播速度最快。
又称压缩波、膨胀波、纵波或P-波。
14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。
横波分为SV和SH波两种形式。
15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。
16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。
在野外的数据采集原始记录中,常以这种记录形式。
可分单边放炮和中间放炮。
17.面波:波在自由表面或岩体分界面上传播的一种类型的波。
18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。
用纵测线进行观测得到的时距曲线称为纵时距曲线。
激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。
19、垂直地震剖面:把检波器放入井中,在地面激发,即地面距井口一定距离激发,称作地震测井。
这种观测方法得出剖面是垂直地震剖面(简称VSP ),得出的是地震波垂直时距曲线。
20 平均速度:就是用这组地层的总厚度去除以波在垂直层面的方向旅行的总时间。
二、填空题1 物体在外力作用下发生了形变,若去掉外力以后,物体仍旧保持其受外力时的形状,这样的特性称为塑性.这种物体称为__塑性体。
2 弹性和塑性是物质具有两种互相__转换___的特性,自然界大多数物质都_同时具有这两种特性,在外力作用下既产生_弹性_形变.也产生_塑性_形变.3 弹性和塑性物体在外力作用下主要表现为___弹性___形变或_塑性_形变.这取决于物质本身的__物理性质___,作用其上的外力__大小__,作用力延续时间的__长短__,变化快慢,以及物体所处_温度__、压力等外界条件.4 地震波遇到岩层分界面时主要产生两种波是___瑞利波、拉夫波_三、选择题1. 连续介质中,常见的地震波传播速度与深度Z关系是(A)A)V=V o(1+βZ) B)V=V o(1+β+Z) C)V=V oβZ D)V=(1+2βZ)Vo2. 连续介质地震波射线为( B )A)直线B)曲射线C)双曲线D)抛物线3. 费马原理认为,地震波沿( B )A)最大路径传播B)最小时间传播C)二次抛物线路径传播D)双曲线路径传播4. 物理地震学认为,地震波是(C)A)一条条射线B)沿射线路径在介质中传播C)一种波动D)面波5. 波的传播方向上,单位长度内的波长数目,叫做(C)A)波长B)周期C)波数四、简答题1. 什么是惠更斯原理?前进的波前成上每一点都可以看作一个二次的震(波)源,且后一时刻的波前面就是基于前一时刻的波前面所激发的所有二次波的包络面。
2. 什么是费玛原理?由Snell定律可知,波在介质中由一点传播到另一点的可以沿许多条不同路线传播。
费马原理指出波在各种介质中的传播路线,满足所用时间为最短的条件(旅行时为极小)。
这条路径正是垂直于波前面的路径,即射线路径。
3. 什么是反射定律、透射定律、斯奈尔定律?反射定律: ①反射线、入射线分居法线的两侧;②反射线位于入射面内;③反射角θ′等于入射角θ; ④ 反射线、入射线和法线所构成的的平面为射线平面,垂直与界面。
透射定律: ① 透射线也位于入射面内,② 入射角的正弦和透射角的正弦之比等于第一和第二两种介质的波速之比。
综合反射定律和透射定律,扩展到多层水平层状介质的情况,可以得到斯奈尔(Snell)定律: 4. 什么是折射波的盲区?由于折射波的产生需要一定的条件,在地表某个区段观测不到折射波,这个区段称为折射波的盲区。
5. 试叙述纵波和横波的传播特点。
纵波:质点振动方向与波的传播方向一致,传播速度最快。
横波:质点振动方向与波的传播方向垂直,速度比纵波慢。
6. 波前和射线两者之间的关系如何?均匀介质地震波的波前和射线的特点?射线的特征总是与波阵面垂直,即与波前垂直。
在均匀介质中(V 一定)认为地震波以直线形式向外传播,射线垂直于波面。
7、根据波前面的形状,可以把地震波分为几大类?波阵面的形状决定波的类型,可分为球面、平面和柱面波等。
平面波--波前是平面(无曲率),象是一种在极远的震源产生的。
这是地震波解析中的一种常用的假设。
球面波--由点源产生的波,向四周传播,波面是球面8.地震波的波前的形状取决于哪些因素?波面的形状取决于波源的形状和介质的性质。
在均匀各向同性介质中,同一个震源,在近距离的波为球面波,在远距离的地方可看成平面波。
9.从反射和折射波形成的机制,折射波形成的条件是什么?1)当波从介质1传到介质2,两种介质的阻抗不同时,在分界面上会产生透射和反射,且满足斯奈尔定律。
2)当V2﹥V1时,透射角大于入射角。
当入射角达到临界角θC ,时透射角达到90度,这时波沿界面滑行,称滑行波。
3)滑行波是以下层的介质速度V2传播。
4)由于两种介质是密接的,为了满足边界条件,滑行波的传播引起了上层介质的扰动,在第一种介质中要激发出新的波动,即地震折射波。
10、在纵测线,一个水平分界面均匀介质情况下共炮点的直达波时距曲线有何特点?直达波时距曲线方程: 是一直线。
v x t =vx t =11、在纵测线,一个水平分界面,均匀介质情况下共炮点的反射波时距曲线有何特点?反射波时距曲线 是一条双曲线,最小值为x=0,t= h0 12、在纵测线,一个倾斜分界面,均匀介质情况下共炮点的反射波时距曲线有何特点?和水平界面条件下有和异同?反射波时距曲线是一条双曲线, ,据双曲线的特点可知,该方程的极小坐标为: 。
都是双曲线,但极小点位置不同。
13、直达波的时距曲线一定是直线吗?不一定,只有在均匀各向同性介质中才为直线,当速度与其他因素有关时就不是直线。
14、在纵测线,一个水平分界面,均匀介质情况下共炮点的反射波时距曲线和直达波时距曲线以及折射波时距曲线之间有怎样的关系?直达波时距曲线是反射波时距曲线的渐近线,折射波时距曲线与反射波时距曲线在M1点相切,切点坐标: 直达波时距曲线与折射波时距曲线相交,相交处为超前时间。
15、在纵测线,一个水平分界面,均匀介质情况下共炮点的折射波时距曲线有何特点?水平界面折射波的时距曲线,这是一条标准的直线方程,其斜率k=1/V1,直线的截距为ti ,V1是下层介质的速度;根据视速度的定义,折射波的视速度应为V1,即为第二种介质中的传播速度,有时把这种速度称为“界面速度”,因为滑行波正是以这个速度沿界面滑行的。
ti 为折射波时距曲线延长后与时间轴(x=0)的交点,称之为与时间轴的交叉时。
16、地震勘探野外工作中为什么不采用自激自收的观测方式?从实际生产考虑,不采用自激自收方式,要得到M 点正下方的反射反射,则需在M 点两边对称的点上进行激发(O )和接收(S )。
0V x t =直达波: 0224V hx t +=反射波: 0V x t →当x→∞时, i c t V x V h V x t +=+=1001cos 2θcm tg h x θ02=c m V h t θcos 200=0010cos 2v h v x v x t c c θ+==c c v v v x h θcos 2)(1010-=)(cos 201010v v v v h t c c -=θ0110cos 2v v v h x cc -=θ202)(t Vx t +=ϕsin 44122xh h x V t ±+=⎪⎩⎪⎨⎧=±=V h t h x ϕϕcos 2sin 2min min17、在地震勘探中,经常把地下的介质做哪些简化?地震勘探中建立的多种地层介质结构模型 ①均匀介质 ②层状介质 ③连续介质。
认为反射界面R 以上的介质是均匀的,即层内介质的物理性质不变,如地震波速度是一个常数V0。
反射界面R 是平面,可以是水平的或是倾斜面。
认为地层剖面是层状结构,在每一层内速度是均匀的,但层与层之间的速度不相同,介质性质的突变。
界面R 可以是水平(称水平层状介质)或是倾斜的。
把实际介质理想化为层状介质,因为沉积岩地区一般为层性较好,岩层的成层性又由不同岩性决定,不同岩性则往往有不同的弹性性质,因此岩层的岩性分解面有时同岩层的弹性分界面相一致。