小升初奥数知识点汇总教学内容

合集下载

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小升初数学知识点及奥数知识点汇总

小升初数学知识点及奥数知识点汇总

小升初数学知识点及奥数知识点汇总小学升初中是孩子学习生涯中的一个重要转折点,数学作为主要学科之一,其知识点的掌握至关重要。

以下是对小升初数学知识点及奥数知识点的详细汇总。

一、数的认识1、整数整数包括正整数、零和负整数。

要理解整数的读法、写法、大小比较以及数的整除特性,如能被 2、3、5 整除的数的特征。

2、小数小数由整数部分、小数部分和小数点组成。

要掌握小数的性质、小数的读法和写法、小数的大小比较以及小数的四则运算。

3、分数分数表示把一个整体平均分成若干份,表示其中的一份或几份。

要理解分数的意义、分数的分类(真分数、假分数、带分数)、分数的基本性质以及分数的四则运算。

4、百分数百分数表示一个数是另一个数的百分之几。

要掌握百分数的意义、读法和写法、百分数与小数、分数的互化以及百分数的应用。

二、数的运算1、四则运算加法、减法、乘法和除法是四则基本运算。

要熟练掌握运算顺序、运算法则以及简便运算方法。

2、运算定律加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律等运算定律能够帮助我们简便运算。

3、混合运算掌握整数、小数、分数的混合运算,注意先算乘除后算加减,有括号的先算括号里的。

三、式与方程1、用字母表示数能够用字母表示数、数量关系、运算定律和计算公式。

2、方程方程是含有未知数的等式。

要掌握方程的解和解方程的方法,能够列方程解决实际问题。

四、比和比例1、比比表示两个数相除的关系。

要理解比的意义、比的基本性质、化简比以及求比值。

2、比例比例表示两个比相等的式子。

要掌握比例的基本性质、解比例以及正反比例的判断和应用。

五、图形的认识1、平面图形包括直线、射线、线段、角、三角形、四边形(平行四边形、长方形、正方形、梯形)、圆等。

要掌握这些图形的特征、周长和面积的计算方法。

2、立体图形包括长方体、正方体、圆柱、圆锥等。

要掌握这些立体图形的表面积和体积的计算方法。

六、图形的变换1、平移物体在平面内沿着某个方向移动,保持形状和大小不变。

小升初奥数备考知识点汇总

小升初奥数备考知识点汇总

小升初奥数备考知识点汇总1. 数学基础知识
- 数字的读写
- 加法、减法、乘法和除法运算
- 分数与小数
- 数字的序数和分类
- 数量的比较和排序
2. 几何学知识
- 点、线、面的认识
- 角、直角、钝角、锐角的认识
- 线段、直线、射线的区分
- 图形的分类与命名
- 对称图形和轴对称图形
3. 时间与物体运动
- 时间的认识与读写
- 时钟和日历的使用
- 运动物体的速度与距离的关系- 运动物体的简单计算问题
- 时间和运动的综合问题
4. 逻辑推理
- 推理与判断的思维训练
- 数列的认识和推理
- 奥数中常见的逻辑问题
- 分析与解决逻辑题的具体方法5. 数据处理与统计
- 数据的收集与整理
- 图表的认识与分析
- 常见的统计概念与计算方法- 统计与概率的关系
- 数据处理问题的解答方法
6. 空间思维能力
- 空间方位与方向的认知
- 空间几何图形的建构与转换
- 空间图形的旋转与镜像
- 空间图形的解析与折纸
以上是小升初奥数备考的主要知识点汇总。

在备考过程中,建议多做练习题和模拟试题,加强对知识点的理解和应用。

通过不断练习与思考,相信你能在奥数考试中取得优异的成绩!。

小升初奥数知识点

小升初奥数知识点

小升初奥数知识点对于即将面临小升初的孩子们来说,奥数知识的掌握可能会成为他们在升学考试中脱颖而出的关键。

奥数不仅能够锻炼孩子的思维能力,还能培养他们解决问题的创新思维和方法。

接下来,让我们一起了解一些常见且重要的小升初奥数知识点。

一、计算类1、速算与巧算这部分主要涉及到一些运算定律和性质的灵活运用,比如加法交换律、结合律,乘法交换律、结合律和分配律等。

通过对数字的观察和分析,将复杂的计算转化为简单的运算。

例如:计算 99×25,可以将 99 转化为 100 1,然后利用乘法分配律进行计算,即 99×25 =(100 1)×25 = 100×25 1×25 = 2500 25 =2475 。

2、分数计算包括分数的加减乘除运算,通分、约分等基本操作。

还有分数与小数的互化,以及利用分数的性质进行简便计算。

比如:计算 1/2 + 1/6 + 1/12 + 1/20 ,可以将每个分数拆分成两个分数的差,即 1/2 = 1 1/2 , 1/6 = 1/2 1/3 , 1/12 = 1/3 1/4 , 1/20= 1/4 1/5 ,然后进行计算,原式= 1 1/2 + 1/2 1/3 + 1/3 1/4 + 1/41/5 = 1 1/5 = 4/5 。

二、数论类1、整数的性质了解整数的奇偶性、整除性等性质。

比如能被 2、3、5、9 等整除的数的特征。

例如:一个数各位数字之和能被 3 整除,这个数就能被 3 整除;一个数的末两位能被 4 整除,这个数就能被 4 整除。

2、质数与合数知道质数和合数的概念,会判断一个数是质数还是合数,以及分解质因数。

比如:1 既不是质数也不是合数,2 是最小的质数,4 是最小的合数。

3、最大公因数与最小公倍数掌握求最大公因数和最小公倍数的方法,如短除法。

例如:求 18 和 24 的最大公因数和最小公倍数,用短除法可得最大公因数是 6,最小公倍数是 72 。

小升初奥数知识点汇总

小升初奥数知识点汇总

小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)①只有1和它本身两个约数的整数称为质数;② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③最小的偶合数是4,最小的奇合数是9;④ 0、1既不是质数也不是合数。

⑤每一个合数分解质因数形式是唯一的。

⑥公因数只有1的两个非零自然数,叫做互质数。

2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;② “0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。

例如:26、39是13的倍数,则2639也是13的倍数。

④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。

例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。

⑤约数和倍数必须强调出是哪个数字的约数和倍数。

⑥一个数既是它本身的倍数又是它本身的约数。

⑦一个数如果有偶约数,则这个数必为偶数。

3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。

如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。

⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。

例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。

奥数资料小升初复习必备资料奥数七大模块重要知识点

奥数资料小升初复习必备资料奥数七大模块重要知识点

奥数资料小升初复习必备资料奥数七大模块重要知识点奥数是指奥林匹克数学竞赛,是国内外通用的一个数学竞赛项目。

奥数不仅要求学生有扎实的数学基础,还要求学生有良好的逻辑思维和问题解决能力。

小升初时,家长们常常会让孩子参加奥数培训,以提高孩子的数学水平。

下面是奥数小升初复习必备资料。

奥数的内容主要分为七大模块,分别是算术,代数,几何,数论,综合题,应用题和证明题。

每个模块都有其重要的知识点,在小升初复习时,要对这些知识点有充分的了解和掌握。

1.算术:四则运算是算术的基础,包括加减乘除和整数的运算法则。

在小学阶段,学生应对四则运算有扎实的掌握,能够熟练进行运算。

2.代数:代数是数学的一门重要分支,包括代数式的简化、方程的解法等。

在小升初的复习中,要掌握基本的代数式简化方法和方程的求解方法。

3.几何:几何是研究空间形状和其性质的学科,包括平面几何和立体几何。

在小升初的复习中,要掌握基本的平面几何和立体几何的概念和性质。

4.数论:数论是研究整数的性质和关系的学科,包括最大公因数、最小公倍数等。

在小升初的复习中,要掌握数论的基本概念和性质,能够进行数论问题的解答。

5.综合题:综合题是将多个数学知识点结合起来进行解答的题目。

在小升初的复习中,要能够灵活运用所学的知识进行综合题的解答。

6.应用题:应用题是将数学知识应用到实际问题中进行解答的题目。

在小升初的复习中,要能够理解应用题的背景和要求,运用所学的知识进行解答。

7.证明题:证明题要求学生通过严谨的推理和证明来解决问题。

在小升初的复习中,要能够理解证明题的要求和思路,能够进行证明题的解答。

在复习奥数时1.理解基础概念:奥数的知识点是建立在基础概念之上的,所以首先要理解数学的基本概念和定义。

2.熟练运用公式和定理:奥数中会使用到很多公式和定理,要能够熟练运用这些公式和定理,进行问题的解答。

3.掌握解题方法:对于不同类型的题目,要学会不同的解题方法,培养灵活的思维和解题能力。

小升初奥数必考知识点归纳

小升初奥数必考知识点归纳

小升初奥数必考知识点归纳小升初奥数是许多学生和家长关注的焦点,它不仅考验学生的数学基础,还考察学生的逻辑思维能力和解决问题的能力。

以下是一些小升初奥数必考知识点的归纳:1. 四则运算:熟练掌握加、减、乘、除的基本运算规则,以及运算的优先级。

2. 数的分类:了解自然数、整数、奇数、偶数、质数、合数、因数和倍数等概念。

3. 分数和小数:掌握分数和小数的加减乘除运算,以及分数和小数的转换。

4. 比例和百分比:理解比例的概念,包括简单比例和复合比例,以及百分比的计算。

5. 方程与不等式:解一元一次方程和不等式,包括方程的平衡、移项和合并同类项。

6. 几何图形:熟悉基本的平面几何图形,如三角形、四边形、圆等,以及它们的周长、面积和体积的计算。

7. 图形的变换:包括平移、旋转和对称等几何变换。

8. 逻辑推理:掌握逻辑推理的基本技巧,如排除法、假设法和反证法。

9. 数列问题:了解等差数列、等比数列和数列的求和问题。

10. 组合与排列:理解组合和排列的区别,掌握组合数和排列数的计算公式。

11. 概率初步:了解概率的基本概念,包括事件的独立性和互斥性。

12. 应用题:能够将实际问题抽象成数学问题,并运用所学知识解决。

13. 数学思维:培养数学思维,包括抽象思维、逻辑推理和创造性思维。

14. 解题技巧:掌握一些常用的解题技巧,如代入法、赋值法、归纳法等。

15. 奥数竞赛题型:熟悉各类奥数竞赛题型,如填空题、选择题、解答题等。

结束语:掌握这些知识点,不仅能够帮助学生在小升初奥数考试中取得好成绩,更能培养学生的数学兴趣和思维能力。

希望每位学生都能在奥数的学习中找到乐趣,不断进步。

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点奥数必考30个知识点大全

6 / 24
优选精品
欢迎下载
12. 数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这
样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用
a1 表示 ;
项数:等差数列的所有数的个数,一般用 n 表示 ;
公差:数列中任意相邻两个数的差,一般用
d 表示 ;
通项:表示数列中每一个数的公式,一般用
5 / 24
优选精品
欢迎下载
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总 有那么一个抽屉里有 2 个或多于 2 个物体,也就是说必有一 个抽屉中至少放有 2 个物体。 抽屉原则二:如果把 n 个物体放在 m个抽屉里,其中 nm,那 么必有一个抽屉至少有 : ①k=[n/m ]+1 个物体:当 n 不能被 m整除时。 ②k=n/m 个物体:当 n 能被 m整除时。 理解知识点: [X] 表示不超过 X 的最大整数。 例 [4.351]=4;[0.321]=0;[2.9999]=2; 关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的 量,而后依据抽屉原则进行运算。 11. 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含 有多种基本 ( 混合 ) 运算。 基本思路:严格按照新定义的运算规则,把已知的数代入, 转化为加减乘除的运算,然后按照基本运算过程、规律进行 运算。 关键问题:正确理解定义的运算符号的意义。 注意事项:①新的运算不一定符合运算规律,特别注意运算 顺序。 ②每个新定义的运算符号只能在本题中使用。
把假设错的那部分置换出来 ;

小升初奥数第9节:倍数与因数

小升初奥数第9节:倍数与因数

倍数与约数 教学目的 1,让孩子了解语言的精密与数学的联系。

2,掌握做题方法教学内容知识点一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。

即若11(,),(,),a a a b b b a b =⨯=⨯则11(,)1a b =(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

即(,)[,]a b a b a b ⨯=⨯注:(,)a b 表示两个数的最大公约数,[,]a b 表示两个数的最小公倍数(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=二、约数个数与所有约数的和(1)求任一合数约数的个数:一个合数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。

如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(31)(21)(11)43224+⨯+⨯+=⨯⨯=个。

(包括1和1400本身)(2)求任一合数的所有约数的和:一个合数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。

如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=三、求几个分数的最小公倍数和最大公约数(1)求几个分数的最小公倍数求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分练习:设A共有9个不同的约数,B共有6个不同的约数,C共有8个不同的约数,这三个数中的任何两个都不整除,则这三个数之积的最小值是多少?题型二:约数的和例1:有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?练习:10个非零不同自然数的和是1001,则它们的最大公约数的最大值是多少?例2:两个自然数的和是50,它们的最大公约数是5,则这两个数的差等于多少?练习:有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?题型三:最小公倍数和最大公约数例1:甲乙两数最小公倍数是60,最大公约数是6,已知甲数是12,求乙数.练习:甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,那么乙数是多少?例2:已知甲数的12倍与乙数的15倍的最大公约数是1440,那么甲数和乙数的最大公约数最小可以是多少?练习:已知自然数A、B满足以下2个性质:(1)A、B不互质(2)A、B的最大公约数与最小公倍数之和为35。

小升初奥数专题讲义

小升初奥数专题讲义

小升初奥数专题讲义
1.加法、减法:将小数按位对齐后,逐位相加或相减,最后将小数点对齐即可。

2. 乘法:将两个小数的数位分别相乘,然后将小数点后面的位数相加,最后将小数点移到正确的位置。

3. 除法:先将被除数与除数的小数点移到整数位上,然后进行除法运算,最后将小数点移到正确的位置。

二、分数的四则运算
1. 加法、减法:将分数化为相同分母,然后分子相加或相减,最后将结果化为最简分数。

2. 乘法:将两个分数的分子相乘,分母相乘,最后将结果化为最简分数。

3. 除法:将除数取倒数,然后将除数变为乘数,最后按照乘法的方法计算。

三、图形的面积和周长
1. 长方形:面积为长乘以宽,周长为长和宽的两倍之和。

2. 正方形:面积为边长的平方,周长为边长的四倍。

3. 三角形:面积为底乘以高的一半,周长为三边之和。

4. 圆形:面积为半径的平方乘以π,周长为直径乘以π。

四、方程的解法
1. 一元一次方程:将未知数移到一边,常数移到另一边,然后化简得到解。

2. 一元二次方程:使用求根公式或配方法将方程化为标准形式,然后求解。

3. 一元高次方程:使用因式分解或配方法将方程化为二次方程或更低次方程,然后求解。

小升初奥数基础知识点总结

小升初奥数基础知识点总结

小升初奥数基础知识点总结一、数学基础知识在小升初奥数考试中,数学基础知识是最为重要的。

主要包括小学数学知识和初中数学知识。

小学数学知识包括数字、数和代数、几何和图形、运算和数字之间的关系等方面的知识。

初中数学知识主要包括整数与有理数、代数式与方程、平面图形的性质、三角形、分式和比例、数据与图表、不等式、函数等方面的知识。

学生在学习奥数之前,需要扎实掌握小学和初中的数学知识,才能更好地进行奥数的学习和应试。

二、数学思维能力在小升初奥数考试中,数学思维能力是非常重要的。

数学思维能力主要包括抽象思维、逻辑思维、空间思维等方面。

学生需要具备较强的逻辑思维能力,能够准确地分析和解决问题;需要具备较强的抽象思维能力,能够从具体的问题中抽象出一般性的规律;需要具备较强的空间思维能力,能够准确地理解和利用空间概念。

在平时学习中,学生可以通过做一些数学题目来提高自己的数学思维能力,比如解密题、拼图题等。

三、奥数知识点1. 数学基础知识(1)数论:质数、合数、公约数、最大公约数、最小公倍数等(2)代数:代数式、因式分解、整式的加减乘除、分式的加减乘除、比例、百分数、方程等(3)几何:平面图形的性质、直角三角形、勾股定理、相似三角形、平行线、平行四边形等(4)统计与概率:数据分析、统计图表、概率与实验等2. 奥数应用题(1)奥数应用题主要考察学生对数学知识的运用和解决实际问题的能力(2)奥数应用题不仅要求学生灵活运用数学知识,还要求学生具有独立解决问题的能力(3)在奥数应用题的解答过程中,学生需要对题目进行分析,确定解题思路,进行逻辑推理,最终得出正确的答案。

四、奥数练习1. 做奥数真题(1)做奥数真题可以帮助学生了解奥数考试的题型和难度,帮助学生对奥数考试有一个更加清晰的认识(2)做奥数真题可以帮助学生巩固数学知识,掌握解题技巧(3)做奥数真题可以帮助学生发现自己的不足之处,及时进行补充学习2. 参加奥数辅导班(1)参加奥数辅导班可以帮助学生系统地学习和复习奥数知识,提高解题能力(2)参加奥数辅导班可以让学生有更多的机会接触奥数题,提高解题速度(3)参加奥数辅导班可以让学生听到一些老师的指导和建议,从而更好地备考奥数考试。

小升初奥数知识点总结

小升初奥数知识点总结

小升初奥数知识点总结【篇一】小升初奥数知识点总结一、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

二、流水行船问题中有哪三个基本量?流水行船问题是行程问题中的一种,所以行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用。

三、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速。

(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程。

水速,是指水在单位时间里流过的路程。

顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(1)能够得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)能够得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就能够求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就能够得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

【篇二】小升初奥数知识点总结一、简单相遇问题的特点:(1)两个运动物体一般同时不同地(或不同时不同地)出发作相向运动。

(2)在一定时间内,两个运动物体相遇。

(3)相遇问题的解题要点:相遇所需时间=总路程÷速度和。

解答相遇问题必须紧紧抓住"速度和"这个关键条件。

主要数量关系是:二、简单相遇问题与追及问题的共同点:(1)是否同时出发(2)是否同地出发(3)方向:同向、背向、相向(4)方法:画图三、简单相遇在解题时的入手点及需要注意的地方相遇问题与速度和、路程和相关(1)是否同时出发(2)是否有返回条件(3)是否和中点相关:判断相遇点位置(4)是否是多次返回:按倍数关系走。

小升初数学知识点及奥数知识点汇总

小升初数学知识点及奥数知识点汇总

小升初数学知识点及奥数知识点汇总一、数的分类1. 自然数:1, 2, 3, 4, ...2. 整数:..., -3, -2, -1, 0, 1, 2, 3, ...3. 有理数:整数和分数的集合,例如:1/2, -4/3, 0.7, ...4. 无理数:不能表示为两个整数的比值的数,如根号2、圆周率π等。

5. 实数:有理数和无理数的集合。

二、数的运算1. 加法运算:a + b = c,满足交换律、结合律和加法逆元。

2. 减法运算:a - b = c,可以看作是加法的逆运算。

3. 乘法运算:a × b = c,满足交换律、结合律和乘法逆元。

4. 除法运算:a ÷ b = c,可以看作是乘法的逆运算。

5. 指数运算:a^n = b(n为整数),表示a连乘n次等于b。

6. 开方运算:√a = b,表示b的平方等于a。

三、几何图形1. 点:没有大小和形状,用大写字母表示,如A、B、C。

2. 线段:由两个点A、B确定,常用AB表示。

3. 直线:由无限多个点连成的轨迹,可以用一对平行线符号表示,如AB。

4. 射线:由一个起点A和通过该点的无穷多点连成的轨迹,用一对平行线符号表示,如→AB。

5. 角:由两条射线共享一个起点而形成的区域,通常用大写字母表示顶点,形如∠ABC。

6. 三角形:由三条线段围成的图形,按边长分类有等边三角形、等腰三角形、普通三角形等。

7. 四边形:由四条线段围成的图形,按属性分类有矩形、正方形、长方形、菱形等。

8. 圆:由平面上所有到圆心距离相等的点组成的图形,可以用大写字母O表示。

四、奥数知识点1. 排列组合:指定条件下,从若干元素中选出若干元素按照一定顺序排列的方式。

2. 因数分解:将一个整数写成几个因数的乘积的形式。

3. 最大公约数和最小公倍数:两个或多个整数共有的约数称为其公约数,其中最大的公约数称为最大公约数;两个或多个整数共有的倍数称为其公倍数,其中最小的公倍数称为最小公倍数。

小升初奥数知识知识点总结课件.doc

小升初奥数知识知识点总结课件.doc

小升初奥数知识点总结计算四则混合运算繁分数运算顺序分数、小数混合运算技巧一般而言:加减运算中,能化成有限小数的统一以小数形式;乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序运算定律的综合运用连减的性质连除的性质同级运算移项的性质增减括号的性质变式提取公因数形如: 1 2 ...... ( 1 2 ...... )a b a b a b a a a bn n估算求某式的整数部分:扩缩法比较大小通分通分母通分子跟“中介”比利用倒数性质1 1 1 m m1 2 m 3n n1 2n3若a b c ,则c>b>a. 。

形如:n n n1 2 3 ,则m m m1 2 3。

定义新运算特殊数列求和运用相关公式:n n1 2 3 n① 212 n n 1 2n222n n 1 2n 1 2n② 61③ 2a n n 1 nnn23nn 3 321 2 n12n④ 41 2⑤ abcabcabc 1001 abc 7 11 1322⑥ a b a b a b2⑦1+2+3+4, ( n-1 )+n+(n-1 )+, 4+3+2+1=n数论奇偶性问题 奇 奇=偶 奇× 奇 =奇 奇 偶=奇 奇× 偶 =偶 偶 偶=偶 偶× 偶 =偶位值原则形如: abc =100a+10b+c 数的整除特征: 整除数 特征2 末尾是 0、2、4、6、83 各数位上数字的和是 3 的倍数 5 末尾是 0 或 59 各数位上数字的和是 9 的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是 11 的倍数4 和 25 末两位数是 4(或 25)的倍数 8 和 125 末三位数是 8(或 125)的倍数 7、11、13 末三位数与前几位数的差是7(或 11 或 13)的倍数整除性质如果 c|a 、c|b ,那么 c|(ab) 。

小升初奥数教材知识点汇总

小升初奥数教材知识点汇总

小升初奥数教材知识点汇总
一、数与运算
1.1 数的认识
1. 自然数、整数、有理数、实数、复数的概念和性质
2. 数轴及其应用
3. 数的四则运算,乘方、开方及其性质
4. 分数及其应用
5. 百分数及其应用
6. 有理数的比较大小
1.2 除法的应用
1. 除法的应用
2. 带余除法及其应用
二、代数式
2.1 代数式与多项式
1. 代数式的概念和简单问题
2. 化简、展开和因式分解
3. 多项式的概念和简单问题
2.2 一元二次方程
1. 一元二次方程的概念和一元一次方程的比较
2. 解一元二次方程的两种方法:公式法和配方法
3. 判别式及其应用
三、几何
3.1 图形的认识
1. 点、线、面、角的基本概念和性质
2. 垂直、平行、相交线及其应用
3. 三角形及其分类
4. 四边形及其分类
5. 圆和圆的性质
3.2 计量
1. 长度、面积、体积和重量的认识和单位换算
2. 量角器、圆规和卷尺的使用
四、数据
4.1 平均数
1. 平均数的含义、计算及应用
2. 中位数、众数、极差的概念及应用
4.2 统计图
1. 直方图、折线图和饼图的概念和制作方法
以上是小升初奥数教材的知识点汇总,希望能对您有所帮助。

小升初奥数知识点汇总

小升初奥数知识点汇总

小升初奥数知识点汇总一、整数部分整数是自然数及其相反数和零的总称。

在奥数中,常见的整数运算包括加法、减法、乘法和除法。

此外,还要掌握整数的性质,如同号相乘得正,异号相乘得负等。

二、分数部分分数是一个整数除以一个非零整数得到的数,分子表示被除数,分母表示除数。

奥数中常常需要进行分数的加减乘除运算,还要掌握分数的化简和比较大小等操作。

三、小数部分小数是一个有限或无限循环的分数形式。

奥数中常见的小数运算包括小数的加减乘除、小数转分数、分数转小数等。

此外,还需要掌握小数的性质,如小数点移动规律等。

四、几何部分1. 直线与角:要熟悉直线的定义和性质,了解角度的概念和计算方法;2. 三角形:掌握三角形的定义和分类,熟练计算三角形的周长、面积和各边角度等;3. 四边形:熟练计算四边形的周长和面积,了解各种四边形的性质;4. 圆和圆周率:掌握圆的定义和性质,熟练计算圆的周长、面积等,了解圆周率的概念和计算方法。

五、代数部分1. 代数式的含义和计算:了解代数式的定义和含义,熟练计算代数式的值;2. 简单方程和方程组:掌握一元一次方程和简单的方程组的解法,包括整数解、分数解和无解等;3. 数列:了解数列的概念和性质,掌握等差数列和等比数列的计算和应用;4. 函数:理解函数的定义和性质,熟练应用函数进行计算和图像的绘制。

六、逻辑推理部分在奥数中,逻辑推理是解决问题的关键。

要学会分析问题、归纳规律、寻找规律等思维方法。

通过逻辑推理可以解决一些复杂的数学问题,提高解题的能力。

七、数论部分数论是研究整数之间的关系和性质的数学分支,也是奥数中的重要内容。

要掌握一些重要的数论知识,如质数、因数、最大公因数、最小公倍数等,以及它们的应用。

小升初奥数作为提高学生数学思维能力和解决问题能力的一种方法,对于培养学生的逻辑思维、数学思维和创造思维有着重要的作用。

通过系统学习和掌握奥数知识点,学生不仅可以提前接触到一些高年级的知识,也可以培养他们的数学兴趣和解决问题的能力。

小升初数学(奥数)知识点汇总

小升初数学(奥数)知识点汇总

小升初数学(奥数)知识点汇总小学奥数知识点汇总一、质数、倍数、约数、整除问题1.质数(素数)质数是只有1和它本身两个约数的整数。

100以内的质数共有25个,包括2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.1既不是质数也不是合数。

每一个合数分解质因数形式是唯一的。

公因数只有1的两个非零自然数,称为互质数。

2.倍数、约数性质一个数最小的倍数是这个数本身,没有最大的倍数。

一般认为“1”只有约数“1”。

如果几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。

例如,26和39都是13的倍数,那么2639也是13的倍数。

一般数字的约数个数都是偶数个,但是平方数的约数个数是奇数个。

约数和倍数必须强调是哪个数字的约数和倍数。

一个数既是它本身的倍数又是它本身的约数。

如果一个数有偶约数,则这个数必为偶数。

3.整除性质能被2整除的数的末尾数字是偶数(0、2、4、6、8)。

能被3(9)整除的数的各位数字和能被3(9)整除。

能被4(25)整除的数的末尾两位能被4(25)整除。

能被5整除的数的末尾数字是0或5.能被8(125)整除的数的末三位能被8(125)整除。

能被7、11、13整除的数的从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被7、11、13整除。

如果求余数时,奇数节和小于偶数节和时,需要将奇数节和加上若干个7、11、13,再相减。

能被11整除的数的另一个特点是,这个数奇数位数字和与偶数位数字和的差能被11整除。

例如,的奇数位数字和是1+2+1=4,偶数位数字和是2+5+8=15,差为11,说明这个数可以被11整除。

二、公约数、公倍数最大公约数是公有质因数的乘积,通常用括号表示。

2、最小公倍数可以表示为公有质因数和独有公因数的连乘积,用“[]”表示。

3、两个自然数的最小公约数和最大公倍数的乘积等于这两个数的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)①只有1和它本身两个约数的整数称为质数;② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③最小的偶合数是4,最小的奇合数是9;④ 0、1既不是质数也不是合数。

⑤每一个合数分解质因数形式是唯一的。

⑥公因数只有1的两个非零自然数,叫做互质数。

2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;②“0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。

例如:26、39是13的倍数,则2639也是13的倍数。

④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。

例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。

⑤约数和倍数必须强调出是哪个数字的约数和倍数。

⑥一个数既是它本身的倍数又是它本身的约数。

⑦一个数如果有偶约数,则这个数必为偶数。

3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。

如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。

⑦能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。

例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。

如果求余数时,则奇数位数字和小于偶数位数字和时,需要将奇数位和加上若干个“11”,再相减。

二、公约数、公倍数1、最大公约数:公有质因数的乘积。

通常用“()”表示。

2、最小公倍数:公有质因数和独有公因数的连乘积。

用“[]”表示。

3、两个自然数的最小公约数和最大公倍数的乘积=两个自然数的乘积4、如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。

例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。

5、如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。

例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。

6、两个整数分别除以它们的最大公约数,所得的商是互质数。

例如8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。

▲7、根据互质数的意义,相邻的自然数是互质数,互质数的最大公因数是1,最小公倍数是它们的乘积。

8、解题思路和方法(1)求公约数和公倍数一般采用短除法。

(2)对于比较大的两个数求最大公约数(最大公约数一般大于11),也可以采用辗转相除法。

辗转相除法步骤:用大数(被除数)除以小数(除数)得到余数,所求最大公约数就是除数与余数的最大公约数,再次相除,依次类推,直到余数为0,最后一个除数既是所求的最大公约数。

注意:用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。

最后所得的那个最大公约数,就是所有这些数的最大公约数。

例:求319、377的最大公约数,即求(319,377)。

解:利用辗转相除法(319,377)=(377,319)377÷319=1余58 (377,319)=(319,58)319÷58=5余29 (319,58)=(58,29)58÷29=2余0 (58,29)=29所以(319,377)=29三、和差、和倍1、和差:已知两个数的和与差,求这两个数各是多少,这类应用题叫和差问题(已知顺水和逆水速度求船速和水速)。

数量关系:大数=(和+差)÷2;小数=(和-差)÷22、和倍:有两个数的和及大数是小数的几倍(或者小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

数量关系:两个数的和÷(几倍+1)=较小的数;较小的数×倍数=较大的数四、差倍、倍比1、差倍:有两个数的差及大数是小数的几倍(或者小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

数量关系:两个数的差÷(几倍-1)=较小的数;较小的数×倍数=较大的数2、倍比:有两个已知的同类量,其中一个量是另一个量的若干倍,先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

数量关系:总量÷一个数量=倍数;另一个数量×倍数=另一总量五、方程求解问题1、定义:把应用题中的未知数用字母x代替,根据等量关系列出含有未知数的等式(方程),通过解这个方程而得到的答案,这个过程叫做列方程解应用题。

2、数量关系:方程等号两边数量相等。

3、解题过程可以概括为“审、设、列、解、验、答”六字法①审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。

②设:把应用题中的未知数设为x。

③列:根据所设的未知数和题目中的已知条件,按照等量关系列出方程。

④解:求出所列方程的解。

⑤验:检验方程的解是否正确,是否符合题意。

⑥答:回答题目所问,也就是写出答问的话。

在列方程解应用题是,一般设未知数、列方程、解方程、答语。

必须检验。

注意:设未知数时要在X后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的X值也不带单位名称,在答语中要写出单位名称。

六、年龄问题解题关键:紧紧抓住两人的年龄差不变,两人年龄之间的倍数关系随着年龄的增长在发生变化。

七、鸡兔同笼1、一般用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡。

如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题解决。

2、如果能用方程x,y二元一次方程求解,最好使用方程求解。

八、相遇问题1、“相遇”广义上讲,只要两人在同一地点就算相遇。

分两种情况:(1)迎面相遇(即我们平时说的相遇问题)(2)追及相遇(即我们平时所说的追及问题)。

一般题目说的相遇,我们默认是迎面相遇,若题目说只要两人在同一地点就算作一次相遇,那么两种情况都要算。

2、数量关系:①总路程=(甲速+乙速)×相遇时间②甲乙两人从同一起点出发往返运动多次相遇问题,每迎面相遇一次,两人一起走了2个全程。

③甲乙两人从两端点出发往返运动多次相遇问题,第一次迎面相遇时,两人走了1个全程,之后没迎面相遇一次,两人一起走了2个全程。

3、柳卡图(了解):柳卡图也叫折线图,解决复杂的行程问题(多次相遇问题)的有效方法。

折线图往往能够清晰的体现运动过程中的“相遇次数”,“相遇地点”,以及“由相遇的地点求出全程”。

使用折线示意图法一般需要我们知道每个物体走完全程所用的时间是多少。

九、追及问题数量关系:①追及时间=追及路程÷(快速-慢速)②追及路程=(快速-乙速)×追及时间十、列车问题1、火车过桥:过桥时间=(车长+桥长)÷车速2、火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)3、火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)十一、行船问题1、定义:行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度;船只顺水航行的速度(顺水速度)是船速和水速之和;船只逆水航行的速度(逆水速度)是船速和水速之差。

2、数量关系:①船速=(顺水速度+逆水速度)÷2②水速=(顺水速度-逆水速度)÷2十二、盈亏问题1、定义:根据一定的人数,分配一定的物品,在两次分配中,依次有余(盈),依次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

2、数量关系:①两次分配中,如果一次盈一次亏,则有:参加分配总人数=(盈+亏)÷分配差②两次分配都是盈或都是亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差十三、工程问题1、定义:工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一件工作”等,在解题时候,常常用单位“1”表示工作总量。

2、数量关系:解答工程问题的关键是把工作总量看作“1”,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间关系列出算式。

①工作量=工作效率×工作时间②工作时间=工作量÷工作效率③工作时间=总工作量÷(甲工作效率+乙工作效率)十四、正反比例问题1、正比例关系:两种相关联的量,一种量变化,另一种辆也随着变化,如果这两种量中向对应的两个数的比值,即商一定,那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

2、反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

十五、按比例分配问题比的前后项相加求出总份数,各部分占总份数的几分之几,再用总量乘以几分之几即得各部分量的值。

十六、百分比问题1、定义:百分数又叫百分率。

是表示一个数是另一个数的百分之几的数。

百分数是一种特殊的分数。

分数常常可以通分、约分,而百分数则无需约分。

分数的分子、分母必须是自然数,百分数的分子可以是小数;百分数有一个专门的记号“%”2、数量关系:①百分数=比较量÷标准量②标准量=比较量÷百分数十七、商品利润问题1、定义:在生产经营中,销售价格高于进货价的叫盈利,低于进货价的叫亏本,主要包括成本、利润、利润率和亏损、亏损率等方面的问题。

2、数量关系:①利润=售价-进货价②利润率=(售价-进货价)÷进货价×100%③售价=进货价×(1+利润率)④亏损=进货价-售价⑤亏损率=(进货价-售价)÷进货价×100%十八、存款利率问题1、定义:把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。

相关文档
最新文档