氮化硅烧结[学习内容]
氮化硅工艺流程
![氮化硅工艺流程](https://img.taocdn.com/s3/m/ecc07be2dc3383c4bb4cf7ec4afe04a1b071b0be.png)
氮化硅工艺流程
《氮化硅工艺流程》主要包括以下几个步骤:原料准备、混合、成型、烧结、成品加工和检验等。
具体工艺流程如下:
1. 原料准备:首先需要准备氮化硅的原料,通常是将硅粉和氮化合物混合而成。
硅粉的颗粒大小和氮化合物的比例都需要严格控制。
2. 混合:将硅粉和氮化合物混合均匀,以确保最终制成的氮化硅材料具有均匀的成分。
3. 成型:经过混合后的原料需要经过成型处理,即将原料放入模具中,并施加一定的压力,使其成型成所需的形状。
4. 烧结:成型后的氮化硅坯体需要进行烧结,即通过高温处理使其结晶成型,提高其密度和力学性能。
5. 成品加工:经过烧结后的氮化硅坯体还需要进行加工处理,包括切割、磨削、抛光等,以获得最终成品。
6. 检验:最后一步是对成品进行检验,以确保其质量符合标准要求,包括外观质量、尺寸精度、密度、力学性能等。
通过以上工艺流程,可以制备出高质量的氮化硅制品,如氮化硅陶瓷、氮化硅刀具等,广泛应用于化工、电子、航空航天等领域。
同时,氮化硅工艺流程也在不断改进和优化,以满足不同用途和要求的氮化硅制品的生产需求。
氮化硅陶瓷手册__概述说明以及解释
![氮化硅陶瓷手册__概述说明以及解释](https://img.taocdn.com/s3/m/1d7f4152a9114431b90d6c85ec3a87c240288aed.png)
氮化硅陶瓷手册概述说明以及解释1. 引言1.1 概述氮化硅陶瓷是一种具有特殊性能和广泛应用的高级陶瓷材料。
它由氮和硅元素组成,具有出色的物理和化学特性,使其在许多领域都有重要的应用。
本手册概述了氮化硅陶瓷的特性、制备方法以及其在各个领域中的应用情况。
1.2 文章结构本文将分为五个主要部分来介绍氮化硅陶瓷。
首先,在引言部分提供了对本手册整体内容以及目录结构的介绍。
接下来,第二部分将详细介绍氮化硅陶瓷的物理特性、化学特性以及现有的应用领域。
第三部分将探讨制备氮化硅陶瓷的不同方法,包括烧结法、热压法和化学气相沉积法。
在第四部分中,我们将阐述氮化硅陶瓷相对于其他材料的优势,并解析其中面临的挑战。
最后,在结论部分对文章进行总结,并展望氮化硅陶瓷未来发展方向。
1.3 目的本手册的目的是提供给读者一个全面了解氮化硅陶瓷的手册,包括其特性、制备方法以及应用领域。
通过阅读本手册,读者将能够了解氮化硅陶瓷在各个领域中的重要性,并对其未来的发展趋势有所认识。
此外,为了使本手册内容更加清晰易懂,我们将使用简洁明了的语言和具体实例进行说明。
通过本手册,我们希望读者能够对氮化硅陶瓷有一个全面而深入的理解,并应用于实际生活和工作中。
2. 氮化硅陶瓷的特性和应用氮化硅陶瓷是一种具有广泛应用前景的先进材料,其具备一系列优异的物理和化学特性。
本部分将详细介绍氮化硅陶瓷的特性,并探讨其在各个领域中的应用。
2.1 物理特性氮化硅陶瓷具有许多出色的物理特性。
首先,它具有极高的硬度和强度,比传统陶瓷材料如氧化铝更为优越。
这使得氮化硅陶瓷可以在高温高压环境下工作而不易变形或断裂。
此外,氮化硅陶瓷还具备良好的导热性能。
它能够有效地传导热量,因此被广泛应用于需要散热性能较佳的领域,如电子器件制冷、电动车充电桩等。
此外,氮化硅陶瓷还表现出优异的耐腐蚀性能。
它可以抵御酸碱等常见溶液的侵蚀,并且在高温环境下也能保持稳定。
2.2 化学特性氮化硅陶瓷具有良好的化学稳定性,能够抵抗许多常见化学试剂的腐蚀。
氮化硅陶瓷生产工艺
![氮化硅陶瓷生产工艺](https://img.taocdn.com/s3/m/9b274d05590216fc700abb68a98271fe910eafb7.png)
氮化硅陶瓷生产工艺氮化硅陶瓷是一种具有优异性能的高温材料,广泛应用于电子、机械、化工等领域。
其生产工艺是制备高纯度、致密度和均匀性的氮化硅陶瓷的关键。
在本文中,我们将深入探讨氮化硅陶瓷的生产工艺,并分享对这一主题的观点和理解。
第一部分:概述在开始深入研究氮化硅陶瓷的生产工艺之前,让我们先对氮化硅陶瓷进行简要介绍。
氮化硅陶瓷是一种由氮化硅(Si3N4)组成的陶瓷材料,具有高温稳定性、耐磨性、耐腐蚀性和强度高等特点。
它被广泛应用于高温炉、催化剂载体、切削工具等领域。
第二部分:原材料选择和处理在氮化硅陶瓷的生产过程中,原材料的选择和处理至关重要。
高纯度的硅粉和氨气是常用的原材料。
硅粉应具有高纯度、均匀粒径和良好的分散性,以确保最终制得的氮化硅陶瓷具有均匀的化学成分和微观结构。
氨气是氮化硅陶瓷的氮源,其稳定供应和合理控制对于控制产品质量至关重要。
第三部分:成型技术氮化硅陶瓷的成型技术包括注射成型、挤压成型和热等静压成型等。
注射成型适用于制备复杂形状和薄壁的氮化硅陶瓷。
挤压成型适用于制备较大尺寸和简单形状的氮化硅陶瓷。
热等静压成型结合了热压和等静压的优势,可以制备高密度和高强度的氮化硅陶瓷。
第四部分:烧结工艺烧结是氮化硅陶瓷生产过程中的关键步骤。
在烧结过程中,氮化硅粉末在高温下发生固相反应,形成致密的氮化硅陶瓷。
烧结温度、保温时间和烧结气氛是影响烧结效果的关键参数。
通过合理控制这些参数,可以获得具有高密度、细晶粒和低残留气孔率的氮化硅陶瓷。
第五部分:后处理工艺在烧结过程之后,对氮化硅陶瓷进行后处理可以改善其性能。
通常的后处理工艺包括研磨、抛光和涂层等。
研磨可以去除表面缺陷和提高表面光洁度。
抛光可以进一步提高氮化硅陶瓷的表面质量。
涂层可以增加氮化硅陶瓷的抗氧化性、抗腐蚀性和摩擦性能。
第六部分:性能测试和评估最后,对氮化硅陶瓷的性能进行测试和评估是确保其质量和性能的重要环节。
常用的测试方法包括密度测试、硬度测试、抗弯强度测试和热稳定性测试等。
氮化硅性能原理
![氮化硅性能原理](https://img.taocdn.com/s3/m/cc657b5e0029bd64793e2cb6.png)
氮化硅性能原理(1)、作为人工合成材料之一的氮化硅陶瓷材料,具有高比强、高比模、耐高温、抗氧化和耐磨损以及抗热震等优良的综合性能,广泛应用于机械、化工、海洋工程、航空航天等重要领域。
对多晶材料而言,晶界状态是决定其电性能、热性能和力学等性能的一个极其重要的因素。
对于氮化硅陶瓷来说,晶界强度是决定其能否作为高温工程材料应用的关键(2)、由于氮化硅分子的si—N键中共价键成分为70%,离子键成分为30%t引,因而是高共价性化合物,而且氮原子和硅原子的自扩散系数很小,致密化所必需的体积扩散及晶界扩散速度、烧结驱动力很小,只有当烧结温度接近氮化硅分散温度(大于1850℃)时,原子迁移才有足够的速度。
这决定了纯氮化硅不能靠常规固相烧结达到致密化,所以除用硅粉直接氮化的反应烧结外,其它方法都需采用烧结助剂,利用液相烧结原理进行致密化烧结(3)、因此,研究烧结助剂对氮化硅陶瓷致密化烧结的影响显得尤为重要。
氮化硅陶瓷作为新型的结构材料,受到越来越广泛的重视。
氮化硅工程陶瓷-家电领域一、材料特性抗弯强度kg/cm2 1700-2000 1600-1900 2100-2700 2200-2880抗压kg/cm2 6500-9500 6000-8700 11000-14000 11000-15000硬度HRA 78-82 76-80 83-85 85-87热膨胀系数(1/℃)(20~800℃) 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6摩擦系数 0.1 0.1 0.1 0.1抗金属熔体浸蚀铝、锌、锡、铅等适用范围:适用于机械、化学与耐火材料、军事工业。
已适用情况:可作为机械密封用的密封件、耐腐蚀泵体、熔融铝液中的热电偶保护管,适用效果良好。
二、企业接产条件所有的原材料和设备全部国产化,生产线、建筑面积、劳动定员、水、电等随生产规模而定。
三、经济效益分析该产品是一种新型的高温结构陶瓷材料,特别是注浆成型工艺的关键技术,填补了国内空白,另外,该材料为陶瓷发动机的首选材料,具有一定的社会效益。
氮化硅陶瓷讲解
![氮化硅陶瓷讲解](https://img.taocdn.com/s3/m/28febab40b4e767f5bcfce53.png)
氮化硅陶瓷及其制备成型工艺
氮化硅(Si
N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的
氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上
虽早在140多年前就直接合成了氮化
但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,
1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低
许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的
Si3N4 粉应具有α相含量高,
杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散性好等特性。
Si3N4 粉中α相至少应占90%,这是由于Si3N4 在烧结过程中,部分α相
β相,而没有足够的α相含量,就会降低陶瓷材料的强度。
Si
N4粉料,还未根本解决。根据文献资料的报导,
( HPS)
Si3N4 粉末和少量添加剂(如MgO、Al2O3、MgF2、Fe2O3 等),
1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结。英国和美国
热压烧结Si3N4 陶瓷,其强度高达981MPa以上。烧结时添
由于严格控制晶界相的组成,以及在
陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强
2)热稳定性高,热膨胀系数小,有良好
3)化学性能稳定,能经受强烈的辐射照射等等。
N4分子中Si原子和周围4个N 原子以共价键结合,形成[Si-N4]四面体结构
Si
N4,有两种相结构,α相
β相如下图所示:
相结构
相结构
成键电子数目多,原子间排列的方向性强,相邻原子间相
Si
N4存在两种由[Si-N4]四面体结构以不同的堆砌方式堆砌而成的三
氧化钇和氧化铝在α-氮化硅中的烧结作用
![氧化钇和氧化铝在α-氮化硅中的烧结作用](https://img.taocdn.com/s3/m/f62029faab00b52acfc789eb172ded630a1c987c.png)
氧化钇和氧化铝在α-氮化硅中的烧结作用α-氮化硅是一种具有广泛应用前景的新型材料,具有优异的热电性能、高硬度和优良的化学稳定性。
然而,由于其高熔点和难以成形的特性,制备α-氮化硅陶瓷材料一直是一个具有挑战性的任务。
在制备过程中,添加助烧结剂可以促进材料的烧结和致密化,提高材料的力学性能和化学稳定性。
氧化钇是一种常用的助烧结剂,它具有高熔点、高热稳定性和良好的热膨胀性能。
在α-氮化硅的烧结过程中,氧化钇可以与氮化硅发生反应,形成氧化钇和氮气。
这个反应可以促进氮化硅颗粒的烧结和致密化,提高材料的力学性能和化学稳定性。
此外,氧化钇还可以作为晶界助剂,促进晶界的迁移和再结晶,提高材料的晶界结合强度和导电性能。
另一种常用的助烧结剂是氧化铝。
与氧化钇相比,氧化铝具有更高的熔点和更好的热稳定性。
在α-氮化硅的烧结过程中,氧化铝可以与氮化硅发生反应,形成氧化铝和氮气。
这个反应也可以促进氮化硅颗粒的烧结和致密化,提高材料的力学性能和化学稳定性。
此外,氧化铝还可以作为晶界助剂,促进晶界的迁移和再结晶,提高材料的晶界结合强度和导电性能。
在烧结过程中,氧化钇和氧化铝的添加量和粒度分布对材料的烧结性能有重要影响。
合适的添加量和粒度分布可以促进颗粒间的扩散和结合,提高材料的致密化程度。
过多或过少的添加量都会影响材料的致密化程度和力学性能。
此外,添加剂的粒度分布也会影响材料的烧结性能,过大或过小的颗粒会影响颗粒间的互相结合和烧结过程中的扩散速率。
氧化钇和氧化铝在α-氮化硅的烧结过程中起着重要的作用。
它们可以促进材料的烧结和致密化,提高材料的力学性能和化学稳定性。
然而,添加剂的添加量和粒度分布需要经过精确控制,以获得最佳的烧结性能。
未来的研究可以进一步探索添加剂的作用机制,优化添加剂的添加量和粒度分布,提高α-氮化硅材料的烧结性能和应用前景。
低温烧结制备的多孔氮化硅陶瓷的介电常数和力学性能
![低温烧结制备的多孔氮化硅陶瓷的介电常数和力学性能](https://img.taocdn.com/s3/m/190b8bf20b4e767f5bcfce2e.png)
低温烧结制备低介电常数和高力学性能的多孔氮化硅陶瓷夏永封,曾玉萍,江东亮上海硅酸盐研究所,中科院,1295年定西道,上海邮编200050中科院研究生院,北京100039,中华人民共和国摘要:通过凯特布兰(SiO 2-B 2O 3-P 2O 5)玻璃使用传统的陶瓷工艺在空气中制备了多孔氮化硅(Si 3N 4)陶瓷。
多孔Si 3N 4陶瓷烧结至1000~1200℃显示了相对较高的抗弯强度和良好的介质性能。
研究了烧结温度和添加剂含量对多孔氮化硅陶瓷抗弯强度和介电性能的影响。
多孔氮化硅陶瓷的30-55%的孔隙率,40-130兆帕的抗折强度,以及3.5-4.6的低介电常数被获得。
关键词:多孔氮化硅陶瓷;介电常数;凯特布兰;低温烧结1导言天线罩材料的恶劣的工作条件要求一系列关键特性,如低介电常数,高机械强度,优良的抗热震性和雨蚀性[1]。
如今,由于其优良的介电性能(介电常数恒定3.5),氮化硅陶瓷主要用于材料的天线罩和天线窗[2]。
然而,它们的极低的强度(通常不超过80MPa )[3]和较低的抗雨蚀性是不足以用于高速车辆。
氮化硅(Si 3N 4陶瓷)陶瓷有许多优良性能,如高温强度,良好的氧化电阻,热化学耐腐蚀,耐热冲击性,热膨胀系数低及良好介电性能[4-6]。
在室温下,α- Si 3N 4和β- Si 3N 4的介电常数(ε)分别是5.6和7.9。
然而,氮化硅的介电常数仍然有很高的实际应用。
孔设计,一般认为是一种降低材料介电常数的有效途径,但毛孔也可以恶化陶瓷材料的力学性能。
因此,重要的是保持介电性能和力学性能均衡,以满足实际应用。
多孔氮化硅陶瓷可以不同的方式制备,如增加易变物质[7],冷冻干燥[8],碳热氮化[9],燃烧合成[10],原位反应键[1]等。
作为一个共价固体,氮化硅无助烧结剂很难致密。
通常情况下,金属氧化物(Y 2O 3+Al 2O 3[11],Er 2O 3[12],Yb 2O 3[13])添加剂都必须通过液相烧结才能获得致密氮化硅陶瓷。
氮化硅陶瓷讲解
![氮化硅陶瓷讲解](https://img.taocdn.com/s3/m/e82875c7846a561252d380eb6294dd88d0d23d6f.png)
氮化硅陶瓷讲解氮化硅陶瓷及其制备成型工艺氮化硅〔Si3N4〕是氮和硅的化合物.在自然界里,氮、硅都是极其普通的元素.氮是生命的根底,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物.氮化硅是在人工条件下合成的化合物.虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔〞的氮化物留在人们的记忆中.二次大战后,科技的迅速开展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料. 经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低本钱,有广泛重要用途的氮化硅陶瓷制品.开发过程为何如此艰难, 这是由于氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的.没有氮化硅陶瓷就没有氮化硅如今的重要地位.Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低〔缺点〕,难以烧结,其中共价键Si-N 成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化.Si3N4含有两种晶型,一种为a-Si3N4,针状结晶体,呈白色或灰白色,另一种为B-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体.两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络.在高温状态下,B相在热力学上更稳定,因此a相会发生相变,转为B相. 从而高弓相含量Si3N4粉烧结时可得到细晶、长柱状B -Si3N4晶粒,提升材料的断裂韧性.但陶瓷烧结时必须限制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源.在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能.〔1〕机械强度高, 硬度接近于刚玉,有自润滑性耐磨;〔2〕热稳定性高,热膨胀系数小,有良好的导热性能;〔3〕化学性能稳定,能经受强烈的辐射照射等等.晶体的常见参数如下列图所示:翅氯雌的踹微和懒Ta b.'L attic e io ost ant a nd biUk den sity of alicon nit ri 出相品格常机由单位雕分了教acft-如附±0.0015,617 i).0014J. J 84■ SiiNj工仪iE +0,0012.9I& Ja.00057上1肝表2就翻基植质Tab. 2 Basic properties of silicon nitridem晶系分解温接莫氏艘艘(g/cd)导解(W/m国螂率(Q嬲幽'C)蒯雉六方190093.1849.46 2.7 X10-6 (20-1000 QSi3N4分子中Si原子和周围4个N原子以共价键结合,形成[Si・N4]四面体结构单元,所有四面体共享顶角构成三维空间网,形成Si3N4,有两种相结构,a相和B相如下列图所示:a相结构P相结构其共价键长较短,成键电子数目多,原子间排列的方向性强,相邻原子间相互作用大.Si3Z存在两种由[Si-NJ四面体结构以不同的堆砌方式堆砌而成的三维网络晶形,一个是a-Si3N4,另一个是内窜4.正是由于[Si-N4]四面体结构单元的存在,Si3N4具有较高的硬度.在距Si3N4的一个晶胞内有6j Si原子, 8个N原子.其中3个Si原子和4个N原子在一个平面上,另外3个Si原子和4个N 原子在高一层平面上.第3层与第1层相对应,如此相应的在C轴方向按ABAB… 重复排列,由Si3N4的晶胞参数为a=0.7606 nm,c=0.2909 nm.a-Si3N4中第3层、第4层的Si原子在平面位置上分别与第1层、第2层的Si原子错了一个位置,形成4 层重复排列,即ABCDABCD…方式排列.相对由Si3N4而言,a-Si3N4晶胞参数变化不大,但在C轴方向约扩大一倍(a=0.775nm,c=0.5618),其中还含有3%的氧原子以及许多硅空位,因此体系的稳定性较差,这使a相结构的四面体晶形发生畸变,而0相在热力学上更稳定.由于氧原子在a相中形成Si-O-Si离子性较强的的键,这使a相中的[Si-N4]四面体易产生取向的改变和链的伸直,原子位置发生调整,使得a相在温度到达1300 ℃以上时转变到.相,使其结构稳定.氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值.比较突出的性能有:(1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨.室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200c不下降.(2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好, 从室温到1000℃的热冲击不会开裂.(3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体 (特别是铝液)不润湿,能经受强烈的放射辐照.(4)密度低,比重小,仅是钢的2/5,电绝缘性好.2.重要的应用氮化硅陶瓷的应用初期主要用在机械、冶金、化工、航空、半导体等工业上,作某些设备或产品的零部件,取得了很好的预期效果.近年来,随着制造工艺和测试分析技术的开展,氮化硅陶瓷制品的可靠性不断提升,因此应用面在不断扩大.特别值得赞赏的是,正在研制氮化硅陶瓷发动机,并且已经取得了很大的进展,这在科学技术上成为举世瞩目的大事.有关应用的主要内容有:(1)在冶金工业上制成坩埚、马弗炉炉膛、燃烧嘴、发热体夹具、铸模、铝液导管、热电偶测温保护套管、铝电解槽衬里等热工设备上的部件.(2)在机械工业上制成高速车刀、轴承、金属部件热处理的支承件、转子发动机刮片、燃气轮机的导向叶片和涡轮叶片等.(3)在化学工业上制成球阀、泵体、密封环、过滤器、热交换器部件、固定化触媒载体、燃烧舟、蒸发皿等.(4)在半导体、航空、原子能等工业上用于制造开关电路基片、薄膜电容器、承受高温或温度剧变的电绝缘体、雷达天线罩、导弹尾喷管、原子反响堆中的支承件和隔离件、核裂变物质的载体等.(5)在医学工程上可以制成人工关节.(6)正在研制的氮化硅质的全陶瓷发动机代替同类型金属发动机.今后的开展方向是:⑴充分发挥和利用SI3N4本身所具有的优异特性;⑵在Si3N4粉末烧结时,开发一些新的助熔剂,研究和限制现有助熔剂的最正确成分; ⑶改善制粉、成型和烧结工艺;⑷研制SI3N4与SIC等材料的复合化,以便制取更多的高性能复合材料.SI3N4陶瓷等在汽车发动机上的应用,为新型高温结构材料的开展开创了新局面.利用SI3N4重量轻和刚度大的特点,可用来制造滚珠轴承、它比金属轴承具有更高的精度,产生热量少,而且能在较高的温度和腐蚀性介质中操作.用SI3N4陶瓷制造的蒸汽喷嘴具有耐磨、耐热等特性,用于650℃锅炉几个月后无明显损坏,而其它耐热耐蚀合金钢喷嘴在同样条件下只能使用1 - 2个月.由中科院上海硅酸盐研究所与机电部上海内燃机研究所共同研制的SI3N4电热塞解决了柴油发动机冷态起动困难的问题,适用于直喷式或非直喷式柴油机.这种电热塞是当今最先进、最理想的柴油发动机点火装置.日本原子能研究所和三菱重工业公司研制成功了一种新的粗制泵,泵壳内装有由11个SI3N4陶瓷转盘组成的转子.由于该泵采用热膨胀系数很小的SI3N4陶瓷转子和精密的空气轴承,从而无需润滑和冷却介质就能正常运转.如果将这种泵与超真空泵如涡轮分子泵结合起来,就能组成适合于核聚变反响堆或半导体处理设备使用的真空系统.随着SI3N4粉末生产、成型、烧结及加工技术的改良,其性能和可靠性将不断提升,氮化硅陶瓷将获得更加广泛的应用.由于SI3N4原料纯度的提升,SI3N4粉末的成型技术和烧结技术的迅速开展,以及应用领域的不断扩大,SI3N4正在作为工程结构陶瓷,在工业中占据越来越重要的地位. SI3N4陶瓷具有优异的综合性能和丰富的资源,是一种理想的高温结构材料, 具有广阔的应用领域和市场,世界各国都在竞相研究和开发.陶瓷材料具有一般金属材料难以比较的耐磨、耐蚀、耐高温、抗氧化性、抗热冲击及低比重等特点.可以承受金属或高分子材料难以胜任的严酷工作环境,具有广泛的应用前景.成为继金属材料、高分子材料之后支撑21世纪支柱产业的关键根底材料, 并成为最为活泼的研究领域之一,当今世界各国都十分重视它的研究与开展, 作为高温结构陶瓷家族中重要成员之一的SI3N4陶瓷,较其它高温结构陶瓷如氧化物陶瓷、碳化物陶瓷等具有更为优异的机械性能、热学性能及化学稳定性. 因而被认为是高温结构陶瓷中最有应用潜力的材料.可以预言,随着陶瓷的根底研究和新技术开发的不断进步,特别是复杂件和大型件制备技术的日臻完善,SI3N4陶瓷材料作为性能优良的工程材料将得到更广泛的应用.氮化硅粉体的制造方法:用硅粉作原料,先用通常成型的方法做成所需的形状,在氮气中及1200℃的高温下进行初步氮化,使其中一局部硅粉与氮反响生成氮化硅,这时整个坯体已经具有一定的强度.然后在1350℃-1450P的高温炉中进行第二次氮化,反响成氮化硅.用热压烧结法可制得到达理论密度99% 的氮化硅.制备工艺:由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以及晶间第二相含量等).因而各项性能差异很大.要得到性能优良的SI3N4陶瓷材料,首先应制备高质量的Si3N4粉末.用不同方法制备的SI3N4粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差异,对其性质熟悉缺乏.一般来说,高质量的SI3N4粉应具有a 相 含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散 性好等特性.好的SI3N4粉中a 相至少应占90%,这是由于SI3N4在烧结过 程中,局部a 相会转变成B 相,而没有足够的a 相含量,就会降低陶瓷材料的强 度.要制得高性能的氮化硅陶瓷制品,一般说来首先要有高质量的氮化硅粉料. 理想的氮化硅粉料应是高纯、超细、等轴、球形、松散不团聚的一次粒子.实 际上,目前要获得较为理想的Si 3N 4粉料,还未根本解决.根据文献资料的报导, 现在用以制造氮化硅粉料的方法已经较多,如:(1)硅粉直接氮化法 3Si +2N 2fsi N (2)二氧化硅碳热复原法 2Si 02+6C+2N 2f si 3N 4+6CO(3)四氯化硅或硅烷与氨的高温气相合成法 3s g 4+4NH 3f si 3N 4+12HC1 3SiH 4+4NH 3f Si 3N 4+12H 2(4)亚氨基硅或氨基硅的热分解法 3Si (NH ) 2f si 3N 4+2NH 3 3Si (NHP4f si 3N 4+8NH 3其它还有激光法、等离子体法等等方法.以下主要介绍硅粉直接氮化合成 法.一、生产工艺流程示意图:见图4—8.图4 —日硅粉氮化制氮化硅粉料工艺流程示意图二、主要工艺条件(1)原料处理常用的市售工业硅块总会含有一些金属氧化物,如钾、钠、铁、钙等的氧 化物;工业氮气和氢气也总会含有少量的水、氧气等,这些都必须经过严格检 测,并净化至允许的含量.对硅粉的要求粒度V 40pm,对其中所含的金属杂质,一般可用酸洗的方法除去,对于球磨时带入的超硬合金杂质可用重力法或磁性法除去.硅粉外表的 氧化膜可在氮化前通过复原活化法除去,即在低于烧结温度下,反复用低于常 压的氢气复原和真空交换处理,待氧化膜除去后再进行氮化合成操作.氮气中假设含水和氧,在硅氮合成反响时,氧和水蒸汽首先会使硅粉外表生 成二氧化硅,影响氮化反响;而且在高温作用下,二氧化硅又可以与硅反响生 成气态的一氧化硅或SiO 2分解生成一氧化硅,而造成硅组分的损失:SiO 2 〔固〕+Si 〔固〕-2SiO 〔气〕SiO 2 〔固〕f SiO C 气〕十,5 〔气〕生成物氮化硅在高温下也会受氧气和水蒸汽的明显腐蚀.所以应尽可能地 将其全部除去.气体净化系统示意图如下:其中氧气的脱除是通过灼热的铜屑生成氧化铜,由于同时通入了氢气,既 可以保持铜屑的活性,又可以使氧最终转化成水而易于除去: 60吐心02 2 Cu + 即〕Cu+H.O〔2〕氮化合成反响氮化反响是在氮化炉中进行的,氮化炉内的温度由炉壁内的发热体和控温 系统来调节.氮化反响开始进行非常缓慢,600〜900c 反响才明显,1100〜1320c 反响剧 烈进行.粒度符合要求的硅粉,也要经过大约10小时才可以氮化完全.硅粉粒 度大于40Hm 以上时,将难以氮化彻底.因氮化反响中会放出大量反响热〔727.5kJ/molSi34〕,所以在氮化初期应严 格限制升温速度,以预防因积热引起局部过温,超过硅的熔点〔1420℃〕使硅 粉熔合成团,阻碍继续氮化.所以整个氮化合成反响过程中限制温度^ 1400℃ 为宜.〔3〕氮化硅粉料的后处理合成的氮化硅由于各种原因粒度不能满足要求,所以还需根据具体情况进 行球磨、酸洗等后处理,最后要求至少得到粒度小于1pm 的氮化硅粉料.但往 往粒度分布较宽,颗粒外表及几何形状也不易符合理想要求,这是该法的缺点 之一.该方法合成氮化硅粉料,尽管工艺比较成熟,质量稳定,重复性好,粒度 也可以根本满足,本钱较低,但是存在粉料的纯度和相组成较难严格限制等问 题,所以还需要进一步改良和完善这一工艺,以提升氮化硅粉料的质量.4.氮化硅陶瓷的制造氮化硅陶瓷制造工艺已经经历了二十多年的开展史,使其质量逐渐提升.而工艺流程根本未变,由于也属典型的陶瓷工艺,主要是在各个工艺环节上进 行了不断的改良.活性氧化铝(1)氮化硅陶瓷制备工艺的主要环节制备氮化硅陶瓷制品的工艺流程一般由原料处理、粉体合成、粉料处理、成形、生坯处理、烧结、陶瓷体处理等环节组成.详见图4—9.原料处理|一气体净化、端体细磨, 麟洗等口粉体合成一采用氮化合成、碳物复原、气相合成、热分解等苴中一种口粉料处理一膝分、配料、混料、干糜及制浆、造粒等.成稔一采用半干压、等静区、注浆、热压裤、车坯等其中一种口生坯处理一修坯、枯燥f或排胶、脱霜1、预烧结等口烧结一采用反响、热压、常压、等静压、重烧结等其中一种口陶空体处理一按需要进行热处理、优学强优-切割-研磨、接合等.图4 —.氮化硅陶荒制备工艺的主要环节(2)主要工艺类型和特点从图4—9中可知,由于几个主要环节如合成、成形、烧结可以有多种方法进行选择,而且有的在次序上也不一定完全一致,因此具体的工艺流程有很多种.几个主要工艺类型及特点详见表4—2.表4—2中的几种工艺制得的氮化硅陶瓷制品不管是在显微结构上还是在性能方面都有较大的差异,在制造本钱上差距也很大.因此,在实际应用中应根据制品的用途和所需要到达的性能指标,以及价格等诸因素综合考虑后进行选择.表4 — 2氯牝硅陶凳明备的主要工玲型和特点工艺类型主要特点反响烧结氮化硅硅桧成形、坯体氮化合成烧结:烧结体热压氮化硅氮化硅能甦^烧结体常压烧结瓦化硅氮化硅端成理)坯体烧结:烧结体等第压烧结氮化硅氮化硅耨成施?坏体烧结体硅粉成形?坯体俄罐3前驱体反响重烧结氮化硅壬由修工^烧结体(3)制备高质量产品的技术要求氮化硅陶瓷制品是我们作为应用于苛刻条件下的高温结构材料而重点介绍的.尤其是它最有魅力的前景是用于制造全陶瓷发动机.因此不仅要使材料的性能尽可能稳定,而且必须保证制品的机械可靠性.为此,除了需要进一步进行深入的理论研究外,作为生产单位必须牢记并在许可的条件下做到“纯、细、密、均质〞.这五个字既是总的技术要求,也是工艺技术开展的趋势.I〕纯,是指原料尽可能纯洁,尽量除去有害的杂质,在制备全过程中尽量预防混入有害杂质,烧成的陶瓷体晶界相要少,相组成尽量单一.II〕细,是指固体原料和中间合成物的粉体颗粒度要细,烧成的陶瓷体晶粒要细.小〕密,是指成形生坯尽可能致密,烧结尽可能完全,烧成的陶瓷体气孔率尽量低,体积密度尽量接近理论密度.W〕均质,是指粉体的颗粒分布范围要窄,从成形生坯到烧成陶瓷体都要预防热应力和机械应力集中,预防不同步烧结,尽量减少陶瓷体内的缺陷,避免各向异性.氮化硅陶瓷的工业生产绝对不受资源限制,合成氮化硅可以通过各种途径进行,原料来源一般都很容易.二十多年来,氮化硅陶瓷的制备工艺不断改良, 生产规模不断扩大,本钱逐渐下降,市场需求也在成倍增长.因此,氮化硅陶瓷在新材料领域中具有明显潜在的竞争力量,大有开展前途.反响烧结法〔RS〕是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化〔局部氮化〕烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工〔如车、刨、铳、钻〕.最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品〔即生坯烧结后,收缩率很小,线收缩率< 011%〕.该产品一般不需研磨加工即可使用.反响烧结法适于制造形状复杂,尺寸精确的零件,本钱也低,但氮化时间很长.热压烧结法〔HPS〕是将Si3N4粉末和少量添加剂〔如MgO、A12O3、MgF2、Fe2O3等〕, 在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结.英国和美国的一些公司采用的热压烧结Si3N4陶瓷,其强度高达981MPa以上.烧结时添加物和物相组成对产品性能有很大的影响.由于严格限制晶界相的组成,以及在Si3N4陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强度〔可达490MPa以上〕也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提升三个数量级.假设对Si3N4陶瓷材料进行14001500 ℃高温预氧化处理,那么在陶瓷材料外表上形成SI2N2O相,它能显著提升SI3N4陶瓷的耐氧化性和高温强度.热压烧结法生产的Si3N4陶瓷的机械性能比反响烧结的Si3N4要优异,强度高、密度大.但制造本钱高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难.常压烧结法〔PLS〕在提升烧结氮气氛压力方面,利用SI3N4分解温度升高〔通常在N2 = 1atm 气压下,从1800℃开始分解〕的性质,在17001800℃温度范围内进行常压烧结后,再在18002000℃温度范围内进行气压烧结.该法目的在于采用气压能促进SI3N4陶瓷组织致密化,从而提升陶瓷的强度.所得产品的性能比热压烧结略低.这种方法的缺点与热压烧结相似.气压烧结法〔GPS〕近几年来,人们对气压烧结进行了大量的研究,获得了很大的进展.气压烧结氮化硅在1〜10MPa气压下,2000℃左右温度下进行.高的氮气压抑制了氮化硅的高温分解.由于采用高温烧结,在添加较少烧结助剂情况下,也足以促进SI3N4晶粒生长,而获得密度>99%的含有原位生长的长柱状晶粒高韧性陶瓷,因此气压烧结无论在实验室还是在生产上都得到越来越大的重视.气压烧结氮化硅陶瓷具有高韧性、高强度和好的耐磨性,可直接制取接近最终形状的各种复杂形状制品,从而可大幅度降低生产本钱和加工费用.而且其生产工艺接近于硬质合金生产工艺,适用于大规模生产。
无机材料科学基础《烧结》知识点
![无机材料科学基础《烧结》知识点](https://img.taocdn.com/s3/m/06b61ee877eeaeaad1f34693daef5ef7ba0d12d6.png)
(1)常压烧结:又称无压烧结。
属于在大气压条件下坯体自由烧结的过程。
在无外加动力下材料开始烧结,温度一般达到材料的熔点0.5-0.8即可。
在此温度下固相烧结能引起足够原子扩散,液相烧结可促使液相形成或由化学反应产生液相促进扩散和粘滞流动的发生。
常压烧结中准确制定烧成曲线至关重要。
合适的升温制度方能保证制品减少开裂与结构缺陷现象,提高成品率。
(2)热压烧结与热等静压烧结:热压烧结指在烧成过程中施加一定的压力(在10~40MPa),促使材料加速流动、重排与致密化。
采用热压烧结方法一般比常压烧结温度低100ºC左右,主要根据不同制品及有无液相生成而异。
热压烧结采用预成型或将粉料直接装在模内,工艺方法较简单。
该烧结法制品密度高,理论密度可达99%,制品性能优良。
不过此烧结法不易生产形状复杂制品,烧结生产规模较小,成本高。
作为陶瓷烧结手段,利用来自于表面能的表面应力而达到致密化的常压烧结法虽是一般常用的方法,但是,不依赖于表面应力,而在高温下借助于外压的方法,也是可以采用的。
这就是称为热压法的烧结方法。
广义来说,在加压下进行烧结的方法包括所有这类方法,超高压烧结和热等静压(HIP)烧结也属于这类方法。
不过,一般都作为在高温下施加单轴压力进行烧结的方法来理解。
其基本结构示于图1。
首先,制备粉体试料,置于模型中,在规定温度下加热、加压,获得烧结体。
由于下述原因而采用这种方法:(1)烧结温度降低;(2)烧结速度提高;(3)使难烧结物质达到致密化。
因为能够在颗粒成长或重新结晶不大可能进行的温度范围达到致密化,所以,可获得由微小晶粒构成的高强度、高密度烧结体。
图2所示,是热压对陶瓷致密化影响效果之一例。
将热压作为制造制品的手段而加以利用的实例有:氧化铝、铁氧体、碳化硼、氮化硼等工程陶瓷。
连续热压烧结生产效率高,但设备与模具费用较高,又不利于过高过厚制品的烧制。
热等静压烧结可克服上述弊缺,适合形状复杂制品生产。
氮化硅陶瓷的制备工艺及其热力学性能分析
![氮化硅陶瓷的制备工艺及其热力学性能分析](https://img.taocdn.com/s3/m/5138e814abea998fcc22bcd126fff705cd175c4b.png)
氮化硅陶瓷的制备工艺及其热力学性能分析氮化硅陶瓷是一种新型的高性能陶瓷材料,具有很高的硬度、热稳定性和化学稳定性,因此在航天、电子、汽车等领域得到了广泛的应用。
本文将重点介绍氮化硅陶瓷的制备工艺和热力学性能分析。
一、氮化硅陶瓷的制备工艺氮化硅陶瓷的制备工艺通常采用化学气相沉积(CVD)或反应烧结法。
其中,CVD是一种制备高质量氮化硅薄膜和涂层的重要方法,而反应烧结法则是一种制备块状氮化硅陶瓷的主要方法。
1. CVD制备氮化硅陶瓷CVD是一种通过在高温下将气体化学物质分解并沉积在衬底上的方法,常用的沉积物包括氧化物、氮化物和碳化物等。
在制备氮化硅陶瓷时,主要反应如下:SiH4 + NH3 → Si3N4 + 3H2其中,SiH4是硅烷,NH3是氨。
这个反应产生的氮化硅沉积物具有相对均匀的成分和微细的晶体尺寸,因此CVD是一种制备高质量氮化硅薄膜和涂层的重要方法。
2. 反应烧结法制备氮化硅陶瓷反应烧结法是指将粉末状的硅和氨在高温下反应生成氮化硅块状陶瓷。
这种方法主要有两个步骤:首先是化学反应生成氮化硅的粉末,然后在高温下进行烧结。
一般的反应方程式为:3Si + 4NH3 → Si3N4 + 6H2硅和氨的混合物首先被热反应生成Si3N4的粉末,然后这些粉末被压缩并烧结成块状氮化硅陶瓷。
反应的烧结温度通常在1700°C以上,并且需要在高真空或惰性气体气氛下进行,以避免氮化硅被氧化。
二、氮化硅陶瓷的热力学性能分析氮化硅陶瓷具有很高的硬度、热稳定性和化学稳定性,这些特性源于其良好的热力学性能。
本节将介绍氮化硅陶瓷的主要热力学性质,包括热膨胀系数、比热容和热导率。
1. 热膨胀系数热膨胀系数是指材料在温度变化下的长度变化率。
对于氮化硅陶瓷来说,其热膨胀系数相对较小,通常在4-5×10^-6/°C左右,这意味着该材料在高温下具有较好的热稳定性和机械稳定性。
2. 比热容比热容是指单位质量材料在吸热或放热过程中所需的热量。
氮化硅的制备性质及应用课件
![氮化硅的制备性质及应用课件](https://img.taocdn.com/s3/m/d29cf3e4f424ccbff121dd36a32d7375a417c696.png)
பைடு நூலகம்
电子工业:氮化硅陶瓷在电子工业中用作基板、 绝缘体、封装材料等,由于其良好的绝缘性能和 耐高温性能,可以提高电子器件的可靠性和稳定 性。
请注意,以上只是对氮化硅的概述,更深入的内 容需要进一步探讨氮化硅的制备工艺、详细性质 以及具体应用领域等方面。
VS
光学材料
氮化硅在光学领域也有应用,如高折射率 光学元件、光波导器件等,得益于其优异 的光学性能和稳定性。
THANKS
感谢观看
无压烧结
通过添加烧结助剂,降低氮化硅 的烧结温度,使其在常压下实现 致密化。这种方法成本较低,适 用于大规模生产。
其他制备方法
溶胶-凝胶法
将硅源、氮源和溶剂混合,形成溶胶,经过干燥、凝胶化、 热处理等步骤制得氮化硅。这种方法可以在较低温度下制备 氮化硅,但纯度相对较低。
自蔓延高温合成法(SHS)
利用化学反应产生的热量使反应自持续进行,从而合成氮化 硅。这种方法具有能耗低、合成时间短等优点,但产物粒度 较大,需要后续处理。
03
氮化硅的性质
物理性质
01
02
03
04
高硬度
氮化硅具有极高的硬度,是一 种优良的耐磨材料。
耐高温
氮化硅具有出色的高温稳定性 ,能在高温环境下保持优良的
物理性能。
低热膨胀系数
氮化硅的热膨胀系数非常低, 因此具有良好的热稳定性。
优秀的绝缘性能
氮化硅是一种良好的电绝缘体 ,可用于制造高温电子器件。
化学性质
介电材料
氮化硅的介电常数稳定,损耗低,因 此可用作高频和高功率电子器件的介 电材料,如电容器、电感器等。
氮化硅陶瓷的生产与应用
![氮化硅陶瓷的生产与应用](https://img.taocdn.com/s3/m/f1762661302b3169a45177232f60ddccda38e68f.png)
氮化硅陶瓷的生产与应用氮化硅陶瓷是一种具有良好性能和广泛应用领域的先进陶瓷材料。
它具有高温强度、良好的热震稳定性、耐腐蚀、高硬度、低热膨胀系数和优异的绝缘性能等特点,被广泛应用于炉窑耐火材料、切削工具、陶瓷喷嘴、轴承、机械密封和电子元件等领域。
氮化硅陶瓷生产的方法有几种,如氮化硅陶瓷粉末的烧结法、反应烧结法和热等静压法等。
其中,烧结法是最常用的方法之一、首先,氮化硅陶瓷的原料硅粉在高温下与氮气反应生成氮化硅粉末。
然后,将该粉末与适量的陶瓷添加剂混合,通过模压、热压和烧结等工艺步骤得到氮化硅陶瓷制品。
氮化硅陶瓷具备很多优越的性能,使其得到广泛的应用。
首先,它具有高温强度和良好的热震稳定性,可以在高温、高压和急剧温度变化的环境下长期稳定工作,因此被广泛应用于炉窑耐火材料和热工业领域。
其次,氮化硅陶瓷具有优异的耐腐蚀性能,能够抵抗酸、碱等腐蚀介质的侵蚀,从而广泛应用于化学、陶瓷和冶金等领域。
此外,氮化硅陶瓷具有高硬度和优异的磨损性能,常用于切削工具、陶瓷喷嘴和轴承等领域。
此外,氮化硅陶瓷的低热膨胀系数和优异的绝缘性能使其在机械密封和电子元件等领域也有着广泛的应用。
在炉窑耐火材料领域,氮化硅陶瓷常被用于高温窑炉的内衬和炉膛。
它的高温强度和热震稳定性使其能够抵抗高温下的热应力,从而延长设备的使用寿命。
在此应用领域中,氮化硅陶瓷不仅具有良好的高温氧化稳定性,还能够耐受强酸、强碱和高温腐蚀。
在切削工具领域,硬质合金刀具已被氮化硅陶瓷刀具所替代。
氮化硅陶瓷刀具具有高硬度、优异的耐磨性和热稳定性,因此能够在高温、高速和高硬度材料切削加工中表现出色。
氮化硅陶瓷刀具已广泛应用于汽车制造、航空航天、模具制造和船舶制造等领域。
在电子元件领域,氮化硅陶瓷常被用作高压与高频绝缘材料。
由于其优异的绝缘性能和高热导率,氮化硅陶瓷可以有效地隔离高压信号并提高元器件的散热效果,使其能够在高电压和高频率环境下工作。
总之,氮化硅陶瓷是一种具有多种优异性能和广泛应用领域的先进陶瓷材料。
硅粉氮化法制备的氮化硅粉体指标
![硅粉氮化法制备的氮化硅粉体指标](https://img.taocdn.com/s3/m/86f948c9e43a580216fc700abb68a98270feac7c.png)
氮化硅(Si3N4)是一种重要的结构陶瓷材料,具有优异的耐热、耐腐蚀和机械性能,被广泛应用于工业、航空航天和电子等领域。
硅粉氮化法是一种常用的制备氮化硅粉体的方法,通过对氨气和硅粉进行反应,可以得到高纯度的氮化硅粉体。
这种方法制备的氮化硅粉体具有一定的指标,包括颗粒大小、比表面积、化学成分等。
本文将就硅粉氮化法制备的氮化硅粉体的指标进行详细介绍。
一、颗粒大小1.1 颗粒大小分布氮化硅粉体的颗粒大小是其性能的重要指标之一。
硅粉氮化法制备的氮化硅粉体,其颗粒大小分布应符合特定的要求。
通常要求氮化硅粉体的颗粒大小分布均匀,无明显的聚集和堆积现象。
颗粒大小分布的均匀性直接影响到氮化硅制品的性能和加工工艺。
1.2 颗粒平均直径氮化硅粉体的颗粒平均直径也是重要的指标之一。
硅粉氮化法制备的氮化硅粉体,其颗粒平均直径应符合特定的要求,一般在数十微米至数百微米之间。
二、比表面积2.1 比表面积的确定方法比表面积是氮化硅粉体的重要物理性能之一,直接影响其在陶瓷材料中的应用效果。
硅粉氮化法制备的氮化硅粉体,其比表面积可以通过比表面积仪等仪器进行测试,得到粉体样品的比表面积值。
2.2 比表面积的稳定性氮化硅粉体的比表面积稳定性也是重要的指标之一。
在实际应用中,氮化硅粉体的比表面积随着储存时间的增加可能会发生变化,其比表面积的稳定性也需要得到重视和研究。
三、化学成分3.1 氮化硅含量氮化硅粉体的化学成分是其质量和性能的基础。
硅粉氮化法制备的氮化硅粉体,其氮化硅含量应符合特定的要求,通常要求氮化硅含量高于99.5。
3.2 杂质含量另外,氮化硅粉体中的杂质含量也是重要的指标之一。
杂质对氮化硅粉体的性能和应用效果有着重要影响,因此需要对氮化硅粉体中的杂质含量进行严格控制和测试。
硅粉氮化法制备的氮化硅粉体的指标包括颗粒大小、比表面积、化学成分等多个方面,这些指标直接影响着氮化硅粉体的质量和性能。
为了获得高质量的氮化硅粉体,需要通过严格的工艺控制和检测手段来保证氮化硅粉体的各项指标符合要求。
氮化硅陶瓷结课论文总结(推荐5篇)
![氮化硅陶瓷结课论文总结(推荐5篇)](https://img.taocdn.com/s3/m/6d177d120812a21614791711cc7931b765ce7bce.png)
氮化硅陶瓷结课论文总结(推荐5篇)第一篇:氮化硅陶瓷结课论文总结碳材料增韧氮化硅陶瓷摘要:氮化硅陶瓷由于具有高强度、耐腐蚀、导热性良好等优良的性质被研究者所关注,但是氮化硅陶瓷也有陶瓷材料的共性:脆性,这个致命的缺点限制了氮化硅陶瓷在很多领域的应用。
传统的氮化硅陶瓷增韧方法,弥散增韧、纤维晶须增韧、微裂纹增韧等被广泛的研究。
随着科学的发展,碳材料越来越引起人们的兴趣,如碳纤维、碳纳米管、富勒烯、石墨烯等,具有良好的韧性,是增韧氮化硅陶瓷的理想的材料,特别是近年来石墨烯的发现,碳材料的应用被拓宽,石墨烯的良好的延展性,抗拉伸性、高导热率等优点,使得在氮化硅陶瓷增韧方面具有广阔的应用前景。
关键字:氮化硅;增韧;碳纳米管;石墨烯一、氮化硅陶瓷发展随着现代科学技术的发展,对新材料的研究和应用不断提出更高的要求,传统的金属材料越来越难以满足这种日益发展的要求,及待开发新型材料。
多年来,研究工作者们进行了不懈的努力,在材料的制备工艺和性能方面取得了很大的进展。
由于人们认识到陶瓷的潜在优势和金不可克服的弱点,工程陶瓷材料越来越受到世界上许多材料研究单位的高度重视,并取得了许多突破性进展。
随着科学技术发展迅速,原子能、火箭、燃气轮机等技术领域对材料提出了更高的要求,迫使人们去寻找比耐热合金更能承受高温,比普通陶瓷更能抵御化学腐蚀的材料[1]。
Si3N4的出色表现,激起了人们对它的热情和兴趣。
英、法的一些研究机构和大学率先开始对Si3N4进行系统研究,深入认识它的结构性能、探索烧结方法、开拓应用领域。
近些年来Si3N4陶瓷制品已经开始向产业化、实用化迈进了。
目前人们通过广泛深入仔细的研究,发现陶瓷材料是最有希望在高科技领域中能得到广泛应用的候选材料。
Si3N4陶瓷作为一种高温结构陶瓷,具有强度高、抗热震稳定性好、高温蠕变小、耐磨、优良的抗氧化性和化学稳定性高等特点,是优良的工程陶瓷之一[2]。
二、氮化硅的结构和性质氮化硅(Si3N4)陶瓷是无机非金属强共价键化合物,其基本结构单元为[SiN4]四面体,硅原子位于四面体的中心,四个氮原子分别位于四面体的四个顶点,然后以每三个四面体共用一个硅原子的形式在三维空间形成连续而又坚固的网络结构,氮化硅的许多性能都是因为其具有这种特殊的结构,因此Si3N4结构中氮原子与硅原子间结合力很强,其作为一种高温结构陶瓷,素有陶瓷材料中的“全能冠军”之称,氮化硅陶瓷具有硬度大、强度高、热膨胀系数小、高温蠕变小、抗氧化性能好,可耐氧化到1400℃,热腐蚀性能好,能耐大多数酸侵蚀,摩擦系数小,与用油润滑的金属表面相似等优异性能,已在许多工业领域获得广泛应用,并有很多潜在用途[3]。
反应烧结氮化硅陶瓷的连接
![反应烧结氮化硅陶瓷的连接](https://img.taocdn.com/s3/m/07fda03667ec102de2bd89a0.png)
反应烧结氮化硅陶瓷的连接张电,徐永东,张立同,成来飞,马军强(西北工业大学,超高温结构复合材料国防科技重点实验室,西安 710072)摘要:用硅粉、黏土、硅溶胶配制的浆料作为焊料,在1390 ℃氮化烧结过程中,对经过预氮化的氮化硅陶瓷进行无压反应烧结连接。
实验表明:黏土的加入改善了焊料塑性,形成了较致密的接头,连接强度达到40 MPa。
焊料经反应烧结后生成了Si3N4和O´–sialon,与母材具有物理化学相容性。
焊料/母材界面处形成了针状sialon晶体交织的网络结构,将焊料与母材互锁成为一个整体,起到很好的界面结合作用。
焊料的反应烧结和焊料/母材界面反应都为溶解–沉淀机理控制。
关键词:氮化硅;连接;焊料;赛龙中图分类号:TQ174文献标识码:A文章编号:0454–5648(2006)10–1177–05JOINING OF REACTION SINTERED SILICON NITRIDE CERAMICSZHANG Dian, XU Yongdong, ZHANG Litong, CHENG Laifei, MA Junqiang(National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China)Abstract: Adhesives prepared by mixing the silicon powder, clay and silica sol were used to join the pre-nitridized silicon nitride ceramics by pressureless reaction sintering method at 1390. The results indicated that clay could enhance the plasticity of the a℃d-hesives, form a compact joint and obtain a bonding strength of 40 MPa. The sintered adhesive is mainly composed of S3N4 and O´– sialon, which have good physical chemistry compatibility with the parent material. Sialon acerous crystal has formed at the interface between the adhesive and parent material and formed an interlocking network, which integrated these two parts, providing good in-terface bonding. Analysis indicated that the mechanism of the adhesive sinter and interface reaction is a dissolution–precipitation process.Key word: silicon nitride; joining; adhesive; O´–sialon氮化硅陶瓷具有优良的高温力学性能,广泛应用于化工、冶金、航天和汽车工业等领域。
氮化硅结合碳化硅陶瓷的烧结方法
![氮化硅结合碳化硅陶瓷的烧结方法](https://img.taocdn.com/s3/m/726b4857c4da50e2524de518964bcf84b9d52dd7.png)
氮化硅结合碳化硅陶瓷的烧结方法一、概述氮化硅结合碳化硅陶瓷具有高温强度、耐热震性好、抗氧化性能高等优点,因此在航空航天、电子、冶金等领域得到广泛应用。
在制备氮化硅结合碳化硅陶瓷时,烧结工艺是至关重要的环节。
本文将介绍氮化硅结合碳化硅陶瓷的烧结方法,包括烧结工艺的基本参数、影响因素以及改进方法。
二、烧结工艺的基本参数1. 温度:烧结温度是影响氮化硅结合碳化硅陶瓷物理性能的关键参数之一。
通常,烧结温度应控制在氮化硅结合碳化硅陶瓷的烧结温度范围内,一般为2000~2200摄氏度。
2. 压力:烧结过程中的压力控制对于陶瓷的致密化程度和晶粒的长大至关重要。
一般情况下,烧结压力应在10~30MPa之间。
3. 时间:烧结时间是影响氮化硅结合碳化硅陶瓷烧结质量的关键参数之一,通常烧结时间应在数小时到数十小时之间。
三、影响因素1. 原料的选择及配比:氮化硅结合碳化硅陶瓷的原料选用及配比是影响烧结效果的关键因素,其中氮化硅和碳化硅的粒度、纯度以及配比均需严格控制。
2. 烧结气氛:烧结气氛是影响氮化硅结合碳化硅陶瓷质量的重要因素之一,通常应选择不含氧气的惰性气体作为氮化硅结合碳化硅陶瓷的烧结气氛。
3. 烧结工艺的参数设置:包括烧结温度、压力、时间等参数的设置对烧结质量影响较大,应根据具体情况进行合理设定。
四、改进方法1. 提高原料的粒度及纯度,合理配比,以提高烧结物理性能。
2. 优化烧结气氛,减少氧气含量,避免氧化物的生成。
3. 对烧结工艺参数进行精确控制,以提高氮化硅结合碳化硅陶瓷的烧结质量。
五、结论氮化硅结合碳化硅陶瓷的烧结工艺对其性能具有重要影响。
通过合理控制烧结工艺的基本参数,精确控制影响因素,并采取科学的改进方法,可以提高氮化硅结合碳化硅陶瓷的烧结质量,满足不同领域对氮化硅结合碳化硅陶瓷性能的要求。
六、烧结工艺的优化在氮化硅结合碳化硅陶瓷的烧结过程中,为了进一步提高陶瓷的性能和质量,烧结工艺的优化显得尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特选内容
4
结论
以YF3和MgO为烧结助剂,适当控制添加比例,采用热压烧结工艺可 以制备致密的Si3N4陶瓷。烧结过程中烧结助剂可与氮化硅粉中的氧元 素发生反应,形成晶界氧化物相,起到净化氮化硅晶粒的作用。
同时,烧结助剂还可以促进柱状晶的生长。氮化硅陶瓷的抗弯强 度随YF3和MgO添加量的增加而增加,最高可以达到959 MPa,硬度随着 YF3的增加从20GPa降低,这可能是由于柱状晶生长所致。
特选内容
3
2.YF3助烧剂氮化硅的烧结及力学性能
摘要:
以不同含量的YF3和MgO作为烧结助剂,对Si3N4进行热压烧结, 研究了烧结助剂含量对氮化硅陶瓷的相对密度、烧结反应、稀土 元素分布以及硬度、强度和断裂韧性等力学性能的影响。实验结 果表明,仅添加YF3的样品生成了YSiON四元化合物,而同时添加 MgO的样品生成MgYSiO 四元化合物;样品的抗弯强度随YF3和MgO 添加量的增加而增加,最高可以达到959 MPa;而硬度则随着YF3 的增加从20GPa降低;添加2%YF3(质量分数)氮化硅陶瓷的断裂韧 性在(5.5~5.8)×105 MPa·m1/2 之间,随MgO添加量变化不大。
特选内容
9
5.氮化硅反应烧结的研究进展
摘要:
氮化硅作为高温功能陶瓷性能优越,但将其制备成陶瓷 零件比较困难,目前一般用反应烧结法制备氮化硅陶瓷零 件。此外,反应烧结制备氮化硅陶瓷还具有成本低、烧结 温度低、产品成型好、陶瓷高温性能好等优点。综述了氮 化硅陶瓷反应烧结工艺流程和工艺的优缺点,着重介绍了 氮化硅反应烧结在成型工艺、烧结工艺、原材料影响、后 处理和陶瓷增韧等方面所取得的进展。
特选内容
12
结论
重烧结后的氮化硅结合碳化硅试样力学性能有了显著 提高,常温三点抗弯强度及洛氏硬度值较氮化后均有较大 幅度的提升;
重烧结后物相组成发生微量转变;
特选内容
11
6.氮化硅结合碳化硅的重烧结研究
摘要:
对氮化硅烧成后的氮化硅结合碳化硅试样进行 了不同温度下的重烧结研究。实验结果表明,重烧 结后的试样的常温三点抗弯强度平均提高约69%, HRA硬度值平均也有14%的提升,相组织含量发生微 量变化,微观组织气孔由不规则形状逐渐趋圆,氮 化生成物微颗粒之间产生成片连接。经过重烧结的 材料,更适合于高温下的使用。
显微分析显示多孔氮化硅陶瓷孔隙是由棒状β-Si3N4 晶粒搭接而 成的通孔结构, β-Si3N4棒状晶粒搭接结构是使材料具有较好力学性能 的重要因素。
特选内容
7
4.氮化硅-氧化镁-氧化钇陶瓷的常压烧结
摘要:
采用常压烧结工艺制备了Si3N4-MgO-Y2O3陶瓷 材料,克服了热压工艺的缺陷。Y2O3的添加量对烧 结陶瓷材料的致密化行为和机械性能有很大的影响。 常压烧结Si3N4-MgO-Y2O3陶瓷材料,当氧化钇含量 (质量分数)为4%~5%时,相对密度达99%,抗弯强度 达950MPa,断裂韧性7.5MPa·m1/2。
特选内容
10
结论
由于反应烧结的成本低,产品烧成收缩率低, 作为氮化硅陶瓷材料的制备工艺还是有很大的使用 价值。但是反应烧结氮化硅材料的性能在某些方面 (如致密度、强度等)不能满足一些工程要求,还需 对其工艺进行不断改进。目前在烧结工艺、烧结添 加剂、重烧结和增韧研究方面取得了一些改进,但 还有提高空间,特别是陶瓷增韧几乎都在研究碳化 硅体系,而其他材料(如氮化硼纤维)却几乎无人问 津。
特选内容
2
结论
氮化温度高于1400℃时发生α/β相变,随着 氮化温度的提高和时间的延长,β相的相对含量增 加,氮化硅的微观形貌也发生明显变化,由针状和 絮状形貌转变成片状形貌最后形成长柱状结构。 α/β 相变使样品的相对介电常数ε′和介电损耗 tan δ都呈现升高的趋势,其中tanδ的变化更为 明显。相变导致的氮化硅陶瓷中点缺陷浓度增高是 引起材料介电损耗大幅增加的主要原因。
特选内容
8
结论
采用常压烧结工艺成功的制备了Si3N4-MgO-Y2O3陶瓷
材料,氧化镁-氧化钇的组合是一种非常有效的氮化硅陶瓷
的烧结助剂, 常压烧结Si3N4-MgO-Y2O3陶瓷材料, 相对密度
达99%, 抗弯强度达950 MPa, 断裂韧性7. 5 MPa。
氧化镁和氧化钇在烧结过程中会与氮化硅粉末表面的 二氧化硅反应生成硅酸盐液相, 冷却后, 这些硅酸盐液相则 转变成了玻璃相留在烧结体中, 烧结体中只有氮化硅相。
添加2%YF3氮化硅陶瓷的断裂韧性在(5.5~5.8)×105MPa·m1/2 之 间,随MgO 添加量变化不大,而该组样品的硬度随着YF3添加量的增加 略微下降。
特选内容
5
3.常压烧结制备多孔氮化硅陶瓷研究
摘要:
选用Al2O3、Y2O3、Lu2O3 三种氧化物作为烧结助剂, 采用凝胶注模成型和气氛保护常压烧结工艺,成功制备了 具有高强度和高气孔率的多孔氮化硅陶瓷材料。本文研究 了三种烧结助剂对多孔氮化硅的力学性能、介电性能和微 观结构的影响,以及对氮化硅陶瓷的烧结促进作用,结果 表明Y2O3 具有最佳的烧结活性促进作用, 其微观结构表明βS i3N4棒状晶粒搭接结构是使多孔氮化硅陶瓷材料具有较好 力学性能的重要原因。
与Si3N4烧结相关
Hale Waihona Puke 特选内容11.α/β 相变对多孔氮化硅陶瓷介电性 能的影响
摘要:
采用反应烧结工艺,通过添加硬脂酸,制备孔 径为0.8 mm,孔隙率在55%左右的具有宏观球形 孔的低密度多孔氮化硅陶瓷,研究了α/β 相变对多 孔氮化硅陶瓷介电性能的影响。通过调节氮化温度 和时间,可得到具有不同β 相相对含量(质量分数, 下同)的多晶氮化硅陶瓷。
特选内容
6
结论
采用Y2O3作为烧结助剂对于氮化硅陶瓷的烧结活性具有最大的促进 作用, Lu2O3次之,而Al2O3的促进作用最差。
采用凝胶注模成型和高纯氮气气氛保护烧结的工艺,成功地制备 了具有较高强度和较高气孔率的多孔氮化硅陶瓷。通过调节烧结助剂种 类、用量和控制烧结温度,可以制备气孔率35-60%、弯曲强度35150MPa、介电常数2. 5-4. 0、介电损耗> 5×10-3的氮化硅多孔陶瓷材 料。