三角形全等的判定优质课(教案)

合集下载

12.2.2三角形全等的判定-SAS(教案)

12.2.2三角形全等的判定-SAS(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“SAS全等判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS即“边角边”,当两个三角形中有两边和它们夹的角相等时,这两个三角形全等。这个判定方法是几何中非常重要的一部分,它帮助我们解决了很多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将看到SAS在实际中的应用,以及它如何帮助我们解决问题。
-举例解释:
-例如,给出两个三角形,其中一个三角形的两边和夹角与另一个三角形的部分元素相等,但不满足SAS条件,如只有两边相等。此时,教师需引导学生识别这种情况并不满足SAS判定,不能直接得出全等的结论。
-在解决实际问题时,教师可以指导学生先识别出已知的SAS条件,再进行判定。如在一个多边形内,已知两条边和一个角,教师需引导学生如何找出第三条边,以形成SAS条件。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的判定-SAS》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”比如,在拼接图形或制作模型时,我们需要确认两个三角形的尺寸和形状是否一致。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。

三角形全等判定的教案

三角形全等判定的教案
2
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

12.2三角形全等的判定(教案)

12.2三角形全等的判定(教案)
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA判定方法这两个重点。对于难点部分,如SAS判定方法中“夹角”的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形全等判定方法的基本原理。
2.在实践活动和小组讨论环节,学生们积极参与,课堂氛围良好。但我也观察到,部分学生在讨论过程中过于依赖同伴,缺乏独立思考。为了提高学生的独立思考能力,我计划在后续教学中增加一些个人任务,鼓励学生独立解决问题。
3.在教学难点解析部分,我尝试通过举例和比较来帮助学生突破难点。从学生的反馈来看,这种方法效果不错。但我也意识到,对于一些理解能力较弱的学生,可能需要更多的时间和耐心去引导。因此,我决定在课后设立辅导时间,为这部分学生提供额外的帮助。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.能够运用三角形全等的判定方法解决实际问题;
4.了解AAS(Angle-Angle-Side,角角边)判定方法,并了解其适用条件。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的空间观念和几何直观,使其能够通过观察、操作、推理等手段,理解三角形全等的内涵及其判定方法;

全等三角形的判定1 优秀教学设计

全等三角形的判定1  优秀教学设计

三角形全等的判定(一)【课题】:三角形全等的判定(一)(平行班)【教学目标】:(1)知识与技能目标:了解三角形的稳定性,会应用“边边边”判定两个三角形全等.(2)过程与方法目标:经历探索“边边边”判定全等三角形的过程,解决简单的问题。

(3)情感与态度目标:培养有条理的思考和表达能力,形成良好的合作意识。

【教学重点】:掌握“边边边”判定两个三角形全等的方法【教学难点】:理解证明的基本过程,学会综合分析法【教学突破点】:掌握图形特征,寻找适合条件的两个三角形【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件教学环节教学活动设计意图一、复习旧知识1、请一位同学叙述上一节所学的知识。

2、如图3所示,△AOC≌△BOD,∠A和∠B,•∠C•和∠D•是对应角,•那么对应边CO=____,AO=_____,AC=______,对应角∠COA=______.3、你是如何来识别两个三角形全等的?通过旧知识的回顾,让学生对三角形全等认识更清楚。

提出问题,让学生尝试找出三角形全等的方法。

三、巩固新知识体验成功(图1)1、如图1,AB=DE,BC=EF,AC=DF,证明△ABC≌△DEF2、如下图,AC=EF,BC=DE,AD=BF,证明△ABC≌△FDE(提示:AD+BD=BF+BD)先让学生独立思考,然后发挥小组长的优势,让成绩好的学生帮助基础弱的学生,大手拉小手,共同进步,教师要适当表扬负责任的小组长和个别小组,当然证明的格式要强调。

四、回顾所学知识师生共同小结采取师生互动的形式完成。

即:学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

采取师生互动的形式完成。

五布置作业1、课本15页第1、2题2、对自己上课掌握知识情况自我评价掌握()一般()有进步()听不懂()课后练习:1、如图1,在△ABC中,AD=ED,AB=EB,BD是△ABD和△EBD的边,∠A=80°,则(1)依据边边边 可判断图中的 △ABD ≌ △EBD ;(2)这时,∠BED= 80° 。

《三角形全等的判定》(边边边)教案

《三角形全等的判定》(边边边)教案

三角形全等的判定(一)一、教学目标1.掌握边边边条件的内容,能应用边边边条件证明两个三角形全等。

2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程。

3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、 乐于探究的良好品质以及发现问题的能力。

二、教学重点能应用边边边条件判定两个三角形全等。

三、教学难点探究三角形全等的条件。

四、教学过程1、创设情境,引入新课出示投影片,回忆前面研究过的全等三角形。

已知△ABC ≌△A′B′C′,找出其中相等的边与角。

C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C 。

相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′。

展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等)。

这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题。

2、讲授新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做。

①三角形一内角为30°,一条边为3cm 。

②三角形两内角分别为30°和50°。

③三角形两条边分别为4cm 、6cm 。

学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流。

结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边。

①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形的识别教案

全等三角形的识别教案

全等三角形的识别教案全等三角形的识别教案(通用10篇)全等三角形的识别教案篇1一、教材分析(一)本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

它是两三角形间最简单、最常见的关系。

本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。

因此,本节课的知识具有承上启下的作用。

同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

(二)教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。

同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。

为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的精神。

(三)教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。

同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。

画有相关图片的作业纸。

二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

全等三角形(省优质课的教案)

全等三角形(省优质课的教案)

全等三角形(省优质课的教案)篇一:2010年初中数学全国优质课教学设计精品017第七届全国初中青年数学教师优秀课观摩评选参赛教案(三角形全等的断定定理)贵州省石阡县文博中学:梁超二O一O年十月十一日第三章全等三角形3.4三角形全等的断定定理(一)教学内容:湘教版八年级上册第3章第4节《三角形全等的断定定理》(SAS)第一课时课型:新授课课时:2课时教学目的:1、知识与技能目的:通过动手操作,合作交流、分析、归纳,让学生经历探究三角形全等的条件——“边角边”定理的过程,并掌握这种识别方法,并会用此定理进展简单的推理。

2、过程与方法目的通过作图、交流和演示,使学生讨论探究出“边角边”定理,从而培养学生自主探求知识的认识以及团结协作处理征询题的才能。

3、情感态度与价值观目的:通过学生的动手实际操作、猜想和论证的过程,深化对知识的理解和方法的掌握,体验觉察的欢乐,体会成功探究的喜悦,激发学生学习数学的兴趣,培养学生热爱生活的思想感情,使学生从实际操作中获得数学知识,明白得数学知识来源于生活,又效劳于生活的道理。

重点:探究“边角边定理”并用此定理进展简单的推理。

难点:探究“边角边定理”,定理中“边角边”条件的理解。

教学器具:卡纸、剪刀、三角板、直尺、多媒体辅助教学。

教学方法:本节课主要采纳引探式教学方法,在活动中教师着眼于“引”,尽力激发学生求知的欲望,引导他们处理征询题,并掌握处理征询题的方法,学生着眼于“探”,通过探究活动觉察规律,开展学生的探究才能和制造才能。

篇二:全等三角形断定公开课教案13.2.2三角形全等的断定—边角边(S.A.S)公开课教案授课教师:乐山市市中区关庙中学雷万建一、背景介绍与教学材料本教材强调直观和操作,在观察中学会分析,在操作中体验变换。

教材的编排淡化概念的识记,强调图形性质的探究。

全等三角形的断定是今后证明线段相等和角相等的重要工具,是学习后续课程的必要根底。

在教学呈现方式上,改变了“结论——例题——练习”的陈述方式,而采纳“征询题——探究——觉察”等多种研究方式。

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。

难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。

用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

三角形全等的判等市公开课获奖教案省名师优质课赛课一等奖教案

三角形全等的判等市公开课获奖教案省名师优质课赛课一等奖教案

三角形全等的判断教案一、教学目标1. 知识与技能:掌握三角形全等的判定条件和方法。

2. 过程与方法:理解并灵活运用全等判定条件和方法解决三角形全等问题。

3. 情感态度和价值观:培养学生观察问题、分析问题和解决问题的能力,培养学生的逻辑思维和动手实践能力。

4. 学科基本素养:发展学生的数理思维,提高学生的数学素养。

二、教学内容1. 全等的概念及基本性质;2. 全等判定条件:SSS、SAS、ASA、AAS;3. 利用全等判定条件解决实际问题。

三、教学重点与难点1. 全等判定条件的理解和应用;2. 利用全等判定条件解决实际问题的能力。

四、教学过程步骤一:引入新课1. 引入全等概念:教师通过展示等大的图形(如纸牌、钥匙等),让学生观察,引导他们发现等大的共同特点。

2. 引入全等的定义:教师解释全等的定义,即两个图形的所有对应边相等,对应角相等。

步骤二:全等判定条件的引入1. SSS判定法:教师让学生观察两个全等三角形边相等的特点,引导学生总结出SSS判定法。

2. SAS判定法:教师让学生思考两个全等三角形仅有一对边和夹角相等的特点,引导学生总结出SAS判定法。

3. ASA判定法:教师让学生思考两个全等三角形仅有两对角和一对边相等的特点,引导学生总结出ASA判定法。

4. AAS判定法:教师让学生思考两个全等三角形仅有两对角和一对非夹角连线边相等的特点,引导学生总结出AAS判定法。

步骤三:全等判定条件的应用1. 针对每种判定条件,教师给出判定的示例,并让学生尝试验证。

2. 针对应用题,教师引导学生分析题目给出的信息,选择合适的全等判定条件进行推理和判断,得出结论。

步骤四:巩固与拓展1. 教师出示一些图形,要求学生判定它与给定图形是否全等,并用全等条件进行解答。

2. 教师出示一些实际问题,要求学生运用全等判定条件解决问题,并在解答过程中分析、解决实际问题。

五、教学方法1. 示范指导法:通过教师的示范、引导和讲解,帮助学生理解全等判定条件和应用方法。

三角形全等判定教案市公开课一等奖教案省赛课金奖教案

三角形全等判定教案市公开课一等奖教案省赛课金奖教案

三角形全等判定教案一、教学目标1. 理解三角形全等的概念及相关性质;2. 掌握三角形全等的判定方法,包括SSS、SAS、ASA和AAS四种判定准则;3. 能够运用所学的判定方法解决相关的题目。

二、教学准备1. 教师:教案、黑板、粉笔、示意图;2. 学生:教科书、练习题。

三、教学过程步骤一:引入1. 教师出示两个形状相同的纸片,询问学生是否认为它们是全等的。

2. 继续出示另外两个形状相同的纸片,询问学生是否认为它们是全等的。

3. 引导学生思考相同形状的两个物体为什么可能是全等的。

步骤二:概念讲解1. 教师依次引导学生了解三角形全等的概念,即当两个三角形的对应边相等,对应角相等时,它们是全等的。

2. 教师讲解全等三角形的性质:全等三角形的对应边相等,对应角相等,而两个全等三角形的任意一对对应边和对应角同时相等。

步骤三:判定方法1-SSS1. 教师解释SSS判定法,即当两个三角形的三边对应相等时,它们是全等的。

2. 教师在黑板上绘制一个示意图,并指导学生运用SSS判定法判断是否两个三角形全等。

步骤四:判定方法2-SAS1. 教师解释SAS判定法,即当两个三角形的两边和它们的夹角相等时,它们是全等的。

2. 教师在黑板上绘制一个示意图,并指导学生运用SAS判定法判断是否两个三角形全等。

步骤五:判定方法3-ASA1. 教师解释ASA判定法,即当两个三角形的两角和它们的夹边相等时,它们是全等的。

2. 教师在黑板上绘制一个示意图,并指导学生运用ASA判定法判断是否两个三角形全等。

步骤六:判定方法4-AAS1. 教师解释AAS判定法,即当两个三角形的两角和一条非夹边相等时,它们是全等的。

2. 教师在黑板上绘制一个示意图,并指导学生运用AAS判定法判断是否两个三角形全等。

步骤七:练习与巩固1. 教师布置一些练习题,要求学生运用所学的判定方法判断是否两个三角形全等。

2. 学生独立完成练习,并与同桌互相核对答案。

步骤八:拓展应用1. 教师提出一些与三角形全等有关的实际问题,并要求学生利用所学的判定方法解决问题。

三角形全等的判定教案

三角形全等的判定教案

全等三角形的判定(一)教学目标知识与技能:1.经历探索三角形全等条件的过程。

2.掌握探究问题的一般方法。

3.初步掌握运用“SSS”判定两个三角形全等,能够用文字语言、图形语言和符号语言分别表述三角形全等的判定方法。

过程与方法:使学生经历探索三角形全等条件的过程,体验用操作法、归纳法得出数学结论的过程。

情感态度与价值观:通过小组合作交流的学习模式,增强学生的团队意识,使学生获得正确的学习方式和良好的情感体验。

教学重点:掌握三角形全等的“边边边”条件。

突出重点:通过感受、思考、操作、归纳、应用五个步骤来突出重点。

教学难点:三角形全等条件的探索过程。

突破难点:主要采用学生体验、推测、绘图、归纳、应用五个步骤,同时充分运用多媒体课件和自制学具的直观、形象和动态来突破难点。

教学步骤教学过程一、创设情境、导入新课教师活动学生活动设计意图出示国庆61周年欢庆图片:学校准备进行国庆庆祝活动,请同学们帮忙做一些三角形的小彩旗,怎样才能使全校同学做的三角形彩旗形状、大小完全相同呢?学生尝试把实际问题转化成数学问题:怎样画一个三角形与已知三角形全等。

对学生进行爱国主义教育的同时,从学生熟知的生活经验和知识经验入手,符合学生学习数学的心理规律。

二、主动参与、逐层探究目标1:探索三角形全等的条件。

教师活动学生活动设计意图1、出示两个全等的三角形,学生明确满足六个条件确实能保证两个三角形全等,并且意识到满足六个条件中的一部分也可能保证两个三角形全等。

这样设计让学生明确探究方向,激发学生的探究欲望。

2、活动1:只满足一个条件对应相等,能否保证所画三角形全等?学生动手画图,举出反例,探索出只给一个条件不能保证两个三角形全等。

教师引导全班同学共同完成满足一个条件情况的探究,让学生初步感知探究的方法。

3、活动2:满足两个条件对应相等,能否保证所画两个三角形全等?学生分组操作,对满足两个条件的情况进行探究,并在组内进行交流、讨论,进而得出只给两个条件时,所画的三角形也不一定全等。

三角形全等的判定说课稿(通用10篇)

三角形全等的判定说课稿(通用10篇)

三角形全等的判定说课稿(通用10篇)三角形全等的判定说课稿 1一、教材分析(说教材):1、教材所处的地位和作用:这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。

在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。

本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。

②能够利用尺规画出全等的三角形,学生具有一定的作图能力。

③掌握并理解三角形全等判定定理中的SSS和SAS。

④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。

⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。

3、重点、难点:①掌握并理解三角形全等的判定定理②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。

探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。

这样学生就更容易理解和掌握定理。

在用两个练习巩固知识。

2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。

3、学情分析:(说学法)(1)、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等的判定
课题:三角形全等的判定(三)
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯.
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学过程:
1、新课引入
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

公理:有三边对应相等的两个三角形全等。

强调:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用
(1)讲解例1。

学生分析完成,教师注重完成后的点评。

例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
(1)要证AD⊥BC只要证什么?
(2)要证∠1=∠2只要证什么?
(3)△ABD和△ACD全等的条件具备吗?依据是什么?
(2)讲解例2
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,让学生在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

学生思考、分析,适当点拨,找学生代表口述证明思路
说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,求证:AC=2AE.
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用。

6、布置作业:。

相关文档
最新文档