复旦大学生物化学笔记完整版

合集下载

生物化学笔记(整理版)

生物化学笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。

本章节将讨论酶在生化反应中的作用机制和催化过程。

包括酶的分类、酶动力学和酶抑制剂等内容。

本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。

本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。

本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。

DNA复制DNA复制是遗传信息传递的第一步。

在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。

复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。

RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。

在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。

转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。

蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。

蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。

翻译过程可分为启动、延伸和终止三个阶段。

以上是生物体内遗传信息的传递过程的重要步骤。

深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。

本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

生物化学笔记整理版1

生物化学笔记整理版1

《生物化学》绪论生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。

生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。

20世纪中叶直到80年代,生物化学领域中主要的事件:(一)生物化学研究方法的改进a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。

b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。

吸附层析法分离蛋白质及其他物质。

c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。

d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。

(二)物理学家、化学家、遗传学家参加到生命化学领域中来1. Kendrew——物理学家,测定了肌红蛋白的结构。

2. Perutz——对血红蛋白结构进行了X-射线衍射分析。

3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。

(1.2.3.都是诺贝尔获奖者)4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。

1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。

5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。

6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。

7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。

8.Lipmann―― 发现了辅酶A。

9. Ochoa——发现了细菌内的多核苷酸磷酸化酶10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。

生物化学学习笔记(整理总结)

生物化学学习笔记(整理总结)

第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。

亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。

别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。

蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。

组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。

一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

主要的化学键:肽键,有些蛋白质还包括二硫键。

二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。

即肽链中所有原子在三维空间的排布位置。

主要的化学键:疏水键、离子键、氢键和范德华力等。

四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

主要的化学键:氢键和离子键。

4.蛋白质的构象与功能的关系。

一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。

生物化学重点笔记(整理版)

生物化学重点笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物.2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位.构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α—亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L—α—氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His).二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α—氨基经脱水而形成的共价键(-CO—NH-)。

生物化学重点笔记(基本知识)

生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)就是利用化学的原理与方法去探讨生命的一门科学,它就是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:就是生物化学发展的萌芽阶段,其主要的工作就是分析与研究生物体的组成成分以及生物体的分泌物与排泄物。

2.动态生物化学阶段:就是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程就是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也就是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)就是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu与Asp);④碱性氨基酸(Lys、Arg与His)。

二、肽键与肽链:肽键(peptide bond)就是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学第二章笔记

生物化学第二章笔记

⽣物化学第⼆章笔记第⼆章核酸的结构与功能核酸(uncleic acid)是以核苷酸为基本组成单位的⽣物信息⼤分⼦,携带和传递遗传信息。

脱氧核糖核苷酸(deoxyribonucleic acid,DNA)90%以上分布于细胞核,其余分布于核外,如线粒体,叶绿体和质粒等。

携带遗传信息,决定细胞和个体的遗传型(genotype)。

核糖核酸(ribonucleic acid,RNA)分布于细胞质、细胞核和线粒体内。

参与细胞内DNA遗传信息的表达。

某些病毒RNA也可作为遗传信息的载体。

第⼀节核酸的化学组成及结构核酸组成⼀、核苷酸是构成氨基酸的基本组成单位分⼦组成:碱基(嘌呤碱、嘧啶碱)、戊糖(核糖、脱氧核糖)、磷酸。

碱基(base)是含氮的杂环化合物。

嘌呤N-9或嘧啶N-1与脱氧核糖C-1’通过β-N-糖苷键相连形成脱氧核苷或核苷。

核苷或脱氧核苷与磷酸通过酯键结合构成核苷酸或脱氧核苷酸。

核苷酸还存在衍⽣物,如环化核苷酸(cAMP、cGMP)是细胞信号转导中的第⼆信使。

⼆、DNA是脱氧核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦⼀个脱氧核苷酸3’的羟基与另⼀个核苷酸5’的α-磷酸基团缩合形成磷酸⼆酯键。

多个脱氧核苷酸通过磷酸⼆酯键构成了具有⽅向性的线性分⼦,称为多聚脱氧核苷酸,即DNA链。

DNA链的⽅向是5’→3’。

交替的磷酸基团和戊糖构成了DNA的⾻架。

三、RNA也是具有3’,5’-磷酸⼆酯键的线性⼤分⼦RNA也是多个核苷酸分⼦通过酯化反应形成的线性⼤分⼦,并且具有⽅向性;RNA的戊糖是核糖;RNA 的嘧啶是胞嘧啶和尿嘧啶。

四、核酸的⼀级结构是核苷酸的排列顺序由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。

核酸分⼦的⼤⼩常⽤碱基数⽬来表⽰。

⼩的核酸⽚段(<50bp)常被称为寡核苷酸。

⾃然界中的DNA 和RNA的长度可以⾼达⼏⼗万个碱基。

DNA和RNA之间的差别第⼆节DNA的空间结构与功能DNA的空间结构:构成DNA的所有原⼦在三维空间具有确定的相对位置关系。

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版第一篇生物大分子的结构与功能第一章氨基酸和蛋白质一、组成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。

在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。

2、氨基酸的紫外吸收性质芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。

3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。

由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。

三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。

二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。

10个以氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。

多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。

人体存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。

半胱氨酸的巯基是该化合物的主要功能基团。

2021年生物化学笔记完整版

2021年生物化学笔记完整版

第一章绪论一、生物化学概念:生物化学(biochemistry)是运用化学原理与办法去探讨生命一门科学,它是介于化学、生物学及物理学之间一门边沿学科。

二、生物化学发展:1.论述生物化学阶段:是生物化学发展萌芽阶段,其重要工作是分析和研究生物体构成成分以及生物体分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展时期。

就在这一时期,人们基本上弄清了生物体内各种重要化学物质代谢途径。

3.分子生物学阶段:这一阶段重要研究工作就是探讨各种生物大分子构造与其功能之间关系。

三、生物化学研究重要方面:1.生物体物质构成:高等生物体重要由蛋白质、核酸、糖类、脂类以及水、无机盐等构成,此外还具有某些低分子物质。

2.物质代谢:物质代谢基本过程重要涉及三大环节:消化、吸取→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行,最为复杂化学变化过程,它涉及合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定方式方式互相交织在一起,从而构成了非常复杂信号转导网络,调控细胞代谢、生理活动及生长分化。

4.生物分子构造与功能:通过对生物大分子构造理解,揭示构造与功能之间关系。

5.遗传与繁殖:对生物体遗传与繁殖分子机制研究,也是当代生物化学与分子生物学研究一种重要内容。

第二章蛋白质构造与功能一、氨基酸:1.构造特点:氨基酸(amino acid)是蛋白质分子基本构成单位。

构成天然蛋白质分子氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,别的氨基酸均为L-α-氨基酸。

2.分类:依照氨基酸R基团极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸α-羧基与另一分子氨基酸α-氨基经脱水而形成共价键(-CO-NH-)。

生物化学考试重点笔记(完整版)

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。

2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。

3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。

(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。

3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。

由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

2、肽是由氨基酸通过肽键缩合而形成的化合物。

生物化学考试重点笔记(完整版)

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。

2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。

3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。

(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。

3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。

由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

2、肽是由氨基酸通过肽键缩合而形成的化合物。

生化笔记完全版

生化笔记完全版

生化笔记完全版-核酸的降解和核苷酸代谢核酸的生物功能DNA、RNA核苷酸的生物功能①合成核酸②是多种生物合成的活性中间物糖原合成,UDP-Glc。

磷脂合成,CDP-乙醇胺,CDP-二脂酰甘油。

③生物能量的载体A TP、GTP④腺苷酸是三种重要辅酶的组分NAD、FAD、CoA⑤信号分子cAMP、cGMP食物中的核酸,经肠道酶系降解成各种核苷酸,再在相关酶作用下,分解产生嘌呤、嘧啶、核糖、脱氧核糖和磷酸,然后被吸收。

吸收到体内的嘌呤和嘧啶,大部分被分解,少部分可再利用,合成核苷酸。

人和动物所需的核酸无须直接依赖于食物,只要食物中有足够的磷酸盐,、糖和蛋白质,核酸就能在体内正常合成。

核酸的分解代谢:第一节核酸和核苷酸的分解代谢一、核酸的酶促降解核酸是核苷酸以3’、5’-磷酸二酯键连成的高聚物,核酸分解代谢的第一步就是分解为核苷酸,作用于磷酸二酯键的酶称核酸酶(实质是磷酸二脂酶)。

根据对底物的专一性可分为:核糖核酸酶、脱氧核糖核酸酶、非特异性核酸酶。

根据酶的作用方式分:内切酶、外切酶。

1、核糖核酸酶只水解RNA磷酸二酯键的酶(RNase),不同的RNase专一性不同。

牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3’-磷酸与其它核苷酸间的连接键。

核糖核酸酶T1(RNaseT1),作用位点是3’-鸟苷酸与其它核苷酸的5’-OH间的键。

图只能水解DNA磷酸二酯键的酶。

DNase牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链DNA。

产物是以5’-磷酸为末端的寡核苷酸。

牛胰脱氧核糖核酸酶(DNaseⅠ),降解产物为3’-磷酸为末端的寡核苷酸。

限制性核酸内切酶:细菌体内能识别并水解外源双源DNA的核酸内切酶,产生3ˊ-OH和5ˊ-P。

图PstⅠ切割后,形成3ˊ-OH 单链粘性末端。

EcoRⅠ切割后,形成5ˊ-P单链粘性末端。

3、非特异性核酸酶既可水解RNA,又可水解DNA磷酸二酯键的核酸酶。

小球菌核酸酶是内切酶,可作用于RNA或变性的DNA,产生3’-核苷酸或寡核苷酸。

生物化学笔记完整

生物化学笔记完整

第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学生物化学笔记完整版第一篇生物大分子的结构与功能第一章氨基酸和蛋白质一、组成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。

在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。

2、氨基酸的紫外吸收性质芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。

3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。

由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。

三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。

二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。

10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。

多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。

人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。

半胱氨酸的巯基是该化合物的主要功能基团。

GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。

四、蛋白质的分子结构1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。

主要化学键:肽键,有些蛋白质还包含二硫键。

2、蛋白质的高级结构:包括二级、三级、四级结构。

1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

二级结构以一级结构为基础,多为短距离效应。

可分为:α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。

α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。

β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定.β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。

无规卷曲:无确定规律性的那段肽链。

主要化学键:氢键。

2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。

主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。

3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。

在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。

这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。

由一条肽链形成的蛋白质没有四级结构。

主要化学键:疏水键、氢键、离子键五、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。

一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。

尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。

肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。

血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。

成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。

在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。

因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。

结合氧后由紧张态变为松弛态。

六、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。

2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。

包括:a.丙酮沉淀,破坏水化层。

也可用乙醇。

b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。

3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。

主要为二硫键和非共价键的破坏,不涉及一级结构的改变。

变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。

常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。

4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。

5、蛋白质的呈色反应a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3b. 双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。

氨基酸不出现此反应。

蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。

七、蛋白质的分离和纯化1、沉淀,见六、22、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。

根据支撑物不同,有薄膜电泳、凝胶电泳等。

3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。

4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。

如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。

b.分子筛,又称凝胶过滤。

小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。

5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。

不同蛋白质其密度与形态各不相同而分开。

八、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基组成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成)↓测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP法)头端尾端羧肽酶A、B、C法等丹酰氯法↓水解肽链,分别分析胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键↓Edman降解法测定各肽段的氨基酸顺序(氨基末端氨基酸的游离α-氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类)b.通过核酸推演氨基酸序列。

第二章核酸的结构与功能一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。

两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。

核糖核酸(RNA),存在于细胞质和细胞核内。

1、碱基:NH2NH2O CH3O OO O O NH2胞嘧啶胸腺嘧啶尿嘧啶鸟嘌呤腺嘌呤嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。

2、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。

3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。

二、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。

三、DNA的空间结构与功能1、DNA的二级结构DNA双螺旋结构是核酸的二级结构。

双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点:a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。

b.DNA是右手螺旋结构螺旋直径为2nm。

每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。

螺距为3.4nm,每个碱基平面之间的距离为0.34nm。

c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。

2、DNA的三级结构三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。

在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。

在核小体的基础上,DNA链经反复折叠形成染色体。

3、功能DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

DNA中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的DNA分子只是碱基的排列顺序不同。

四、RNA的空间结构与功能DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。

其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。

如:名称功能核蛋白体RNA(rRNA) 核蛋白体组成成分信使RNA(mRNA) 蛋白质合成模板转运RNA(tRNA) 转运氨基酸不均一核RNA(HnRNA) 成熟mRNA的前体小核RNA(SnRNA) 参与HnRNA的剪接、转运小核仁RNA(SnoRNA) rRNA的加工和修饰1、信使RNA(半衰期最短)1)hnRNA为mRNA的初级产物,经过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质2)大多数的真核mRNA在转录后5′末端加上一个7-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的稳定性。

3′末端多了一个多聚腺苷酸尾巴,可能与mRNA从核内向胞质的转位及mRNA的稳定性有关。

3)功能是把核内DNA的碱基顺序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列顺序。

mRNA分子上每3个核苷酸为一组,决定肽链上某一个氨基酸,为三联体密码。

相关文档
最新文档