锂离子电池材料研究进展
锂离子电池正极材料磷酸亚铁锂的改性进展
参考内容二
一、引言
随着电动汽车、移动设备等电化学能源领域的快速发展,锂离子电池(LIB) 已成为现今主流的电池技术。其中,磷酸铁锂(LiFePO4,LFP)正极材料由于其 高安全性能、低成本和环境友好等优点,受到广泛和研究。然而,LFP也存在一 些固有缺点,如电子导电性差、锂离子扩散速率低等,限制了其在高倍率性能电 池中的应用。因此,针对LFP正极材料的改性研究成为当前研究的热点。
3、结构调控:通过调整材料的晶体结构、粒径和形貌等方式,优化材料的 电化学性能。例如,通过控制材料的粒径和形貌,可以改善材料的电化学反应活 性面积和锂离子扩散路径,提高材料的电化学性能。
3、结构调控如调整材料的晶体 结构、粒径和形貌等方式可以优 化材料的电化学性能
1、进一步提高磷酸亚铁锂正极材料的能量密度和安全性能。由于磷酸亚铁 锂的理论能量密度有限,因此需要研究新的正极材料以提高能量密度。同时,为 了满足电动汽车、储能系统等应用领域的安全性要求,需要进一步优化材料的安 全性能。
二、离子掺杂
离子掺杂是一种能有效提升LFP性能的方法。通过在LFP晶格中掺杂导电性好 的金属离子,可以降低Li+沿一维路径扩散的阻力,提高电子导电性和离子扩散 速率,进而改善LFP材料的循环性能和倍率性能。例如,有研究报道,掺杂元素 Mg可以有效地提高LFP的电化学性能。通过Mg元素的掺杂,可以增加LFP的电子导 电性和离子扩散速率,同时保持其结构稳定性。此外,其他元素如Al、Ti等也被 研究用于掺杂LFP,以改善其电化学性能。
背景
自1991年索尼公司首次将锂离子电池商业化以来,锂离子电池技术取得了飞 速发展。正极材料是锂离子电池的核心部分,其性能的优劣直接决定了电池的能 量密度、充放电效率、安全性和寿命。在经历了碳酸酯类、层状过渡金属氧化物 等多个阶段后,磷酸亚铁锂正极材料由于具有较高的能量密度、良好的循环性能 和安全性,成为当前最具有发展前景的锂离子电池正极材料之一。
锂离子电池的研究进展及应用前景精选全文完整版
可编辑修改精选全文完整版锂离子电池的研究进展及应用前景近年来,新能源电池市场的发展迅猛,尤其是锂离子电池,在家用电器、电动车、太阳能等领域得到了广泛的应用。
对于锂离子电池的研究,不仅能够提高电池的性能,同时也能够为其更进一步的应用提供技术支持。
本文介绍了锂离子电池的研究进展以及其应用前景。
一、研究进展1. 电极材料改进电池的性能主要取决于电极材料的性质,因此在锂离子电池的研究中,电极材料的改进是必不可少的。
传统的电极材料为石墨,但石墨有低比容量、低导电性、易热化等问题。
近年来,锂离子电池的革新主要是基于正极和负极材料之间的平衡。
目前用于正极的材料有LiFePO4、LiCoO2、LiMn2O4等,用于负极的材料主要有石墨、金属锂、硅材料等。
这些材料科技的不断创新进步,使得锂离子电池的性能得到不断提升。
2. 电解质电解质是电池中极为重要的部分,因为它赋予电池主要的性能(如循环性能、电池容量、能量密度等)。
在传统的锂离子电池中,一般使用液态电解质,但液态电解质有泄漏的风险,而且易于氧化和燃烧。
为了提高电池的安全性和循环性能,目前锂离子电池中主要使用固态电解质。
固态电解质中,最为主流的是氧化铝、氧化锆等陶瓷材料。
固态电解质具有优异的化学稳定性,与高无效性的锂电求得更高电化学性能和更安全性的使用。
3. 电池系统除了电极材料和电解质的改进之外,电池系统的研究也是锂离子电池中一个必不可少的研究领域。
在电池工作过程中,电极和电解质之间的变化会影响电池的循环性能。
而电池系统从整体的角度出发,可以有效的解决这一问题。
电池系统研发的一个核心是电池管理系统(BMS),BMS在锂离子电池中起着重要的作用,它将对电池的使用和维护起到至关重要的作用。
同时,电池系统的研究还包括了钝化处理、电极的表面改性等专业技术的研发。
这些研究都可以有效的提高锂离子电池的研发与应用。
二、应用前景随着汽车、家用电器、通讯等领域的快速发展,锂离子电池在各个领域得到了广泛的应用。
锂离子电池负极材料的研究进展
锂离子电池负极材料的研究进展摘要:当前全球范围内的石油和其他传统能源越来越稀缺,迫切需要有效开发和利用可再生能源,例如太阳能、风能和潮汐能。
但是,这些新能源供应不稳定且持续不断,因此需要先转换成电能再输出,这促进了可充电电池的研究。
传统的铅酸电池,镍镉电池和镍氢电池存在使用寿命短、能量密度低和环境污染等问题,极大地限制了它们的大规模应用。
当前,电池行业的首要任务是找到可替代传统铅酸电池和镍镉电池的可充电电池,迫切需要开发无毒、无污染的电极材料和电池隔膜以及无污染的电池。
与传统的二次化学电池相比,锂离子电池由于其吸引人的特性已经在电子产品中占主导地位,显示出广阔的发展前景。
关键词:锂离子电池;负极材料;研究进展引言国际能源结构正从传统化石能源的主导地位逐渐转变为低碳、清洁和安全的能源,以二次电池为代表的电化学储能技术已成为最有前途的储能技术之一。
锂离子电池因其比能量高、工作电压高、循环寿命长和体积小等特点得到了广泛关注。
锂离子电池主体由正极、隔膜、负极、封装壳体四部分组成,就提高电池的比能量而言,提高负极的性能相对于改进正极、隔膜、封装壳体更为容易。
负极又包括了电流集流体(通常是铜箔)、导电剂(通常是乙炔黑)、粘结剂(通常是聚偏氟乙烯)和具有与锂离子可逆反应的活性材料。
电极的性能几乎取决于活性材料的性能。
1嵌入型负极材料嵌入型负极材料嵌入机制可以描述为,材料结构中可以容纳一定的外来的锂离子,相变形成新的含锂的化合物,并且能在随后的充放电过程中脱出外来的锂离子,恢复到先前的原始结构。
嵌入型负极材料,包括已经商业化锂离子电池负极材料石墨、非石墨化的碳材料(如石墨烯、碳纳米管、碳纳米纤维)、TiO2以及钛酸锂等。
其中碳质材料的优点包括良好的工作电压平台,安全性好以及成本低等。
但是也存在一些问题,如高电压滞后、高不可逆容量的缺点。
钛酸盐负极材料具有优异的安全性、成本低、长循环寿命的优点,但能量密度低。
石墨作为层状碳材料,是首先被商业化和人们所熟知的LIB负极材料,也是最成功的嵌入型负极材料,锂离子嵌入后可生成层状LiC6,其放电平台在0.2V(vs.Li+/Li)以下,有优异的嵌/脱锂动力学性能,是比较完美的LIB负极材料。
锂电池负极材料的研究进展及展望分析
锂电池负极材料的研究进展及展望分析目前锂电池负极材料的研究主要集中在碳基材料、硅基材料、金属氧化物等方面。
这些材料在锂电池中都有其独特的优势和局限性,而且针对不同种类的锂电池,对负极材料的要求也有所不同。
对这些负极材料的研究和发展,将有助于提高锂电池的性能和推动新一代电池技术的发展。
碳基材料一直是锂电池负极材料的主要研究方向之一。
石墨、石墨烯、碳纳米管等碳材料,因其导电性好、比表面积大、化学稳定性高等特点,被广泛应用于锂电池负极材料中。
通过控制碳材料的结构和微观形貌,可以有效提高其对锂离子的嵌入/脱嵌能力,提高其循环稳定性和倍率性能。
不过,碳材料在储锂过程中很难实现高容量储存,这一问题已成为碳基负极材料的研究难点之一。
硅基材料也是当前锂电池负极材料的研究热点。
与碳材料相比,硅具有更高的理论储锂容量,因此被认为是一种非常有前景的锂离子电池负极材料。
硅材料在锂离子嵌入/脱嵌过程中会发生体积膨胀,导致材料结构破坏,电化学活性和循环寿命大大降低。
为了解决硅材料的这一问题,研究者们通过合成纳米结构的硅材料、设计多孔结构、以及与碳等材料的复合等方法,取得了一些积极的进展,但仍然存在一定的挑战。
在未来,锂电池负极材料的研究将朝着以下几个方向发展:通过材料设计与合成新型的碳基材料,以提高其储锂容量,并且降低材料的制备成本。
研究者也将继续探索碳材料的微观结构与电化学性能之间的关系,找出铁电影响碳材料电化学行为的机理。
将进一步发展硅基负极材料的制备技术,通过纳米结构设计、表面涂层等方法,提高硅材料的循环稳定性和倍率性能。
也将探索硅基材料与其他材料的复合应用,以扩展硅材料在锂电池中的应用范围。
对金属氧化物的研究也将继续深入,以寻找新型金属氧化物材料,并且改进其结构与性能。
研究者也将进一步研究金属氧化物的嵌入/脱嵌机制,以解决其循环稳定性问题。
随着锂电池技术的不断发展和应用需求的不断增加,对锂电池负极材料的研究也将持续深入。
锂电池负极材料的研究进展及展望分析
锂电池负极材料的研究进展及展望分析1. 传统负极材料传统的锂离子电池负极材料主要包括石墨、金属氧化物和合金材料。
石墨作为最为常见的负极材料,具有很高的首次放电比容量和循环稳定性,但其比容量有限,且在大电流放电时易发生热失控。
金属氧化物和合金材料因其高的理论比容量和能量密度受到了广泛关注,但其电化学活性较差,循环性能不稳定。
传统负极材料在满足高能量密度和高循环稳定性需求上存在着一定的局限性。
二、锂电池负极材料研究的展望1. 高能量密度随着对电池能量密度要求的不断提高,未来的锂电池负极材料需要具有更高的理论比容量和能量密度。
开发高容量、高电化学活性的负极材料是未来研究的重点之一。
新型碳材料、硅基材料以及金属氧化物和合金材料都有望成为未来高能量密度锂电池的重要负极材料。
2. 循环稳定性循环稳定性是锂电池的重要性能指标之一。
当前硅基材料、金属氧化物和合金材料的循环性能仍然存在一定的问题,未来需要通过界面工程、复合材料设计等方法来提高负极材料的循环稳定性。
3. 安全性锂电池的安全性一直是备受关注的问题。
传统锂电池负极材料在大电流放电时易发生热失控,导致安全隐患。
未来需要开发更安全稳定的负极材料,以确保电池的安全性能。
4. 可持续发展随着对环境友好性要求的提高,未来的锂电池负极材料需要考虑其资源可持续性和环境影响。
新型锂电池负极材料的开发需要注重材料的资源可再生性和环境友好性。
三、结语在锂电池的快速发展背景下,锂电池负极材料的研究与发展对于提高电池性能和满足应用需求具有重要意义。
当前,新型碳材料、硅基材料和金属氧化物材料被认为是未来锂电池负极材料的重要发展方向。
未来,随着材料科学和电化学领域的不断进步,相信锂电池负极材料将会不断取得新的突破,为电池技术的发展注入新的动力。
我们也需要注重锂电池负极材料的可持续发展和环保性,努力推动锂电池技术的可持续发展。
我国锂离子电池电极材料研究获新进展
此 外 ,该 研 究小 组在 单 壁碳 纳 米管 表 面设 计 合 成 了小 于5 m的 高度 分 散P基 核 壳材 料 , n t 其 P原 子 对 乙 醇 的 催 化 氧 化 能 力 是 商 品 化 t
2 0 次 容 量 保 持 率 8 %) 倍 率 特 性 ( 1C 00 3 与 在 0
( / 钟 充 放 电 )倍 率 下 容 量 保 持 率 8 %,容 6) 7 " 0
锈 0 年 第8 第5 ( 第4 期 ) 21 1 卷 期 总 4
的 电子 电导 率 ,无 法 在 大 电流 密 度 下 进 行 充 放 电 ;而 且 以L i 负 极 的锂 离 子 电池 在 i 为 TO
韵
■
【 羲{ 釜霎# 譬 蝣 蓦
瀚 嚣 搏 博 梅 毒 々
使 用 和 贮 存 过 程 中 由于表 面 催 化 反 应 ,有 持 续 胀 气 问题 ,带 来 一 定 安 全 隐 患 和 降低 循 环 寿 命 。对 其 进 行 表 面 包 覆 是 解 决 其 问题 的 有 效 途 径 之 一 ,但 如 何 得 到 均 匀 的包 覆 层 以及 实现 在 较 低 温 度 下 得 到 高 电导 率 的包 覆 层 一 直 是 一个 重要 的技 术难 题 。 中 国 科 学 院 物 理 研 究 所/ 京凝 聚 态 物 理 北 国家 实 验 室 的清 洁 能 源 实验 室E 1 博士 生 赵 0组 亮 与 胡 勇 胜 研 究 员 等 提 出 了一 种 利 用 含 氮 元 素 离 子液 体 实现 均 匀 薄 层(~ n 含 氮 元 素 掺 1 2 m) 杂碳 包 覆 L i 极 材料 的技 术 ,包 覆 改 性 i 负 TO
锂离子电池正极材料研究进展
磷 酸铁锂 、 锰酸锂 、 镍锰酸锂 、 镍钴锰酸 锂 以及镍钻 铝酸锂 等。 本文综述 了这 些典型正极材料 的研究进展 ,并指 出复合正极
材料是锂离子 电池未来正极材料 的重要 发展方 向。
1 _ 2磷 酸铁 锂 ( L i F e P O4 )
自1 9 9 7年 Go o d e n o u g h等 首次报 道橄榄石结 构 的 L i F e — P 04 作为锂离 子电池正极材 料以来 , L i F e P O4 就 以稳定 、环保 、
Ab s t r a c t : L i t h i u m i o n b a t t e r y i s c o n s i d e r e d a s t h e mo s t i d e a l e n e r g y s t o r a g e a n d c o n v e r s i o n me t h o d d u e t o i t s h i g h e n e r g y d e n s i t y , h i g h s p e c i f i c c a p a c i t y ,n o me mo y r e fe c t a n d n o n - p o l l u t i o n. Th e i mp r o v e me n t o f b a t t e r y p er f o r ma n c e
Ke y wo r d s : ¨ l h i u m i o n b a t t e y; r c a t h o d e ma t e r i a l ; c o mp o s i t e ma t e r i a l s
锂离子电池能源材料研究进展
21 0 1年 8月
上 海 大 学 学 报 ( 然 科 学 版) 自
J U N LO H N H I NV R I ( A U A CE C ) O R A FS A G A IE S Y N T R LS IN E U T
V0 . 7 1 1 No. 4 Au g.201 1
,
.
56 5
创刊
期 特刊
上 海 大 学 学 报 ( 然 科 学 版) 自
第 l 卷 7
能、 风能 、 生物 质 能 、 热 能和 潮汐 能 等 ) 着 重要 的 地 有
意义. 锂离子 电池是有效储存这些 不连续能源的重 要 储 能媒 介 , 可将 不 连续 能源 转变 成 连续 性 的能 源 . 锂离子电池因其高 比能量 、 高电压和广泛的应用 较 性 而 日益 受 到重 视 , 已逐渐 替 代传 统 镍 氢 电池 、 镍 镉 电池 、 酸蓄 电池 , 广泛 应用 于 当今 信 息 时代 的各 铅 被 种 电子设 备 , 如移 动 电话 、 数码 相 机 、 摄像 机 、 字 处 数 理 机 等. 近年来 , 锂离 子 电池在 新一 代 混 合 动力 汽 车 ( y r e c cl eil,H V)和 纯 电 动 汽 车 hb d l t a i e r vhce E i ( lc cl e i e E 上 的应 用也 日益 受 到关 注. eet a vhc , V) i r l 目前 , 实验 室 所 研 究 的锂 离 子 电极 材 料 主 要 本 包 括锡 基 纳米 粒 子 、 基/ 复 合 纳 米 材 料 、 纳米 锡 碳 碳 材料 、 碳包 裹磷 酸 铁 锂 复 合 纳 米 材 料 、 化钴 / 复 氧 碳 合 纳米 材料 和 氧化 镍/ 石墨 烯复 合 纳米 材 料 . 些材 这 料 具有 较 大 的 比表 面 积 、 短 的锂 离 子 扩 散 路 径 长 较 度, 尤其是 中空的剩余体积空间, 能够在储存锂离子
锂离子电池正极材料的研究进展
锂离子电池正极材料的研究进展锂离子电池正极材料的研究进展随着清洁能源的发展,锂离子电池作为一种高能量、高功率密度的电池,已被广泛应用于移动物体、电动汽车、储能系统等方面,锂离子电池中的正极材料是实现高性能锂离子电池的关键。
本文将从锂离子电池正极材料的发展历程、材料的结构与性能、新型材料的研究和应用等方面展开详细的介绍和分析。
一、锂离子电池正极材料的发展历程20世纪80年代中后期,最早的锂离子电池是由四种材料构成的:平板石墨负极、聚乙烯隔膜、液态电解质和金属氧化物正极。
但是,由于金属氧化物正极的电化学性能不佳,限制了锂离子电池的应用,于是人们开始研究新型的锂离子电池正极材料。
1990年,日产汽车公布了采用碳酸锂电解液和三元材料(LiCoO2)的锂离子电池作为电动汽车动力源的计划。
1997年,索尼公司发布了使用锰酸锂(LiMn2O4)作为正极材料的锂离子电池,在实验室内能够实现高达1000次充放电循环,在国际市场上得到了广泛的推广。
之后,锂离子电池正极材料的研究进入了全新的阶段,市场上出现了一大批新型材料,如LiFePO4、LiNi0.33Mn0.33Co0.33O2等,已成为锂离子电池领域中的热门研究方向。
二、锂离子电池正极材料的结构与性能锂离子电池正极材料的结构一般是层状结构、尖晶石结构、钠层化合物结构、硅基嵌入化合物结构、钙钛矿结构和氧化物渗透缺陷结构,其物理化学性质也有所不同。
LiCoO2是最早应用于锂离子电池的材料之一,其具有较高的理论容量和电化学效率,但是由于其参数退化、安全性差以及高的成本等问题,不断推进了对新型的锂离子电池正极材料的研究。
LiFePO4是一种锂离子电池正极材料,它具有高的理论容量、低的电化学电位和充电的极高可逆性,但是其电导率较低,电量功率较低,在高功率环境下却发生了否决性的出现。
LiMn2O4是一种高性能的锂离子电池正极材料,其较高的电化学反应速度能够有效提高锂离子电池的安全性,但是容易发生相关的氧化还原反应,导致容量的降低。
锂离子电池技术的研究进展
锂离子电池技术的研究进展锂离子电池是一种经典的可充电电池,其具有体积小、重量轻、能量密度高等优势,在移动通信、电动车、储能、航空航天等领域得到广泛应用。
随着科技的发展和需求的不断增加,锂离子电池技术在结构设计、电极材料、电解液等方面都得到了很大的改进和创新。
本文将介绍锂离子电池技术的研究进展,从多个角度探究其发展趋势和前景。
一、锂离子电池的结构设计电池的结构设计是决定其性能和循环寿命的关键。
一般来说,锂离子电池的结构主要包括正极、负极、电解质等组件。
近年来,随着材料科学的不断进步,锂离子电池结构设计也得到了极大的发展。
在正极材料方面,过渡金属氧化物正极材料(例如LiCoO2、LiMn2O4、LiFePO4等)是锂离子电池的主流正极材料,其中LiFePO4正极材料具有很好的安全性和较高的电化学性能,正在成为锂离子电池领域的一个新兴研究方向。
在负极材料方面,将碳材料的石墨化应用于锂离子电池负极材料是减轻电池重量和提高电池能量密度的有效途径。
最近,为了提高电池的性能,石墨化碳材料的晶体结构进行了改进,例如采用硬碳、微米纤维等材料来改善石墨化碳的性能。
电解质是电池中的重要组成部分,一般使用电解液来实现离子的传导。
新型电解液材料的出现,能够提高电池的韧性、抗干扰性、安全性和电化学性能。
现在,固态电解质被认为是提高电池的稳定性和循环寿命的最有前途的电解质方向之一。
二、锂离子电池的电极材料电极材料是锂离子电池中起到媒介传导作用的关键组成部分。
近年来,针对锂离子电池中的电极材料进行了很多研究。
正极材料方面,磷酸铁锂是新兴的正极材料,具有较高的比容量(170mAh/g)、较高的放电平台电压3.45V(vs Li/Li+)以及优良的循环寿命。
二氧化钛正极材料则是另一种热门材料,其通过改变二氧化钛的结构和化学组成来增加其电容量,进一步提高了电量的密度。
负极材料方面,石墨负极材料是目前应用最广泛的负极材料。
近年来,人们通过增加石墨负极材料的粗度和孔隙度来提高电池的效率和循环寿命。
锂离子电池正极材料研究进展
锂离子电池正极材料研究进展锂离子电池是目前广泛应用于移动电子设备和电动车辆等领域的重要能量存储设备,其正极材料的性能对电池的性能和循环寿命有着至关重要的影响。
近年来,针对锂离子电池正极材料的研究逐渐受到了广泛关注。
在这篇文章中,将介绍一些最新的研究进展。
首先,锂离子电池正极材料的研究主要集中在提高材料的能量密度和循环寿命。
目前市面上常见的锂离子电池正极材料是钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)和锂铁磷酸锂(LiFePO4)。
然而,这些材料在使用过程中存在着一些问题,比如钴酸锂存在着资源稀缺和价格昂贵的问题,锰酸锂的电化学性能相对较差,锂铁磷酸锂的能量密度较低等。
因此,研究人员开始寻找替代材料。
一种备受关注的材料是含有镍的过渡金属氧化物,比如锂镍钴锰氧化物(Li(Ni1/3Co1/3Mn1/3)O2)。
这种材料具有较高的能量密度和较长的循环寿命。
另外,研究人员还探索了硅和硫等材料作为锂离子电池正极材料的替代品。
其次,锂离子电池正极材料的微观结构调控也成为一个研究热点。
通过控制正极材料的粒径、纳米结构和晶体结构等参数,可以调节材料的电化学性能。
比如,一些研究表明,通过控制锂离子电池正极材料的晶体结构,可以实现更高的能量密度和更好的循环稳定性。
此外,锂离子电池正极材料的表面改性也引起了广泛关注。
通过在正极材料的表面形成一层保护膜,可以提高材料的循环稳定性和抗固相界面反应能力。
一些研究表明,通过硅、氟等元素的表面覆盖,可以显著改善正极材料的循环性能和容量保持率。
总体来说,锂离子电池正极材料的研究进展主要包括寻找新的材料、微观结构调控和表面改性。
通过这些研究,可以不断提高锂离子电池的能量密度和循环寿命,进一步推动锂离子电池在移动电子设备和电动车辆等领域的广泛应用。
随着移动电子设备和电动车辆市场的不断扩大,对锂离子电池正极材料的需求也越来越迫切。
因此,研究人员在锂离子电池正极材料的改进和创新上投入了大量的精力。
锂离子电池的研究进展综述
锂离子电池的研究进展综述锂离子电池的研究进展刘文 2015200807近十年以来,通过对新电极材料和新存储机理的开发研究,基于锂的可重复充电电池技术得到了飞跃发展,电池性能不断提高。
得益于纳米技术的不断探索发现,传统电池材料存在的许多重难点基础问题极有希望得到解决。
一、纳米技术致力于解决传统电池领域的哪些重大问题?1. 体积变化导致活性颗粒和电极的开裂与破碎传统嵌入式电极材料在充放电过程中的体积变化较小。
而对于新型的高容量电极材料而言,由于充放电过程中,大量Li物种嵌入和脱嵌,发生巨大的体积变化。
经过多次循环之后,活性颗粒和电极材料会开裂和破碎,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命。
据报道,合金型负极材料的体积膨胀率中,Si为420%,Ge和Sn为260%,P为300%。
而传统的石墨负极只有10%。
图1. 活性颗粒和电极材料在充放电过程中开裂和破碎的过程硅极负极的解决方案纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。
高容量电极材料有一个基本参数,叫做临界破碎尺寸。
这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。
而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。
当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。
研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。
晶化Si纳米颗粒的临界尺寸大约是150 nm。
图2. Si纳米线负极材料可以适应应力的影响因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。
至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。
锂电池的研究进展
锂电池的研究进展摘要:锂离子电池由于比能量高和使用寿命长,已成为便携式电子产品的主要电源。
尖晶石LiMn2O4正极材料在不同混合溶剂的电解质溶液的电化学性能。
用循环伏安法和交流阻抗技术研究了Li/有机电解液/LiMn2O4电池的电化学行为,综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能。
采用溶胶-凝胶法和旋转涂布工艺,在较低的退火温度(450e)下制备了尖晶石型LiMn2O4薄膜。
关键词:正极材料; 电化学性能 ;薄膜1前言作为锂离子电池电解质溶液的主体成分,溶剂的组成和性质影响和决定着LiMn2O4正极材料的宏观电化学性能。
电解质溶液的电导率大小、电解质溶液在电极表面的氧化电位以及电解质溶液对电极材料活性物质的溶解性都在不同程度上直接影响LiMn2O4电极材料的容量、寿命、自放电性能和倍率充放电性能[。
近年来,寻找合适的电解质溶液组分,以进一步改善和提高LiMn2O4正极材料的电化学性能正在引起人们越来越广泛的关注。
系统地研究溶剂组成对LiMn2O4正极材料电化学性能的影响,探讨影响LiMn2O4正极材料电化学性能电解质溶液因素,进一步明确新型电解质溶液体系的优化目标,将为LiMn2O4正极材料在锂离子电池工业中的广泛应用奠定基础。
本文使用恒电流充放电和粉末微电极的循环伏安方法研究了尖晶石LiMn2O4正极材料在不同混合溶剂体系的电解质溶液中的电化学性能。
结合溶剂组分和电解质溶液的理化特性,详细探讨了影响LiMn2O4正极材料电化学性能的溶剂因素及其影响机制。
锂离子电池正极材料的选择是锂离子电池电化学性能的关键。
作为正极材料的嵌锂化合物是锂离子电池中锂的/存库0,它应满足:(1)在所要求的充放电电范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度的可逆性;(4)全锂化状态下在空气中的稳定性。
目前研究较多的是层状的LiMO2和尖晶石型LiM2O4(M=Co、Ni、Mn、V等过渡金属离子)。
锂离子电池正极三元材料的研究进展及应用
锂离子电池正极三元材料的研究进展及应用一、本文概述随着全球能源危机和环境污染问题的日益严重,锂离子电池作为一种高效、环保的能源储存和转换方式,已经在电动汽车、移动电子设备等领域得到了广泛应用。
其中,正极材料作为锂离子电池的重要组成部分,其性能直接影响到电池的能量密度、循环寿命和安全性能。
因此,研究和开发高性能的正极材料是锂离子电池领域的重要研究方向。
本文将对锂离子电池正极三元材料的研究进展和应用进行全面的综述,旨在探讨其发展趋势和未来应用前景。
本文将简要介绍锂离子电池的基本原理和正极材料的重要性。
然后,重点分析三元材料的结构特点、性能优势以及存在的问题和挑战。
接着,综述近年来三元材料在合成方法、改性技术和应用领域的研究进展,包括纳米化、复合化、掺杂等改性手段对三元材料性能的影响。
展望三元材料在未来的发展趋势和应用前景,提出可能的研究方向和建议。
通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和启示,推动锂离子电池正极三元材料的研究和应用进一步发展。
二、三元材料的基本性质三元材料,又称为三元正极材料,是锂离子电池中的关键组成部分,对电池的能量密度、功率密度以及循环寿命等性能起着决定性的作用。
其一般化学式可表示为LiNixCoyMn1-x-yO2 (NCM) 或LiNixCoyAlzO2 (NCA),其中x、y、z为各元素的摩尔比例,可根据需要进行调整以优化材料的性能。
高能量密度:三元材料具有较高的比容量,这使得锂离子电池在相同体积或重量下能够存储更多的能量,因此适用于高能量需求的电子设备或电动车等领域。
良好的电化学性能:三元材料具有良好的电子导电性和离子迁移率,这有助于提高电池的充放电效率和循环稳定性。
其结构稳定,能够在充放电过程中保持结构的完整性,减少电池容量的衰减。
安全性:三元材料在高温下具有较好的热稳定性,能够有效防止电池热失控的发生。
同时,其结构中的元素均为无毒或低毒元素,对环境和人体健康影响较小。
锂离子电池正极材料的研究进展
锂离子电池正极材料的研究进展随着现代社会科学技术的不断发展,电池作为能量存储和转化的一种形式,已经成为了我们日常生活中必不可少的一部分。
其中,锂离子电池由于其重量轻、体积小、储能量大以及循环寿命长等优点,成为了当前最常用的电池类型之一。
而锂离子电池的核心组成部分便是正极材料,其性能的优劣直接决定了电池的性能。
因此,正极材料的研究一直是锂离子电池领域的重要研究课题。
本文将对锂离子电池正极材料的研究进展进行综述。
一、锂离子电池正极材料的种类及其优缺点在锂离子电池的正极材料中,最常见的是锂钴氧化物(LiCoO2)、锂镍钴铝氧化物(NCA)、锂铁磷酸(LiFePO4)、锂锰氧化物(LiMn2O4)和三元材料LiNi0.33Co0.33Mn0.33O2(NCM)等。
这些材料具有不同的结构,性能和成本等特点,它们的使用也会受到电池的应用领域和终端设备的要求等多种因素的影响。
其中,锂钴氧化物作为第一代正极材料,具有高的储能量和较高的系统电压,但其价格昂贵,含有的钴元素资源匮乏,同时热稳定性和安全性能也有所欠缺;NCA具有高能量密度、长寿命和优异的功率性能,并且所含有的材料成分也比较丰富,但其制备成本较高,同时在高温和高电压下易发生失稳和过热等安全问题;LiFePO4的循环寿命长,热稳定性好,同时价格较为低廉,但它的理论储能量低、电导率差,同时在高功率放电和低温放电等情况下其性能明显下降;LiMn2O4具有低成本、高电导率和热稳定性好等优点,但其含有锰元素,易受到水解和氧气氧化等因素的影响,同时循环寿命也不如其他材料长;NCM作为新型锂离子电池材料,具有高能量密度、优异的耐热性和循环寿命等特点,但其价格较高,同时还存在着容量衰减快和失稳的问题。
总的来说,各种材料都具有各自的特点和适用范围,根据实际需求选择合适的正极材料十分必要。
二、锂离子电池正极材料的研究进展随着人们对新能源和环境保护要求的不断提高,锂离子电池在挑战和追求更高性能的过程中,锂离子电池正极材料也在不断地进行研究和改进。
锂离子电池正极材料的发展现状和研究进展
合物正极材料的发展现状和研究进展 。LC O 在今后正极材 料发展 中仍然 有发展潜力 , io 2 通过微 掺
杂和包覆都可使钴酸锂的综合性能得到提高 , 环性 能大大改善。环保 、 循 高能 的三元材料和磷酸铁
锂 为 代 表 的 新 型 正 极 材 料 必 将 成 为 下 一 代 动 力 电池 材 料 的首 选 。 关 键 词 : 离子 电 池 ; 锂 正极 材 料 ; 酸铁 锂 ; 元 材 料 磷 三
体 积小 等突 出优点 , 目前 , 应用 已渗透 到 包 括 移动 其
电话 、 笔记 本 电脑 、 像 机 、 码 相 机 等 众 多 民用 及 摄 数
军事 领域 。另外 , 国内外也 在 竞 相 开发 电动 汽车 、 航
天 和储能 等方 面所需 的大容量 锂离 子 电池 。 对锂离 子 电池 而 言 , 主 要 构成 材 料 包 括 电解 其
15 mA / 。其优 点为 : 作 电压 高 , 5 h g 工 充放 电 电压平
稳 , 合大 电流 放 电 , 适 比能 量 高 , 环 性 能 好 。缺 点 循 是 : 际 比容量 仅为 理论 容量 的 5 %左 右 , 的利用 实 0 钴 率低 , 抗过 充 电性能差 , 较高 充 电 电压 下 比容 量迅 在
的快 速充放 电性 能 。
锂离子 电池 一般选 用 过渡 性金 属 氧化 物 为 正极
量大、 自放 电小 、 环 性 能 好 、 用 寿命 长 、 量 轻 、 循 使 重
材料 , 一方 面过 渡金 属存 在混 合价 态 , 电子导 电性 比 较理 想 ; 一 方 面 不 易 发 生歧 化反 应 。理 论 上具 有 另 层状 结 构 和 尖 晶石 结 构 的材料 , 能做 锂 离 子 电池 都 的正 极材料 , 由于制 备工 艺 上存 在 困难 , 但 目前所 用
锂离子电池高镍三元材料的研究进展
锂离子电池高镍三元材料的研究进展一、本文概述随着全球能源危机和环境污染问题日益严重,可再生能源的开发和利用受到了广泛关注。
锂离子电池作为一种高效、环保的储能技术,被广泛应用于电动汽车、便携式电子设备等领域。
高镍三元材料(NCA、NMC等)作为锂离子电池正极材料的代表之一,因其高能量密度、低成本等优点,近年来成为了研究的热点。
本文旨在综述锂离子电池高镍三元材料的研究进展,包括其晶体结构、合成方法、性能优化以及应用前景等方面,以期为相关领域的研究提供参考和借鉴。
本文将介绍高镍三元材料的晶体结构和基本性能,阐述其作为锂离子电池正极材料的优势与不足。
将重点综述高镍三元材料的合成方法,包括固相法、溶液法、熔融盐法等,并分析各种方法的优缺点。
在此基础上,本文将进一步探讨高镍三元材料的性能优化策略,如表面包覆、掺杂改性等,以提高其循环稳定性、倍率性能等。
本文将展望高镍三元材料在锂离子电池领域的应用前景,探讨其未来的发展方向和挑战。
通过本文的综述,期望能够为锂离子电池高镍三元材料的研究和应用提供有益的参考和启示,推动该领域的技术进步和发展。
二、高镍三元材料的结构与性能高镍三元材料,通常指的是NCA(镍钴铝)和NMC(镍锰钴)等富镍正极材料,其中镍的含量通常超过50%。
这些材料因其高能量密度和良好的循环性能而受到广泛关注。
高镍三元材料的晶体结构通常为层状结构,属于α-NaFeO₂型六方晶系。
在这种结构中,镍、钴和锰(或铝)离子占据3a位置,氧离子占据6c位置,形成八面体配位。
镍离子因其较高的氧化态(+3或+4)而占据锂层中的部分位置,这有助于提高材料的能量密度。
然而,高镍含量也带来了结构不稳定性的问题,因为镍离子半径较大,容易引起晶格畸变。
高镍三元材料具有较高的比容量和较高的能量密度,这使得它们成为下一代锂离子电池的理想选择。
例如,NCA材料的理论比容量可以达到275 mAh/g,远高于传统的钴酸锂(LCO)材料(约140 mAh/g)。
新型锂离子电池材料的研究及其在能源领域的应用
新型锂离子电池材料的研究及其在能源领域的应用近年来,随着全球能源短缺问题日益突出,各种新型能源技术不断涌现,其中锂离子电池备受瞩目。
而新型锂离子电池材料的研究就是锂离子电池技术进步的重要方向之一。
本文将对新型锂离子电池材料的研究及其在能源领域的应用进行探讨。
一、新型锂离子电池材料的研究进展锂离子电池是一种高效、轻便、环保、低污染、快速充电等优点突出的新型电池。
然而,传统的锂离子电池材料(如锂钴酸、锂铁磷酸等)问题也很突出,如容量不足、安全性差、循环寿命短等,制约了其在能源领域的应用。
因此,近年来,研究人员开始探索新型锂离子电池材料。
其中,钠离子电池、锂硫电池、固体电解质电池等技术备受瞩目。
新型锂离子电池材料的研究方向主要集中在以下几个方面:1. 钠离子电池材料由于钠离子电池具有成本低、资源丰富等特点,在电动汽车、智能电网等领域得到了广泛关注。
钠离子电池材料也在不断地研究中。
当前,钠离子电池材料的研究主要集中在正极材料和电解质材料上。
常见的正极材料有钠锰氧化物、钠钴氧化物、钠镍氧化物等;电解质材料有硼硅酸盐陶瓷、聚合物电解质等。
2. 锂硫电池材料锂硫电池是一种具有高能量密度、低毒性、易回收等特点的新型电池。
这种电池以硫为正极材料,以锂为负极材料。
由于锂硫电池的正极具有高比容量,因此被认为是能够取代锂离子电池的一种潜在选择。
目前大多数锂硫电池研究还处于实验室研究阶段,不过也有一些商业化的产品。
锂硫电池材料的研究主要集中在正极材料和电解质材料上。
常见的正极材料有硫、硫化钴、硫化镍等;电解质材料则有多孔聚合物、硫化锂等。
3. 固体电解质电池材料固体电解质电池是一种使用固体电解质代替液体电解质的新型电池。
固体电解质电池相比液体电解质电池具有更高的安全性、电容量和循环寿命。
而且,固体电解质电池中也可以使用镁、锌、铝等金属材料做负极,以大幅度降低成本和相应的短缺问题。
目前固体电解质电池材料的研究主要集中在氧化物电解质和聚合物电解质上。
锂离子电池负极材料的研究进展
锂离子电池负极材料的研究进展化学与生物工程学院化工08-1 3080313115 班继航摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点,所以寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。
本文综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况,并且介绍了正在探索中的锂离子电池非碳负极材料的研究现状。
关键词:锂离子电池负极材料非碳负极材料研究进展锂离子电池与其它二次电池相比具有电压高、比能量大、质量轻、环境友好等优点,目前已经广泛应用于便携式电子产品和电动工具等领域,并有望成为未来混合动力汽车和纯动力汽车的能源供给之一。
负极材料是决定锂离子电池综合性能优劣的关键因素之一,锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成的。
锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。
目前商业化石墨类碳负极材料虽然具有较好的循环性能,但由于存在较低的质量比容量(理论值为372 mAh/g )和较差的高倍率充放电性能,尤其是体积比容量相当有限。
因此进一步提高其容量的空间很小,远不能满足未来高容量长寿命电子设备的需求。
近年来,金属及合金类材料是研究得较多的新型高效储锂负极材994 料体系,其中锡金属与锡合金具有高质量比容量(锡的理论值为mAh/g)和低成本的优势,特别是具有高体积比容量(锡的理论值为7200 mAh/cm3,是碳材料体积比容量的10倍,因此现已成为目前国际上研究的主流负极材料之一。
然而,传统的建立在实验基础之上的研究方法浪费了大量的人力、物力和财力,由于锡基候选电极材料的多样性,因此从理论上去寻求锡基嵌锂材料,探索一种合金理论设计方法,并用于指导实验和分析实验结果,以及模拟和预测锡基材料的各种电化学性能,对未来合金电极材料的研究发展具有重要的指导意义。
一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(小于10m2/g),真密度高(大于2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。
锂离子电池正极材料研究进展
锂离子电池正极材料研究进展
锂离子电池作为当前主流的电池类型之一,在移动电子设备、电动汽车、储能系统等领域有着广泛的应用。
其中,正极材料作为锂离子电池的关键组成部分,直接影响着电池的能量密度、循环寿命和安全性能。
因此,对锂离子电池正极材料的研究一直备受关注。
本文将从目前锂离子电池正极材料的研究现状和未来发展方向两个方面进行探讨。
首先,当前锂离子电池正极材料的研究主要集中在钴酸锂、镍酸锂、锰酸锂和钛酸锂等化合物上。
这些化合物具有较高的比容量和较高的工作电压,但同时也存在着价格昂贵、资源紧缺和安全性能差的缺点。
因此,研究人员开始转向新型正极材料的开发,如锰基氧化物、钴基磷酸盐、钛基氧化物等。
这些材料具有丰富的资源、低成本和良好的安全性能,是未来锂离子电池正极材料的发展方向之一。
其次,未来锂离子电池正极材料的研究将主要集中在提高能量密度、延长循环寿命和提高安全性能三个方面。
在提高能量密度方面,研究人员将重点关注多元化合物的设计和合成,以提高材料的比容量和工作电压。
在延长循环寿命方面,研究人员将致力于减少材料在充放电过程中的结构变化和粒径变化,以提高材料的循环稳定性。
在提高安全性能方面,研究人员将着重于提高材料的热稳定性和耐高温性能,以降低电池的热失控风险。
综上所述,锂离子电池正极材料的研究正处于快速发展的阶段,新型正极材料的开发和现有材料性能的改进将成为未来的研究重点。
随着材料科学和能源领域的不断进步,相信锂离子电池正极材料的研究将为电池技术的发展和应用带来新的突破。
希望本文对锂离子电池正极材料的研究有所帮助,也期待未来能够有更多的科研成果为电池技术的发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引证文献(18 条) 钟胜奎.刘乐通.姜吉琼.刘洁群.王健.李阳.朱峰 锂离子电池正极材料 LiNi1/3Co1/3Mn1/3O2 的合成及性能 [期刊论文] -材料导报 2009(6) 张玲.陈平.李丹 化学分析法测定锂离子电池正极材料中的锰 [期刊论文] -电 池 2007(06) 李娟.史鹏飞.郭瑞 锂离子电池正极材料 LiNi1/3Co1/3Mn1/3O2 的合成及性能研 究 [期刊论文] -化工新型材料 2007(08) 陈灵谦 正极材料 Li3V2(PO4)3 的制备及性能 [期刊论文] -电池 2007(02) 任慢慢.李宇展.周震.高学平.阎杰 微波法合成正极材料 Li3V2(PO4)3 [期刊论 文] -电池 2006(01) 陈平.张玲.李丹.张涛.陈金花 化学法测定锂离子电池正极材料中的镍 [期刊论 文] -长沙理工大学学报(自然科学版)2006(01) 胡杨 18650 型锂离子电池的安全性能研究 [学位论文] 硕士 2006 檀柏杉.韩恩山.李鹏 LiNi1/3Co1/4Mn1/3M1/12O2(M=Al,Ti)的性能研究 [期刊 论文] -电池 2005(04) 熊俊威.曹晓燕.程小爱.孙淑红 天然石墨及其表面化学修饰的研究进展 [期刊
对锂碳负极电池性能的改善 [期刊论文] -电化学 1997(3) Larry J K.William L.Summerfield J Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfony lithium salts for Li-ion cells 1997(2) Armand M B.El Kadiri C.Moursli F Bis perhalogenoacy1-or sulfony1-imides of conductor elements for electrochemical generators 1985 Dominey L A.Koch V U.Blakley T J Thermally stable lithium salts for ploymer electrolytes 1992 Xianming W.Eiki Y.Shigeaki K Electrochemical properties of tetrahydroppyran-based ternary electrolytes for 4V lithium metal rechargeable batteries 2002 Sartori P.Lgnatyev N Lithium fluorophosphate and their use as conducting salts 2001 Fusaji K.Hideo S.Arira K Electronic structures and electrochemical properties of LiPF6- n (CF3) n 2001 Yokoyana K.Sasano T.Hiwara A Fluorine-substituted cyclic carbonate electrolytic solution and battery containing the same 2000 Arai J.Katayama H.Akahoshi H Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries 2002(2) WANG X.Yasukawa E.Kasuya S Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries( Ⅱ )the use of an Amorphous carbon anode 2002(2) WANG X.Yasukawa E.Kasuya S Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries ( ] )fundamental properties )fundamental properties 2001(10) Besehard J O.Wagner M W.Winter M Inorgamic film-forming electrolyte additives improving the cycing behaviur of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes 1993 Neal M.Golovin D W P.James T Applications of metallocenes in rechargeable lithium batteries for overcharge protection 1992(1) Abraham K M.Pasyuariello D M.Willstand E B N-Butyferrocence for overcharge protection of secondary lithium batteries 1990(6) Cha C S.Ai X P.Yang H X Ploypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries 1995(2) Adachi M.Tanaka K.Sekai K Aromatic compounds as redox shuttle for 4 V class secondary lithium batteries 1999(4) 更多…… 相似文献(2 条) 期刊论文 聚合物锂离子电池 - 电池 2003,33(2) 期刊论文 Al3+、F-掺杂 LiMn2O4 的高温电化学性能 - 电池 2003,33(2) 相关博文(27 条) LiFePO4 锂离子电池的结构与工作原理 双向电泳实验过程及相关溶液配置
聚合物锂离子电池介绍 纳米会唱歌(原创+科普) 碳纳米管收音机与碳纳米试管(原创*科普) 天体自旋、公转的形成原因 吹牛不上税,“锌空气电池欲替代锂电池” 治沙与致沙 实验室常用英语-化学生物类[ZZ] 我有义务帮助民科宣传他的研究成果 DNA 双螺旋,阴极阳极与光伏电池及 DNA 发光之狂想曲 对过去一年半的回顾和对未来的思考 1 王传福缔造了中国最大的“模仿王国” 有机化学基本概念 电池到底怎么充才好? 最新的八大自然规律 最新发现的自然规律 正电之间相互吸引、负电之间相互排斥是最新发现的自然规律 采用磷酸铁锂正极材料的动力电池首次应用于奥运大巴 风华高科背后的故事 研究生文献阅读方法 化学所研制出高性能锂离子电池负极材料 关于工程教育的讨论 863 计划新材料技术领域课题催化相关部分 湖南大学化学化工学院2003年科学研究项目表 走南闯北:西域游记之 1987(III) 东航动1989贡献
doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
锂离子电池材料研究进展 综述了最近几年来锂离子电池相关材料的研究.锂离子电池相关材料主要包 括:①正极材料,主要有 LiCoO2、 LiMn2O4 和 LiNiO2 等;②负极材料,主要有焦炭、 石墨等;③电解质材料,主要包括锂盐、有机溶剂和添加剂等. 作 者: 庄全超 武山 刘文元 陆兆达 作者单位: 西北核技术研究所,陕西,西安,710024 刊 名: 电池 ISTIC PKU 英文刊名: BATTERY BIMONTHLY 年,卷(期): 2003 33(2) 分类号: TM912.9 关键词: 调:锂离子电池 正极 负极 有机电解液 材料 机标分类号: TM2 TB3 机标关键词: 锂离子电池材料研究相关材料电解质材料正极材料有机溶剂负极 材料添加剂石墨锂盐焦炭 基金项目: DOI: 参考文献(29 条) 任旭梅.吴川.何国蓉.李汉军.吴锋.王国庆.陈实 锂离子电池正负极材料研究进 展 [期刊论文] -化学研究与应用 2000(4) 周恒辉.慈云祥.刘昌炎 锂离子电池电极材料研究进展 [期刊论文] -化学进展 1998(1) 徐仲榆.苏玉长.王要武 锂锰氧材料在充放电过程中的结构变化 2000(3) 吴晓梅 锂离子电池阴极材料尖晶石结构 Li1+xMn2-xO4 的研究 [期刊论文] -电 化学 1998(4) 唐致远.李建刚.薛建军 锂电池正极材料 LiMn2O2 的改性与循环寿命 2000(8) 李春鸿 锂离子二次电池 1996(6) 曹志东 锂离子电池负极热解碳材料的研究 [期刊论文] -复旦学报(自然科学 版)1999(1) CHUNG G.Kim H.Yu S Origin of graphite exfoliation an investigation of the important role of solvent cointercalation 2000(12) Jeong S.Inaba M.Mogi R Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions 2001(17) Shu Z X.Mcmillan R S.Murray J J Effects of 12 crown 4 on the electrochemical intercalation of lithium into graphite Aurbach D.Zaban A.Schargeable A The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries 1995(9) Aurbach.Markovsky B.Weissman I On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries 1999 马树华 锂离子电池负极碳材料的表面改性与修饰Ⅱ.具有“核壳”结构的碳及 其对电池性能的影响 [期刊论文] -电化学 1997(1) 马树华 锂离子电池负极碳材料的表面改性与修饰Ⅲ.人工施加的固体电解质膜