人教新课标七年级数学上册几何练习题
人教版七年级上册数学几何图形练习题及答案
4.1.1 立体图形与平面图形一、单选题1、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形2、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆3、下列图形中,是棱锥展开图的是()A、B、C、D、4、下面图形不能围成一个长方体的是()A、B、C、D、5、下列图形是四棱柱的侧面展开图的是()A、B、C、D、6、下列图形中,是正方体的表面展开图的是()A、B、C、D、7、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、8、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、9、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱10、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、11、下列图形中,是正方体表面展开图的是()A、B、C、D、12、下列四个图形中是如图展形图的立体图的是()A、B、C、D、二、填空题13、一个棱锥有7个面,这是________棱锥.14、如果一个棱柱共有15条棱,那么它的底面一定是________边形.15、长方体是一个立体图形,它有________个面,________条棱,________个顶点.16、六棱柱有________个顶点,________个面,________条棱.17、如图是由________、长方体、圆柱三种几何体组成的物体.18、将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).三、解答题19、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.20、(2009春•滨湖区期中)人人争当小小设计师.一个工程队为建设一项重点工程,要在一块长方形荒地上建造几套简易住房,每一套简易住房的平面是由长4y、宽4x构成,要求建成:两室、一厅、一厨、一卫.其中客厅面积为6xy;两个卧室的面积和为8xy;厨房面积为xy;卫生间面积为xy.请你根据所学知识,在所给图中设计其中一套住房的平面结构示意图.21、如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?22、如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)答案解析部分一、单选题1、【答案】B【考点】认识立体图形,截一个几何体【解析】【解答】解:A、用一个平面去截一个圆锥,不可以是椭圆,故选项错误; B、根据棱柱的特征可知,棱柱的所有侧棱长都相等,故选项正确;C、用一个平面去截一个圆柱体,截面不可以是梯形,故选项错误;D、用一个平面去截一个长方体,截面可能是正方形,故选项错误.故选B.【分析】根据圆锥、棱柱、圆柱、长方体的形状特点判断即可.2、【答案】B【考点】认识立体图形,截一个几何体,简单几何体的三视图【解析】【解答】解:A、球体的截面一定是圆,故A正确,与要求不符; B、组成长方体的各面中可能有2个面是正方形,故B错误;C、从三个不同的方向看正方体,得到的都是正方形,故C正确,与要求不符;D、圆锥的截面可能是圆,正确,与要求不符.故选:B.【分析】根据球体、长方体、正方体、圆锥的形状判断即可.3、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.4、【答案】D【考点】几何体的展开图【解析】【解答】解:选项A,B,C折叠后,都可以围成一个长方体,而D折叠后,最下面一行的两个面重合,缺少一个底面,所以不能围成一个长方体.故选D.【分析】根据图示,进行折叠即可解题.5、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.【解析】【解答】解:A、折叠后不可以组成正方体; B、折叠后不可以组成正方体;C、折叠后可以组成正方体;D、折叠后不可以组成正方体;故选C.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.7、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.9、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.10、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.11、【答案】B【考点】几何体的展开图【解析】【解答】解:A折叠后不可以组成正方体;B折叠后可以组成正方体; C折叠后有两个小正方形重合,不符合正方体展开图;D折叠后不可以组成正方体;是正方体展开图的是B.故选B.【分析】据正方体展开图的11种形式对各小题分析判断即可得解.【解析】【解答】解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.【分析】因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,据此判断.二、填空题13、【答案】六【考点】认识立体图形【解析】【解答】解:7﹣1=6.故一个棱锥有7个面,这是六棱锥.故答案为:六.【分析】求出棱锥的侧面数即为棱锥数.14、【答案】五【考点】认识立体图形【解析】【解答】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五棱柱.15、【答案】6;12;8【考点】认识立体图形【解析】【解答】解:长方体有6个面,12条棱,8个顶点.故答案为:.【分析】根据长方体的特征,长方体有6个面,相对的米面积相等;有12条棱互相平行的一组4条棱的长度相等;有8个顶点.16、【答案】12;8;18【考点】认识立体图形【解析】【解答】解:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.17、【答案】三棱柱【考点】认识立体图形【解析】【解答】解:如图是由三棱柱、长方体、圆柱三种几何体组成的物体.故答案是:三棱柱.【分析】图示由3种立体图形组成:棱柱、长方体、柱体.18、【答案】(1)、(2)、(3);(5)、(6);(4)【考点】认识立体图形【解析】【解答】解:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.三、解答题19、【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【考点】几何体的展开图【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.20、【答案】解:【考点】认识平面图形【解析】【分析】根据题意,先计算出客厅、两个卧室、厨房以及卫生间的长与宽分别是多少,再根据长4y、宽4x的平面来设计.21、【答案】解:由图中可以看出三角形被分为2个三角形;四边形被分为3个三角形,五边形被分为4个三角形,那么n边形被分为(n﹣1)个三角形.【考点】认识平面图形【解析】【分析】由相应图形得到分成的三角形的个数和多边形的边数的关系的规律即可.22、【答案】解:只写出一种答案即可.图1:图2:【考点】几何体的展开图【解析】【分析】和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图.4.1.2 点、线、面、体一、单选题1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A、正方形B、等腰三角形C、圆D、等腰梯形2、下面现象能说明“面动成体”的是()A、旋转一扇门,门运动的痕迹B、扔一块小石子,小石子在空中飞行的路线C、天空划过一道流星D、时钟秒针旋转时扫过的痕迹3、下列说法中,正确的是()A、棱柱的侧面可以是三角形B、四棱锥由四个面组成的C、正方体的各条棱都相等D、长方形纸板绕它的一条边旋转1周可以形成棱柱4、直角三角尺绕着它的一条直角边旋转一周后形成的几何体是()A、圆柱B、球体C、圆锥D、一个不规则的几何体5、如图所示的几何体是由右边哪个图形绕虚线旋转一周得到()A、B、C、D、6、如图,用水平的平面截几何体,所得几何体的截面图形标号是()A、B、C、D、7、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形8、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆9、如图,将正方体沿面AB′C剪下,则截下的几何体为()A、三棱锥B、三棱柱C、四棱锥D、四棱柱10、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A、6,11B、7,11C、7,12D、6,1211、用一个平面去截圆柱体,则截面形状不可能是()A、梯形B、三角形C、长方形D、圆12、下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A、4个B、3个C、2个D、1个二、填空题13、飞机表演的“飞机拉线”用数学知识解释为:________.14、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.15、正方体的截面中,边数最多的是________边形.16、用一个平面去截一个三棱柱,截面图形的边数最多的为________边形.17、用平面去截一个六棱柱,截面的形状最多是________边形.三、作图题18、用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.四、解答题19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.五、综合题21、已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)22、小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积= 底面积×高)答案解析部分一、单选题1、【答案】B【考点】点、线、面、体【解析】【解答】解:沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥体;故选:B.【分析】根据圆锥柱体的特征得出沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥柱.2、【答案】A【考点】点、线、面、体【解析】【解答】解:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确; B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.3、【答案】C【考点】认识立体图形,点、线、面、体【解析】【解答】解:A、棱柱的侧面可以是三角形,说法错误; B、四棱锥由四个面组成的,说法错误;C、正方体的各条棱都相等,说法正确;D、长方形纸板绕它的一条边旋转1周可以形成棱柱,说法错误;故选:C.【分析】根据棱柱的侧面是长方形,四棱锥由五个面组成的,正方体的各条棱都相等,长方形纸板绕它的一条边旋转1周可以形成圆柱可得答案.4、【答案】C【考点】点、线、面、体【解析】【解答】解:直角三角尺绕着它的一条直角边旋转一周后形成的几何体是C.故选:C.【分析】本题是一个直角三角尺围绕一条直角边为对称轴旋转一周,根据面动成体的原理即可解.5、【答案】C【考点】点、线、面、体【解析】【解答】解:A、转动后是圆柱,故本选项错误; B、转动后内凹,故本选项错误;C、沿虚线旋转一周可得到题目给的几何体,故本选项正确;D、转动后是球体,故本选项错误.故选:C【分析】根据面动成体对各选项分析判断利用排除法求解.6、【答案】A【考点】截一个几何体【解析】【解答】解:当截面与圆锥的底面平行时,所得几何体的截面图形是圆,故选A.【分析】当截面的角度和方向不同时,圆锥的截面不相同,当截面与底面平行时,截面是圆,当截面与底面垂直时,截面是三角形,还有其他形状的截面图形.7、【答案】B【考点】认识立体图形,截一个几何体【解析】【解答】解:A、用一个平面去截一个圆锥,不可以是椭圆,故选项错误; B、根据棱柱的特征可知,棱柱的所有侧棱长都相等,故选项正确;C、用一个平面去截一个圆柱体,截面不可以是梯形,故选项错误;D、用一个平面去截一个长方体,截面可能是正方形,故选项错误.故选B.【分析】根据圆锥、棱柱、圆柱、长方体的形状特点判断即可.8、【答案】B【考点】认识立体图形,截一个几何体,简单几何体的三视图【解析】【解答】解:A、球体的截面一定是圆,故A正确,与要求不符; B、组成长方体的各面中可能有2个面是正方形,故B错误;C、从三个不同的方向看正方体,得到的都是正方形,故C正确,与要求不符;D、圆锥的截面可能是圆,正确,与要求不符.故选:B.【分析】根据球体、长方体、正方体、圆锥的形状判断即可.9、【答案】A【考点】截一个几何体【解析】【解答】解:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.10、【答案】C【考点】截一个几何体【解析】【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.11、【答案】B【考点】截一个几何体【解析】【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.【分析】根据从不同角度截得几何体的形状判断出正确选项.12、【答案】C【考点】截一个几何体【解析】【解答】解:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:C.【分析】根据几何体的形状,可得答案.二、填空题13、【答案】点动成线【考点】点、线、面、体【解析】【解答】解:飞机表演的“飞机拉线”用数学知识解释为:点动成线.故答案为点动成线.【分析】飞机在空中表演,飞机可看作一个点,则“飞机拉线”用数学知识解释为:点动成线.14、【答案】24【考点】几何体的表面积,截一个几何体【解析】【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.15、【答案】六【考点】截一个几何体【解析】【解答】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形.故答案为:六.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.16、【答案】五【考点】截一个几何体【解析】【解答】解:用一个平面去截一个三棱柱,截面图形的边数最多的为五边形.故答案为:五.【分析】方法:用平面去截几何体,平面与几何体几个面相加,就产生几条交线,就形成几边形,三棱柱只有五个面,最多截面与五个面相交,产生五条交线,形成五边形.17、【答案】八【考点】截一个几何体【解析】【解答】解:∵用平面去截正方体时最多与8个面相交得八边形,∴最多可以截出八边形.故答案是:八.【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与五个面相交得三角形.因此最多可以截出八边形.三、作图题18、【答案】解:如图所示:【考点】截一个几何体【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,依此即可求解.四、解答题19、【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.20、【答案】解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条【考点】截一个几何体【解析】【分析】一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,相加即可.五、综合题21、【答案】(1)解:长方形绕一边旋转一周,得圆柱.情况①:π×32×4=36π(cm3);情况②:π×42×3=48π(cm3)(2)解:情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).【考点】点、线、面、体【解析】【分析】(1)旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的体积公式计算即可求解;(2)根据圆柱的表面积公式计算即可求解.22、【答案】(1)解:以4cm为轴,得;以3cm为轴,得;以5cm为轴,得(2)解:以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π,以5cm为轴的体积为×π()2×5=9.6π【考点】点、线、面、体【解析】【分析】(1)根据三角形旋转是圆锥,可得几何体;(2)根据圆锥的体积公式,可得答案.。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
人教版七年级数学上册第四章 几何图形初步 专题复习练习题
人教版七年级数学上册第四章几何图形初步专题复习练习题专题(一)正方体的展开与折叠1、下列图形中,可以是正方体表面展开图的是(D),A) ,B),C) ,D)2、将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3 B.3或4或5C.4或5或6 D.1或2或63、如图是正方体的展开图,每个面都标注了字母.如果b在下面,c在左面,那么d在(C) A.前面B.后面C.上面D.下面4、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是(B)A.青B.春C.梦D.想5、如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7 B.8 C.9 D.10专题(二) 线段的计算1、如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ; (2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b 2cm ; (3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC. 又因为MN =MC +CN ,所以MN =12(AC +BC)=12AB =m 2cm . (4)猜想:MN =12AB =n 2cm . 结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB. 2、若MN =k cm ,求线段AB 的长.解:因为点M 是AC 的中点,点N 是BC 的中点,所以CM =12AC ,CN =12BC. 所以MN =CM +CN =12(AC +BC)=12AB. 所以AB =2MN =2k cm .3、若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由.解:MN =m 2cm 成立.理由如下: 当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC. 又因为MN =MC -CN ,所以MN =12(AC -BC)=12AB =m 2cm . 4、如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长.。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
2024年数学七年级上册立体几何基础练习题(含答案)
2024年数学七年级上册立体几何基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形是正方体?()A. 长方体B. 正六面体C. 圆柱体D. 球体2. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的对角线长度是多少cm?()A. 5cmB. 6cmC. 7cmD. 9cm3. 下列哪个图形的表面积最小?()A. 正方体B. 长方体C. 球体D. 圆柱体4. 一个正方体的体积是64立方厘米,它的棱长是多少厘米?()A. 2cmB. 4cmC. 6cmD. 8cm5. 下列哪个图形有6个面?()A. 三棱锥B. 四棱锥C. 圆锥D. 球体6. 一个圆柱的底面半径为3cm,高为5cm,它的侧面积是多少平方厘米?()A. 45πcm²B. 54πcm²C. 75πcm²D. 90πcm²7. 下列哪个图形的体积最大?()A. 长方体(长、宽、高分别为2cm、3cm、4cm)B. 正方体(棱长为3cm)C. 球体(半径为2cm)D. 圆柱体(底面半径为2cm,高为3cm)8. 一个圆锥的底面半径为4cm,高为3cm,它的体积是多少立方厘米?()A. 48πcm³B. 64πcm³C. 72πcm³D. 96πcm³9. 下列哪个图形可以展开成一个长方形?()A. 正方体B. 球体C. 圆锥D. 圆柱体10. 一个正方体的棱长为x,它的表面积是多少?()A. 6x²B. 8x²C. 12x²D. 24x²二、判断题:1. 正方体的六个面都是正方形。
()2. 圆柱体的底面和顶面都是圆形。
()3. 球体的表面积和体积相等。
()4. 长方体的对角线长度等于其长、宽、高的和。
()5. 圆锥的体积等于底面积乘以高。
()6. 正方体的体积是棱长的三次方。
()7. 两个相同体积的正方体,它们的表面积也相同。
人教版七年级上册数学 第四章 几何图形的初步 专题训练(含答案)
人教版七年级上册数学第四章几何图形的初步专题训练一、单选题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是七边形;③可能是直角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④ D.①②③④2.如图,梯形绕虚线旋转一周所形成的图形是()A. B. C. D.3.下列几何体中,是棱锥的为()A. B. C. D.4.下列几何体的侧面展开图形状不是矩形的是()A.圆柱B.圆锥C.棱柱D.正方体5.下图中射线OA与OB表示同一条射线的是( )A. B.C.D.6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两条直线相交,只有一个交点 B.两点确定一条直线 C.两点之间线段最短 D.直线比线段长7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( ) A .2.5 B .2.5或30 C .30 D .2.5或32.59.如图所示,海岛B 在海岛A 的方向是( ).A .北偏西20°B .南偏东20°C .北偏西70°D .南偏东70°10.定义:△ABC 中,一个内角的度数为α,另一个内角的度数为β,若满足290αβ+=︒,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135二、填空题11.如图,在线段AB 上有两点C 、D ,AB =28 cm ,AC =4 cm ,点D 是BC 的中点,则线段 AD =________cm .12.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________.13.桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.14.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.三、解答题15.如图,长度为12cm 的线段AB 的中点为M ,C 点在线段MB 上,且2BC MC =,求线段AC 的长;16.已知如图是一个长方体无盖盒子的展开图,16,3,24AB cm CD cm IH cm ===.求:(1)求盒子的底面积.(2)求盒子的容积.17.如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB =10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,(1)写出数轴上点B 所表示的数 ;(2)求线段AP 的中点所表示的数(用含t 的代数式表示);(3)M 是AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN 的长.18.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数19.如图1,将一副直角三角尺的顶点叠一起放在点O 处,90BOA ∠=,60COD ∠=,OC 与OB 重合,在OD 外AOB ∠,射线OM 、ON 分别是AOC ∠、BOD ∠的角平分线(1)求MON ∠的度数;(2)如图2,若保持三角尺AOB 不动,三角尺COD 绕点逆时针旋转(060)n n <<时,其他条件不变,求MON ∠的度数(提示:旋转角BOC n ∠=)(3)在旋转的过程中,当120AOC BOD ∠+∠=时,直接写出BOC ∠的值答案一、选择1.B 2.D 3.D 4.B 5.B 6.B 7.D 8.D 9.D 10.C二、填空11.16 12.点动成线 13.4 14.三、解答15.8cm16.(1)2143()cm ;(2)3429()cm17.(1)-4;(2)63t - ;(3)不变,MN 的长度为5.18.∠BOE 的度数为60°19.(1)75;(2)75º;(3)15︒。
人教版数学七年级上册4.1 几何图形-练习
当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形内的
三个数依次为( )
A. 1,−2,0
B. 0,−2,1
C. −2,0,1
5 如图,直角三角形绕直线l旋转一周,得到的立体图形是( )
D. −2,1,0
A.
B.
C.
D.
6 以下平面图形按某种方式折叠后,能够围成立体图形的是( )
A. ①
B. ②
C. ③
二 、填空题(本大题共 5 小题,共 15 分)
D. ④
16 在一个正方体的六个面上都写有一个汉字,其平面展开图如图所示,那么该正方体 中和“文”相对的汉字是______.
17 一个直角三角形直角边边长分别为3和4,将直角三角形绕它所在的一条直角边旋转, 则所形成的几何体的体积为______(结果保留π). 18 如图,一个正方体六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态,则? 表示的数字是______.
答案和解析
1.【答案】A; 【解析】解:由n棱柱有3n条棱可得, 一个棱柱体有18条棱,18 ÷ 3 = 6,因此这个棱柱是六棱柱, 故选:A. 由棱柱的形体特征进行判断即可. 此题主要考查认识立体图形,掌握棱柱的形体特征是正确判断的关键.
2.【答案】A; 【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “A”与“0”是相对面, “B”与“3”是相对面, “C”与“−4”是相对面, ∵ 相对面上的两数互为相反数, ∴ A、B、C内的三个数依次是0、−3、4. 故选:A. 依据对面不存任何公共部分可确定出对面,然后依据相反数的定义解答即可. 此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手, 分析及解答问题.
人教版七年级上册数学几何图形练习题及答案
4.1.1 立体图形与平面图形一、单选题1、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形2、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆3、下列图形中,是棱锥展开图的是()A、B、C、D、4、下面图形不能围成一个长方体的是()A、B、C、D、5、下列图形是四棱柱的侧面展开图的是()A、B、C、D、6、下列图形中,是正方体的表面展开图的是()A、B、C、D、7、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、8、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、9、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱10、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、11、下列图形中,是正方体表面展开图的是()A、B、C、D、12、下列四个图形中是如图展形图的立体图的是()A、B、C、D、二、填空题13、一个棱锥有7个面,这是________棱锥.14、如果一个棱柱共有15条棱,那么它的底面一定是________边形.15、长方体是一个立体图形,它有________个面,________条棱,________个顶点.16、六棱柱有________个顶点,________个面,________条棱.17、如图是由________、长方体、圆柱三种几何体组成的物体.18、将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).三、解答题19、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.20、(2009春•滨湖区期中)人人争当小小设计师.一个工程队为建设一项重点工程,要在一块长方形荒地上建造几套简易住房,每一套简易住房的平面是由长4y、宽4x构成,要求建成:两室、一厅、一厨、一卫.其中客厅面积为6xy;两个卧室的面积和为8xy;厨房面积为xy;卫生间面积为xy.请你根据所学知识,在所给图中设计其中一套住房的平面结构示意图.21、如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?22、如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)答案解析部分一、单选题1、【答案】B【考点】认识立体图形,截一个几何体【解析】【解答】解:A、用一个平面去截一个圆锥,不可以是椭圆,故选项错误; B、根据棱柱的特征可知,棱柱的所有侧棱长都相等,故选项正确;C、用一个平面去截一个圆柱体,截面不可以是梯形,故选项错误;D、用一个平面去截一个长方体,截面可能是正方形,故选项错误.故选B.【分析】根据圆锥、棱柱、圆柱、长方体的形状特点判断即可.2、【答案】B【考点】认识立体图形,截一个几何体,简单几何体的三视图【解析】【解答】解:A、球体的截面一定是圆,故A正确,与要求不符; B、组成长方体的各面中可能有2个面是正方形,故B错误;C、从三个不同的方向看正方体,得到的都是正方形,故C正确,与要求不符;D、圆锥的截面可能是圆,正确,与要求不符.故选:B.【分析】根据球体、长方体、正方体、圆锥的形状判断即可.3、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.4、【答案】D【考点】几何体的展开图【解析】【解答】解:选项A,B,C折叠后,都可以围成一个长方体,而D折叠后,最下面一行的两个面重合,缺少一个底面,所以不能围成一个长方体.故选D.【分析】根据图示,进行折叠即可解题.5、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.【解析】【解答】解:A、折叠后不可以组成正方体; B、折叠后不可以组成正方体;C、折叠后可以组成正方体;D、折叠后不可以组成正方体;故选C.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.7、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.9、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.10、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.11、【答案】B【考点】几何体的展开图【解析】【解答】解:A折叠后不可以组成正方体;B折叠后可以组成正方体; C折叠后有两个小正方形重合,不符合正方体展开图;D折叠后不可以组成正方体;是正方体展开图的是B.故选B.【分析】据正方体展开图的11种形式对各小题分析判断即可得解.【解析】【解答】解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.【分析】因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,据此判断.二、填空题13、【答案】六【考点】认识立体图形【解析】【解答】解:7﹣1=6.故一个棱锥有7个面,这是六棱锥.故答案为:六.【分析】求出棱锥的侧面数即为棱锥数.14、【答案】五【考点】认识立体图形【解析】【解答】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五棱柱.15、【答案】6;12;8【考点】认识立体图形【解析】【解答】解:长方体有6个面,12条棱,8个顶点.故答案为:.【分析】根据长方体的特征,长方体有6个面,相对的米面积相等;有12条棱互相平行的一组4条棱的长度相等;有8个顶点.16、【答案】12;8;18【考点】认识立体图形【解析】【解答】解:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.17、【答案】三棱柱【考点】认识立体图形【解析】【解答】解:如图是由三棱柱、长方体、圆柱三种几何体组成的物体.故答案是:三棱柱.【分析】图示由3种立体图形组成:棱柱、长方体、柱体.18、【答案】(1)、(2)、(3);(5)、(6);(4)【考点】认识立体图形【解析】【解答】解:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.三、解答题19、【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【考点】几何体的展开图【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.20、【答案】解:【考点】认识平面图形【解析】【分析】根据题意,先计算出客厅、两个卧室、厨房以及卫生间的长与宽分别是多少,再根据长4y、宽4x的平面来设计.21、【答案】解:由图中可以看出三角形被分为2个三角形;四边形被分为3个三角形,五边形被分为4个三角形,那么n边形被分为(n﹣1)个三角形.【考点】认识平面图形【解析】【分析】由相应图形得到分成的三角形的个数和多边形的边数的关系的规律即可.22、【答案】解:只写出一种答案即可.图1:图2:【考点】几何体的展开图【解析】【分析】和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图.4.1.2 点、线、面、体一、单选题1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A、正方形B、等腰三角形C、圆D、等腰梯形2、下面现象能说明“面动成体”的是()A、旋转一扇门,门运动的痕迹B、扔一块小石子,小石子在空中飞行的路线C、天空划过一道流星D、时钟秒针旋转时扫过的痕迹3、下列说法中,正确的是()A、棱柱的侧面可以是三角形B、四棱锥由四个面组成的C、正方体的各条棱都相等D、长方形纸板绕它的一条边旋转1周可以形成棱柱4、直角三角尺绕着它的一条直角边旋转一周后形成的几何体是()A、圆柱B、球体C、圆锥D、一个不规则的几何体5、如图所示的几何体是由右边哪个图形绕虚线旋转一周得到()A、B、C、D、6、如图,用水平的平面截几何体,所得几何体的截面图形标号是()A、B、C、D、7、下列说法中,正确的是()A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形8、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆9、如图,将正方体沿面AB′C剪下,则截下的几何体为()A、三棱锥B、三棱柱C、四棱锥D、四棱柱10、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A、6,11B、7,11C、7,12D、6,1211、用一个平面去截圆柱体,则截面形状不可能是()A、梯形B、三角形C、长方形D、圆12、下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A、4个B、3个C、2个D、1个二、填空题13、飞机表演的“飞机拉线”用数学知识解释为:________.14、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.15、正方体的截面中,边数最多的是________边形.16、用一个平面去截一个三棱柱,截面图形的边数最多的为________边形.17、用平面去截一个六棱柱,截面的形状最多是________边形.三、作图题18、用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.四、解答题19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.五、综合题21、已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)22、小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积= 底面积×高)答案解析部分一、单选题1、【答案】B【考点】点、线、面、体【解析】【解答】解:沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥体;故选:B.【分析】根据圆锥柱体的特征得出沿着等腰三角形的一条对称轴旋转一周得到的立休图形是一个圆锥柱.2、【答案】A【考点】点、线、面、体【解析】【解答】解:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确; B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.3、【答案】C【考点】认识立体图形,点、线、面、体【解析】【解答】解:A、棱柱的侧面可以是三角形,说法错误; B、四棱锥由四个面组成的,说法错误;C、正方体的各条棱都相等,说法正确;D、长方形纸板绕它的一条边旋转1周可以形成棱柱,说法错误;故选:C.【分析】根据棱柱的侧面是长方形,四棱锥由五个面组成的,正方体的各条棱都相等,长方形纸板绕它的一条边旋转1周可以形成圆柱可得答案.4、【答案】C【考点】点、线、面、体【解析】【解答】解:直角三角尺绕着它的一条直角边旋转一周后形成的几何体是C.故选:C.【分析】本题是一个直角三角尺围绕一条直角边为对称轴旋转一周,根据面动成体的原理即可解.5、【答案】C【考点】点、线、面、体【解析】【解答】解:A、转动后是圆柱,故本选项错误; B、转动后内凹,故本选项错误;C、沿虚线旋转一周可得到题目给的几何体,故本选项正确;D、转动后是球体,故本选项错误.故选:C【分析】根据面动成体对各选项分析判断利用排除法求解.6、【答案】A【考点】截一个几何体【解析】【解答】解:当截面与圆锥的底面平行时,所得几何体的截面图形是圆,故选A.【分析】当截面的角度和方向不同时,圆锥的截面不相同,当截面与底面平行时,截面是圆,当截面与底面垂直时,截面是三角形,还有其他形状的截面图形.7、【答案】B【考点】认识立体图形,截一个几何体【解析】【解答】解:A、用一个平面去截一个圆锥,不可以是椭圆,故选项错误; B、根据棱柱的特征可知,棱柱的所有侧棱长都相等,故选项正确;C、用一个平面去截一个圆柱体,截面不可以是梯形,故选项错误;D、用一个平面去截一个长方体,截面可能是正方形,故选项错误.故选B.【分析】根据圆锥、棱柱、圆柱、长方体的形状特点判断即可.8、【答案】B【考点】认识立体图形,截一个几何体,简单几何体的三视图【解析】【解答】解:A、球体的截面一定是圆,故A正确,与要求不符; B、组成长方体的各面中可能有2个面是正方形,故B错误;C、从三个不同的方向看正方体,得到的都是正方形,故C正确,与要求不符;D、圆锥的截面可能是圆,正确,与要求不符.故选:B.【分析】根据球体、长方体、正方体、圆锥的形状判断即可.9、【答案】A【考点】截一个几何体【解析】【解答】解:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.10、【答案】C【考点】截一个几何体【解析】【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.11、【答案】B【考点】截一个几何体【解析】【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.【分析】根据从不同角度截得几何体的形状判断出正确选项.12、【答案】C【考点】截一个几何体【解析】【解答】解:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:C.【分析】根据几何体的形状,可得答案.二、填空题13、【答案】点动成线【考点】点、线、面、体【解析】【解答】解:飞机表演的“飞机拉线”用数学知识解释为:点动成线.故答案为点动成线.【分析】飞机在空中表演,飞机可看作一个点,则“飞机拉线”用数学知识解释为:点动成线.14、【答案】24【考点】几何体的表面积,截一个几何体【解析】【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.15、【答案】六【考点】截一个几何体【解析】【解答】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形.故答案为:六.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.16、【答案】五【考点】截一个几何体【解析】【解答】解:用一个平面去截一个三棱柱,截面图形的边数最多的为五边形.故答案为:五.【分析】方法:用平面去截几何体,平面与几何体几个面相加,就产生几条交线,就形成几边形,三棱柱只有五个面,最多截面与五个面相交,产生五条交线,形成五边形.17、【答案】八【考点】截一个几何体【解析】【解答】解:∵用平面去截正方体时最多与8个面相交得八边形,∴最多可以截出八边形.故答案是:八.【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与五个面相交得三角形.因此最多可以截出八边形.三、作图题18、【答案】解:如图所示:【考点】截一个几何体【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,依此即可求解.四、解答题19、【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.20、【答案】解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条【考点】截一个几何体【解析】【分析】一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,相加即可.五、综合题21、【答案】(1)解:长方形绕一边旋转一周,得圆柱.情况①:π×32×4=36π(cm3);情况②:π×42×3=48π(cm3)(2)解:情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).【考点】点、线、面、体【解析】【分析】(1)旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的体积公式计算即可求解;(2)根据圆柱的表面积公式计算即可求解.22、【答案】(1)解:以4cm为轴,得;以3cm为轴,得;以5cm为轴,得(2)解:以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π,以5cm为轴的体积为×π()2×5=9.6π【考点】点、线、面、体【解析】【分析】(1)根据三角形旋转是圆锥,可得几何体;(2)根据圆锥的体积公式,可得答案.。
人教版七年级数学上册第四章 几何图形的初步习题(含答案)
第四章几何图形的初步一、单选题1.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A.7B.8C.9D.103.下列几何中,属于棱柱的是()①①①①①①A.①①B.①C.①①①D.①①4.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形5.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OC到C7.若点P在线段AB上,PB=4,PA=12PB,则AB的长度是()A.3B.6C.12D.6或128.如图,点C、O、B在同一条直线上,①AOB=90°,①AOE=①DOB,则下列结论:①①EOD=90°;①①COE=①AOD;①①COE=①DOB;①①COE+①BOD=90°.其中正确的个数是()A.1B.2C.3D.49.如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则①CBD的度数是()A.85°B.90°C.95°D.100°10.如图,已知①AOC=90°,①COB=α,OD平分①AOB,则①COD等于()A .2a B .45°-2a C .45°-α D .90°-α二、填空题11.一个角的余角比这个角的补角的13还小10°,则这个角的度数是______ . 12.用度、分、秒表示52.36°的补角为_____.13.下图是一个正方体的表面展开图,若将其折叠成原来的正方体,则与点A 重合的两点应该是点________.14.如图,长度为12cm 的选段AB 的中点为,M C 为线段MB 上一点,且:1:2MC MB ,则线段AC 的长度为___cm .三、解答题15.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
人教版七年级数学上册几何图形测试题
人教版7年级数学考试题测试题人教版初中数学第2课时几何图形的三种形状图与展开图能力提升1.下列四个图中,是三棱锥的表面展开图的是()2.下列图形经过折叠,能围成圆锥的是()3.将右面正方体的平面展开图重新折成正方体后,“共”字对面的字是()A.阖B.家C.幸D.福4.骰子是一种特殊的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()5.下图是从不同方向看某一几何体得到的平面图形,则这个几何体是.6.根据下列多面体的平面展开图,填写多面体的名称:(1),(2),(3).7.将下图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)8.如图,画出所给几何体的从正面看、左面看和上面看得到的图形.创新应用★9.如图是火箭腾空的立体图形(火箭圆柱底面的周长不等于圆柱的高),请你画出火箭的平面展开图.★10.如图,水平放置的长方体的底面是边长为2和4的长方形,从左边看该长方体,得到的图形的面积是6,试求该长方体的体积.参考答案能力提升1.B三棱锥的四个面都是三角形,还要能围成一个立体图形,可排除C,D;而A不能围成立体图形,故选B.2.B3.C4.C根据题意,骰子的平面展开图共有六个面,其中面“1”与面“6”相对,面“4”与面“3”相对,面“2”与面“5”相对.所以只有C中的相对两个面上的点数与立体图形一致.5.圆柱6.(1)长方体(2)三棱柱(3)三棱锥7.1或2或68.解:创新应用9.解:10.解:由题意知长方体的高为3,则体积为4×2×3=24.附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
因此,我们所做的每一个决定都应该紧紧围绕这个问题:它是否对我们的学生最好?我相信,如果每个教育工作者都能时刻考虑这个问题,那么我们的教育环境一定会比现在所呈现出来的样子要好得多。
那现实究竟是怎样的?我们平时在学校是如何做决定的呢?教师都是普通人,难免会犯错误,于是有的时候大家会不自觉地选择那些对自己最好或是最简单的决定。
人教版数学七年级上册《4.1 几何图形》练习
B.
C.
D.
11.如图,共有 12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方
体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,能构成这个正
方体的表面展开图的有( )个.
A. 4
B. 5
C. 6
D. 7
12.如图是一个直三棱柱,则它的平面展开图中,错误的是( )
A.
B.
宽是原正方形边长的两倍;
(2)俯视图为半径为 1 的圆,根据圆的面积公式求出即可.
22.【答案】解:分两种情况:
3
①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(c );
3
②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(c ).
3
3
故它们的体积分别为 45πc 或 75πc .;
5.【答案】C;
【解析】解:A、是田字格,不是正方体的平面展开图,故选项错误;
B、缺少上下 2 个底面,不是正方体的平面展开图,故选项错误;
C、是一个正方体的平面展开图,故选项正确;
D、是凹字格,不是正方体的平面展开图,故选项错误.
故选 C.
6.【答案】C;
【解析】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D 选项可以拼成
而另一端一定与圆锥的底面相交,即靠近 A、B 两点的两个空白部分无法围成环并且
紧贴底面.
故选 B.
16.【答案】线动成面;
【解析】解:汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,
故答案为:线动成面.
17.【答案】②;
【解析】解:平面图形②绕虚线旋转一周,可以得到图 1,
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(含答案解析)
一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .1 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40°3.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南 4.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 5.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( )A .30°B .60°C .30°或60°D .30°或150°6.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .187.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .48.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B9.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD的长为____cm A .2 B .3 C .5D .610.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm11.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( ) A .6种B .12种C .21种D .42种12.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.14.如图,共有_________条直线,_________条射线,_________条线段.15.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.16.已知一个角的补角是它余角的3倍,则这个角的度数为_____.17.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.18.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.19.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.20.如图,上午6:30时,时针和分针所夹锐角的度数是_____.三、解答题21.已知:如图,在∠AOB的内部从O点引3条射线OC,OD,OE,图中共有多少个角?若在∠AOB的内部,从O点引出4条,5条,6条,…,n条不同的射线,可以分别得到多少个不同的角?22.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度. (2)若6AB =,求MN 的长度. 24.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数. 25.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 26.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由AB =10cm ,BC =4cm .于是得到AC =AB +BC =14cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD =AD ﹣AM ,于是得到结论. 【详解】解:∵AB =10cm ,BC =4cm ,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.2.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.3.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .4.B解析:B 【分析】先进行度、分、秒的乘法除法计算,再算减法. 【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=- 386415055︒︒''''-''='''363355︒=. 故选:B . 【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.5.D解析:D 【分析】根据两角的比和两角的和即可求得两个角的度数. 【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得 当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°. 故选:D . 【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.6.B解析:B 【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,进而可得答案. 【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n =1; 任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m =21;则m +n =21+1=22. 故选:B . 【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.7.C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.9.A解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.10.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.11.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.15.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.16.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.17.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体,四棱锥,三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.18.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.19.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.20.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°.故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB 的内部从O 点引3条射线共有1452⨯⨯个角; 4、结合作3条射线得到的角的个数,可以推出以O 为顶点共有n 条射线时,得到的角的个数为(1)(2)2n n ++,继而将n=5、6、7代入即可. 【详解】 解:顺时针数,与射线OA 构成的角有4个,与射线OC 构成的角有3个,与射线OD 构成的角有2个,与射线OE 构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n 条射线有角(n +1)+n +(n -1)+…+2+1=(1)(2)2n n ++ (个) . 【点睛】本题中,根据以点O 为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n 条射线这时无法逐一列举,可用规律归纳法.22.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm , 21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.23.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.25.(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.26.40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用.。
人教版七年级数学上册第4章几何图形初步练习题
人教版七年级数学上册第4章几何图形初步习题一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.人教版七年级数学上册第4章几何图形初步练习题参考答案一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC= ∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD= BC= ×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1= ×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4= ×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数= .13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2= ∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得 .【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴ , .∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵ = ,又∠AOB是直角,不改变,∴ .【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC= A C= BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x= (180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
人教新课标七年级上册数学几何的代数练习题50道
人教新课标七年级上册数学几何的代数练
习题50道
概述:
本文档提供了人教新课标七年级上册数学几何的代数练题共50道。
这些练题涵盖了数学几何中的代数概念和技巧,并旨在帮助学生巩固和提高其代数运算能力。
练题列表:
1. 求下列各式代数和的值:(3x + 2) + (4x - 1)
2. 计算下列各数的和:-5 + (x - 3) + (2x + 7)
3. 化简下列各式并求值:2(3x + 5) - (4x - 2)
4. 计算下列各数的和:(-2x + 3) + (4 - x) + (2x - 1)
5. 求下列各式代数和的值:(2a + 3b) - (a - b) + (3a - 2b)
......(以下练题依次类推)
目标:
通过完成这些代数练题,学生能够:
- 理解代数运算的基本概念和原则
- 掌握代数运算的基本技巧
- 运用代数知识解决实际问题
注意事项:
- 在进行计算过程中,注意进行合并同类项、化简等基本操作- 确保在计算过程中准确使用各种代数运算法则
期望效果:
通过完成这50道代数练题,学生能够在数学几何的代数运算方面提高其技能水平,为进一步研究数学打下坚实的基础。
参考答案:
为了更好地帮助学生自我检测和巩固知识,建议提供每道题的参考答案。
请参考相关教材或教师提供的参考答案。
备注:
根据教育部《中小学教材修订管理办法》的规定,请保密和尊重教材的版权,遵循合理使用原则。
《6.1几何图形》课后小练(2024年)人教版数学七年级上册
人教版七年级上册《4.1几何图形》课后小练一、选择题1.下列几何体中,属于棱柱的是()A.B.C.D.2.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A,B,C,D中的()位置接正方形.A.A B.B C.C D.D3.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑4.用一个放大镜去观察一个角的大小,正确的说法是()A.角的度数扩大了B.角的度数缩小了C.角的度数没有变化D.以上都不对5.在一条直线上依次有E、F、G、H四点.若点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=GH B.EG<GH C.GH>2FG D.FG= 12GH 6.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外7.一个角的平分线与这个角相邻的补角的平分线组成的角是()A.直角B.锐角C.钝角D.平角8.由一些花盆组成如图正方形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案的花盆总数为s,按此规律推断,s与n的关系式是()A.4n B.(n-2)×4 C.(n-4)×4 D.(n-1)×4 9.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.12∠2-∠1 B.12∠2- 32∠1 C.12(∠2-∠1)D.13(∠1+∠2)10.如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e 二、填空题11.如图,OA,OB是两条射线,C是OA上一点,D,E是OB上两点,则图中共有______ 条线段.12.如图,A、B、C、D、E是直线上顺次五点,则:(1)BD=CD+ ______ ;(2)BD=AD- ______ ,BC=BE- ______ .13. 3.76°= ______ 度 ______ 分 ______ 秒.14.22°32′24″= ______ 度;125°÷4= ______ 度 ______ 分.15.在图中,共有k个三角形,则k+2001=______ .16.两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=135°,则∠BOC= ______度.17.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB的度数为 ______ °.18.已知角a的余角比它的补角的1还少10°,则a= ______ .3三、解答题19.计算:175°16′30″-47°30′÷6+4°12′50″×3.20.如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出4种与此不同的展开图.21.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC-BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?22.我们规定,如果两个角的差是一个直角,那么这两个角互为足角.其中的一个角叫做另一个角的足角.(1)如图,直线经过点O,OE平分∠COB,OF⊥OE.请直接写出图中∠BOF的足角;(2)如果一个角的足角等于这个角的补角,求这个角的度数.23.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.(1)若∠AOC=50°,则∠DOE=______ °;(2)若∠AOC=50°,则图中与∠COD互补的角为 ______ ;(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?24.一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;…;若在第n次操作后,剩下的长方形为正方形,则称原长方形为n阶奇异长方形.如图1,长方形ABCD 中,若AB=2,BC=6,则称长方形ABCD为2阶奇异长方形.(1)判断与操作:如图2,长方形ABCD长为10,宽为4,它是奇异长方形,请写出它是 ______ 阶奇异长方形,并在图中画出裁剪线;(2)探究与计算:已知长方形ABCD的一边长为30,另一边长为a (a<30),且它是3阶奇异长方形,请画出所有可能的长方形ABCD及裁剪线的示意图,并求出相应的a值.。
人教版七年级上册数学 第四章 几何图形初步 训练题 (10)
第四章几何图形初步训练题 (10)一、单选题1.一个棱柱有14个顶点,所有的侧棱长之和是42,则每条侧棱长为()A.6 B.8 C.10 D.122.学校升国旗用的旗杆给我们的形象是()A.直线B.射线C.线段D.折线3.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,若∠AOC=120°,则∠BOC 等于()A.40°B.50°C.30°D.20°4.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是()A.B.C. D.5.关于棱柱,下列说法正确的是()A.棱柱侧面的形状可能是一个三角形B.棱柱的每条棱长都相等C.棱柱的上、下底面的形状相同D.棱柱的棱数等于侧面数的2倍6.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6 B.7 C.8 D.97.一个角的补角是它的余角的3倍,这个角的度数是()A.30°B.45°C.60°D.75°8.从省实验中学出发,向北走约2公里,再向东走约2公里到继红小学;从博物馆出发,向北走约1公里,再向东走约1公里,也到达继红小学,那么省实验中学在博物馆的()A.东北方向B.东南方向C.西北方向D.西南方向9.下列语句正确的是()A .延长射线AB 至C 点B .延长线段AB 至C 点,使2BC AC = C .AOB ∠的边OA 的长是10cmD .一个锐角既有余角又有补角 10.如图,已知∠BOC=2∠AOC ,OD 平分∠AOB ,且∠COD=22.5°,则∠AOB 的度数为( )A .100°B .120°C .135°D .150° 11.如图,D 、E 顺次为线段AB 上的两点,AB=19,BE -DE=7,C 为AD 的中点,则AE -AC 的值为( )A .5B .6C .7D .812.下列算式正确的是( )①33.33°=33°3′3″;②33.33°=33°19′48″;③50°40′30″=50.43°;④50°40′30″=50.675°. A .①和② B .①和③ C .②和③ D .②和④二、填空题13.直线上依次有A ,B ,C ,D 四个点,AD=7,AB=2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为_____.14.已知∠1=30°,则∠1的余角的补角度数是_________.15.钟面上7点30分时,时针与分针的夹角的度数是_____.16.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前相对面上的数字是_____.17.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______.18.如图,该图是一个正方体的展开图,把展开图折叠成正方体后,有“少”字一面的相对面上的字是____.19.如图,用一张边长为10cm 的正方形纸片剪成“七巧板”,并将这拼成七巧板拼成了一柄宝剑,那么这柄宝剑图形的面积是______.20.如图,一个长方体长9cm ,宽5cm ,高4cm .从这个长方体的一个角上挖掉一个棱长3cm 的正方体,剩下部分的体积是(______)3cm ,剩下部分的表面积是(______)2cm .三、解答题21.如图,为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm ,根据图中数据.(1)该长方体盒子的宽为 ,长为 ;(用含x 的代数式表示) (2)若长比宽多2cm ,求盒子的容积.22.把一副三角板的直角顶点O 重叠在一起.()1如图1,当OB 平分COD ∠时,求AOC ∠和AOD ∠度数;()2如图2,当OB 不平分COD ∠时,①直接写出AOC ∠和BOD ∠满足的数量关系;②直接写出AOD ∠和BOC ∠的和是多少度?()3当AOC ∠的余角的4倍等于AOD ∠时,求BOC ∠是多少度?23.(1)钟表上2时15分时,时针与分针所成的锐角的度数是多少?(2)若时针由2点30分走到2点55分,问分针转过多大的角度?24.如图,请在横线上画一个角,这个角与图中的角互为补角.25.如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.26.(1)先化简,再求值:3x2﹣(2x2﹣xy+y2)+(﹣x2+3xy+2y2),其中x=﹣2,y=3.(2)一个角比它的余角大20°,求这个角的补角度数.27.补全下列解题过程:如图,OD是∠AOC的平分线,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°∴∠DOC=12∠_______=______°.∵∠BOC+∠_____=120°,∠BOC-∠AOB=40°∴∠BOC=80°∴∠BOD=∠BOC-∠______=______°28.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图...画在如下的画图区中.【答案与解析】一、单选题1.A解析:A根据顶点个数可得棱柱为7棱柱,故可求出侧棱长.∵一个棱柱有14个顶点,∴这个棱柱为7棱柱,故有7条侧棱,则每条侧棱长为42÷7=6,故选A.【点睛】此题主要考查棱柱的特点,解题的关键是熟知棱柱顶点与棱柱的关系.2.C解析:C根据直线、射线、线段的特征判断解:因为旗杆不可以延长,可以度量,所以给我们的形象近似地看成线段.故选:C.【点睛】线段是直线、射线的一部分;直线:没有端点,可以无限延长,不可以度量;线段:有两个端点,不可以延长,可以度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何练习题20道
1.已知AB=40,C是AB的中点,D为CB上一点,E是DB的中点,EB=6,求CD的长。
2.将线段AB延长到C,使BC=1/3AB,D为AC中点,DC=6cm,求AB的长。
3、如图,C、D是线段AB上两点,AB=10厘米,C D=4厘米,M、N分别是AC、BD的中点,
求MN长.
4.点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=cm,其它条件不变,你能猜想MN的长度吗?并说明理由。
5.如图,一个密封的正方体盒子,一只蚂蚁停在顶点A处。
(1)如果蚂蚁想要从顶点A沿表面爬行到顶点B,它怎样爬行可使线路最短?通过画
图说明你的理由。
(2)如果蚂蚁想要从顶点A沿表面爬行到顶点C,它怎样爬行可使线路最短?通过画
图说明你的理由。
C
B
A
6.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=60°,∠BOC=20°, 求∠AOC 的度数.
7. 已知∠AOB=
2
1
∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB 和∠COD 的度数.
8.已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.
9.如图所示:点O 是直线AB 上的一点,OE 平分AOC ∠,OD 平分BOC ∠。
求:(1) DOE ∠的度数;
(2)图中互余的角有多少对?请把它们写出来.(一定要仔细哦!)
10. 如图已知,△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线。
求:∠DAE的度数。
五.作图题 (本大题共 6 分)
11. 如图已知△ABC,用刻度尺和量角器画出:∠A的平分线;AC边上的中线;AB边上的高。
12. 如图已知:∠α和线段α。
求作:等腰△ABC,使得∠A=∠α, AB=AC,BC边上的高AD=α。
13. 在铁路的同旁有A、B两个工厂,要在铁路旁边修建一个仓库,使与A、B两厂的距离相等,画出仓库的位置。
六.解答题 (本大题共 5 分)
14. 如图已知:Rt ΔABC 中,C=90°,DE ⊥AB 于D ,BC=1,AC=AD=1。
求:DE 、BE 的长。
15、 如图,已知∠AOB 是∠AOC 的余角,∠AOD 是∠AOC 的补角,且
BOD BOC
∠=∠2
1
,求∠BOD 、∠AOC 的度数
16、 已知,如图∠BOC 为∠AOC 内的一个锐角,射线OM 、ON 分别平分∠AOC 、∠BOC 。
(1)若∠AOB=90°,∠BOC=30°,求∠MON 的度数; (2)若∠AOB=α,∠BOC=30°,求∠MON 的度数;
(3)若∠AOB=90°,∠BOC=β,还能否求出∠MON 的度
数?若能,求出其值,若不能,说明理由。
17、 一个角的余角比它的补角的3
1
还少20°,求这个角.
D
O C
B
A
O D
C
B
A
第24题图
3x -2
A 1
-2x 3第25题图
E A /
D
C B A
18、 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,
求∠AOC 的度数.
19. 如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看得到的?
⑴
⑵ ⑶
20. 如图是一个正方体的平面展开图,标注了A
字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.
⑴ 求x 的值
.
⑵ 求正方体的上面和底面的数字和.
25.探究题:
如图,将书页一角斜折过去,使角的顶点A 落在A /
处,BC 为折痕,BD 平分
∠A /
BE ,求∠CBD 的度数.
参考答案:
一、选择题:
;;;;;;;;;;;;13.③;
二、填空题:;;16. 12.5°,150°;°;°,60°,85°;
°°
三、解答题: 21.略; 22.⑴.29°29/1238°57/;⑶.75°;⑷.69°.
23.⑴是从上面看;⑵.是从正面看到;⑶.是从左面看. 24.⑴1;⑵4.
°。