中考总复习 解直角三角形的实际应用

合集下载

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。

将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。

在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。

为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。

模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。

【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。

中考数学高频考点训练——解直角三角形的应用 (1)

中考数学高频考点训练——解直角三角形的应用 (1)

中考数学高频考点训练——解直角三角形的应用 1. 如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)2. 如图,在距某输电铁塔GH (GH 垂直地面)的底部点H 左侧水平距离60米的点B 处有一个山坡,山坡AB 的坡度i =13B 到坡顶A 的距离AB 等于40米,在坡顶A 处测得铁塔顶点G 的仰角为30°(铁塔GH 与山坡AB 在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH .(结果保留根号)3. 为了维护南海的主权, 我国对相关区域进行海空常态化立体巡航.如图, 在一次巡航中,预警机沿 AE 方向飞行, 驱护舰沿 BP 方向航行, 且航向相 同 ()AE BP ∥. 当顼紫机飞行到 A 处时,测得航行到 B 处的驱护舰的俯角为 45 ,此时 B 距离相关岛屿 P 恰为 60 千米; 当预警机飞行到 C 处 时 , 驱护舰恰好航行到预警机正下方 D 处,此时 10CD = 千米,当预警机继续飞行到 E 处时,驱护舰到达相关岛屿,P 且测得E 处的预警机的仰角为22.︒求预警机的飞行距离AE .(结果保留整数)(参考数据: sin220.37,cos220.93,tan220.40≈≈≈.)4. 如图,海面上甲、乙两船分别从A ,B 两处同时出发,由西向东行驶,甲船的速度为24n mile/h ,乙船的速度为15n mile/h ,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile ,经过20分钟后,甲、乙两船分别到达C ,D 两处.(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)(1)求两条航线间的距离;(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)5. 某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,AB 可绕点A 旋转,在点C 处安装一根长度一定且C 处固定,可旋转的支撑臂CD ,30AD cm =.(1)如图2,当24BAC =∠时,CD AB ⊥,求支撑臂CD 的长;(2)如图3,当12BAC =∠时,求AD 的长.(结果保留根号)(参考数据:sin 240.40≈,cos 240.91≈,tan 240.46≈,sin120.20≈)6. 如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处.已知AB=BD=800米,∠α=75°,∠β=45°,求山高DE(结果精确到1米).(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.7322=1.414)7. 地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.8. 梁子湖是驰名中外的武昌鱼的故乡,“五一”期间游人络绎不绝.现有一艘游艇载着游客在湖中游玩,如图,当游艇在A处时,艇上游客发现P1处的青山岛和P2处的梁子岛都在东北方向;当游艇向正东方向行驶30km到达B处时,游客发现梁子岛在北偏西15°方向;当游艇继续向正东方向行驶20km到达C处时,游客发现青山岛在北偏西60°方向.(1)求A处到青山岛P1处的距离;(2)求青山岛P1处与梁子岛P2处之间的距离.(计算结果均保留根号)9. 如图,建在山腰点A 处的一座“5G”发射塔AB 与地面CM 垂直,在地面C 处测得发射塔AB 的底部A 、顶端B 的仰角分别为30°、60°,在地面D 处测得发射塔AB 的底部A 的仰角为45°.(1)若设AC k =,则AD = ;(用含k 的代数式表示)(2)若测得()18318CD =米,求AB .10. 如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知2BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角45ADC ∠=︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.4DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)11. 如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且BC =2.7米,CD =11.5米,∠CDE =120°,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度.(结果保留根号)12. “眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)13. 河南省政府为促进农业发展,加快农村建设,计划扶持兴建一批新型钢管装配式大棚,如图1所示线段AB 、BD 分别为大棚的墙高和跨度,AC 表示保温板的长,已知墙高AB 为3米,墙面与保温板所成的角∠BAC=150°,在点D 处测得A 点、C 点的仰角分别为9°,15.6°,如图2所示求保温板AC 的长是多少米?(精确到0.1米)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,314. 如图1是一台刷脸支付仪,由底柱、水平托板、支撑板和电子器材构成.图2是其上半部分的侧面示意图.电子器材长16cm AC =,支撑板长16cm BD =,水平托板DE 离地面的高度为120cm ,75CBD ∠=︒,60BDE ∠=︒,已知摄像头在点A 处,支撑点B 是AC 的中点,电子器材AC 可绕点B 转动,支撑板BD 可绕点D 转动.(1)如图2,求摄像头(点A )离地面的高度h (精确到0.1cm ).(2)如图3,为方便使用,把AC 绕点B 逆时针旋转15︒后,再将BD 绕点D 顺时针旋转α度,使点C 落在水平托板DE 上,求α(精确到0.1︒).(参考数据:tan26.60.5≈°,2 1.41≈3 1.73≈)15. 2021年,我市在创建全国文明城市的检查中发现,一些公交车候车亭有破损需修缮,现已更换新的公交候车亭(图1),图2所示的是侧面示意图,AB 为水平线段,CD AB ⊥,点E 为垂足, 3.56m, 2.78m AB AE ==,点C 在弧AB 上,且点O 为弧AB 所在的圆的圆心,27OAB ∠=︒,则CE 的长约为多少米?(参考数据:sin 270.45,cos 270.89,tan 2723 1.732︒≈︒≈︒≈≈,结果精确到0.01)。

第19讲中考数学总复习(练习题) 解直角三角形的应用

第19讲中考数学总复习(练习题) 解直角三角形的应用
在Rt△ABC中,∵∠ACB=45°,∴AB=BC,
在Rt△ABD中,∵∠ADB=60°,
∴BD=
3
AB=10
3
3 m,
∴CD=BC-BD=(30-10 3)m.
导航
6.(2021·南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距
离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位
于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离
为 25 6 海里(结果保留根号).
导航
解析:过P作PC⊥AB于C,如图所示:
由题意得:∠APC=30°,∠BPC=45°,PA=50海里,
PC
在 Rt△APC 中,cos∠APC=PA,
3
∴PC=PA·cos∠APC=50× =25
2
PC
在 Rt△PCB 中,cos∠BPC= ,
PB
PC
25 3
( D )
(参考数据:sin 50°≈0.77;
cos 50°≈0.64;tan 50°≈1.19)
A.69.2米
B.73.1米
C.80.0米
D.85.7米
导航
解析:∵斜坡CD的坡度(或坡比)为i=1:2.4,
∴DE∶CE=5∶12,
∵DE=50米,∴CE=120米,
∵BC=150米,
∴BE=150-120=30(米),
尝试利用所学知识测量河对岸大
树AB的高度,他在点C处测得大树
顶端A的仰角为45°,再从C点出发
沿斜坡走2 米到达斜坡上D点,在点D处测得树顶端A的仰
角为30°,若斜坡CF的坡比为i=1∶3(点E、C、B在同一水平
线上).
(1)求王刚同学从点C到点D的过程中上升的高度;

中考数学复习:专题七:解直角三角形的实际应用

中考数学复习:专题七:解直角三角形的实际应用

°=BBDC,解得:BC=100 6-100 2,则(100 6-100 2)÷4=25( 6-
2)(海里/时),则该可疑船只的航行速度为 25( 6- 2)海里/时
【点评】 本题考查了解直角三角形的应用——方向角问题.解题关 键是根据题意画出图形,构造直角三角形.
[对应训练] 2.(2016·衡阳)在某次海上军事演习期间,我军为确保△OBC 海域内的安 全,特派遣三艘军舰分别在 O,B,C 处监控△OBC 海域,在雷达显示图 上,军舰 B 在军舰 O 的正东方向 80 海里处,军舰 C 在军舰 B 的正北方向 60 海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半 径为 r 的圆形区域.(只考虑在海平面上的探测) (1)若三艘军舰要对△OBC 海域进行无盲点监控,则雷达的有效探测半径 r 至少为多少海里? (2)现有一艘敌舰 A 从东部接近△OBC 海域,在某一时刻军舰 B 测得 A 位 于北偏东 60°方向上,同时军舰 C 测得 A 位于南偏东 30°方向上,求此 时敌舰 A 离△OBC 海域的最短距离为多少海里?
解:(1)作 BH⊥AF 于点 H,如图,在 Rt△ABH 中,∵sin∠BAH=BAHB, ∴BH=800·sin30°=400,
∴EF=BH=400 米 (2)在 Rt△CBE 中,∵sin∠CBE=BCCE,∴CE= 200·sin45°=100 2≈141.4,∴CF=CE+EF=141.4+400≈541(米). 答:AB 段山坡高度为 400 米,山 CF 的高度约为 541 米
解:过 B 作 BE⊥AD 于点 E,∵∠NAD=60°,∠ABD=75°,∴∠ADB =45°,∵AB=6×4600=4,∴AE=2,BE=2 3,∴DE=BE=2 3,∴ AD=2+2 3,∵∠C=90°,∠CAD=30°,

中考数学专题复习——解直角三角形的实际应用的基本类型课件

中考数学专题复习——解直角三角形的实际应用的基本类型课件

) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a

中考数学考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用

中考数学考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用

是点 E,点 F.由题意得,∠CDE=37°.
CE
DE
在 Rt△CDE 中,sin 37°=CD,cos 37°=CD,
CD=200,
∴CE=200·sin 37°≈120,DE=200·cos 37°≈160.
∵AB⊥BC,DE⊥BC,DF⊥AB,
∴∠B=∠DEB=∠DFB=90°.
∴四边形 BEDF 是矩形,∴BE=DF,BF=DE=160, ∴AF=AB-BF=300-160=140.
DF 在 Rt△ADF 中,tan 65°=AF, ∴DF=AF·tan 65°≈140×2.14=299.60. ∴BC=BE+CE=299.60+120≈420. 答:革命纪念碑与党史纪念馆之间的距离约为 420 米.
2.(2021·丹东)如图,一架无人机在空中 A 处观测到山顶 B 的仰角为 36.87°,山顶 B 在水中的倒影 C 的俯角为 63.44°,此时无 人机距水面的距离 AD=50 米,求点 B 到水面距离 BM 的高 度.(参考数据:sin 36.87°≈0.60,cos 36.87°≈0.80, tan 36.87°≈0.75,sin 63.44°≈0.89,cos 63.44°≈0.45, tan 63.44°≈2.00)
1.(2020·安徽第 8 题 4 分)如图,Rt△ABC 中,∠C=90°,点 D 在 AC
上,∠DBC=∠A.若 AC=4,cos A=45,则 BD 的长度为
( C)
A.94
B.152
C.145
D.4
命题点 2:解直角三角形的实际应用(必考) 2.(2021·安徽第 17 题 8 分)学生到工厂劳动实践,学习制作机械零件.零 件的截面如图阴影部分所示,已知四边形 AEFD 为矩形,点 B, C 分别在 EF,DF 上,∠ABC=90°,∠BAD=53°,AB=10 cm, BC=6 cm.求零件的截面面积.(参考数据:sin 53°≈0.80, cos 53°≈0.60)

中考专题--解直角三角形的实际应用

中考专题--解直角三角形的实际应用

解直角三角形的实际应用----锐角三角函数
考情分析:
解直角三角形的实际应用为河南中考的热点,重点,近十年的考试连续出现此种题型,2015年、2018年出现在第20题位置,2020年出现在第18题位置,其他年份出现在第19题,分值为9分,属于中档题型,为考生必须掌握且容易掌握题型。

必备知识:
一、解直角三角形的概念
二、特殊角的锐角三角函数值
三、根据三角函数名记忆三角函数的定义
四、审题重点及解题的思维逻辑
两种模型:
一、并列式
二、包含式
直面真题:
模型一
例题1.(2018年中考9分)
例题1.(2017年19题9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°
≈,tan53°≈,≈1.41)
练习1.(2014年19题9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B 测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)
练习2.(2015年20题9分)。

用解直角三角形解决实际问题(中考复习)

用解直角三角形解决实际问题(中考复习)
若小岛P的周围8海里内有暗礁,渔船不改变航线继续向东航行, 有没有触礁的危险?
P 北 600 北
300 B
L
A
1. (2012钦州)热气球的 探测器显示,从热气球看 一栋高楼顶部的仰角为 30°,看这栋高楼底部的 俯角为60°,热气球与高 楼的水平距离为120m,这 栋高楼有多高(结果精确 到0.1m)
1.本题涉及到解直角三角形和圆的有关知识; 2.解决的方法是:先将实际问题转化成数学问题, 画出符合题意的图形, 然后构造直角三角形,再运用有关知识建立关系 是求解;
解:(1) 过点B作BA⊥PQ于点A, 依题意得∠BPA=750-450=300 在Rt△BPA中,PB=320米,∠BPA=30° ∴ AB=320•sin30°=160 < 200, ∴本次台风会影响B市. (2)以B为圆心,200米为半径作 圆B交PQ于点E.F, 依题意得AE=2002-1602=120米, ∴EF==2AE=240米 ∴台风影响B市的时间t=240÷30=8(小 时).
A
A
45°
C D B D C
60° 80米 E
在实际测量高度、宽度、距离等问题中, 常结合视角知识构造直角三角形,利用三 角函数或相似三角形来解决问题.常见的 构造的基本图形有如下几种:
①不同地点看同一点
②同一ቤተ መጻሕፍቲ ባይዱ点看不同点
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移 动的速度为30千米/时,受影响区域的半径为200千米,B市位 于点P的北偏东75°方向上,距离P点320千米. (1)说明本次台风是否会影响B市; (2)若这次台风会影响B市,求B市 受台风影响的时间.
中考复习 ---用解直角三角形解决实际问题
解直角三角形常用的一些关系:

中考数学复习专题(五)解直角三角形的实际应用(含答案)

中考数学复习专题(五)解直角三角形的实际应用(含答案)

(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。

中考解直角三角形的实际应用

中考解直角三角形的实际应用

解直角三角形的实际应用一、知识要点1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1).2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡面就越陡.如图(2).3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3).二、例题讲解例1.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D、F 在同一直线上).(1)求小敏到旗杆的距离DF .(结果保留根号) (2)求旗杆EF 的高度.(结果保留整数,参考数据:≈1.4,≈1.7)图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线迁移练习1.数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.例2.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)迁移练习2.如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】例3.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)迁移练习3.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()例4.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)迁移练习4.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)例5.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1∶2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45)()A. 262B. 212C. 244D. 276迁移练习5.气魄雄伟的大礼堂座落在渝中区学田湾,它是一座仿古民族建筑.“五一”期间,小明和妈妈到重庆大礼堂参观游玩.参观结束后,穿过人民广场到达A处,回望礼堂,更显气势雄伟,金碧辉煌.此时,在A点观察到礼堂顶端的仰角为31,沿着坡度为1:3的斜坡AB 走一段距离到达B点,观察到礼堂顶端的仰角是22,测得点B与地面的高度9BC=米,则大礼堂的高度DE为()米.(精确到1米.参考数据:2tan225≈,3tan315≈)A.56 B.59 C.62 D.65跟踪训练1.一艘货轮以20海里/时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B.货轮继续向北航行1小时后到达C处,发现灯塔B在它北偏东75°方向,那么此时货轮与灯塔B的距离为()海里(结果不取近似值)2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.253.今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)4.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)A. 29.1米B. 31.9米C. 45.9米D. 95.9米5.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N 的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)6.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长.(结果保留根号).(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M 的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向维续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5°≈0.45,cos26.5°=0.89,tan26.5°=0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33°)7.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,≈1.73)。

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。

2020年数学中考复习专题:解直角三角形的应用(常考类型)(附答案)

2020年数学中考复习专题:解直角三角形的应用(常考类型)(附答案)

2020年数学中考复习专题:解直角三角形的应用(常考类型)一、解直角三角形的应用:坡度坡角问题1.某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式扶梯AB长为10m,坡角∠ABD=30°;改造后斜坡式自动扶梯的坡角∠ACB=9°,请计算改造后的斜坡AC的长度,(结果精确到0.01)【sin9°≈0.156,cos9°≈0.988,tan9°≈0.158】2.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A射出的光线AB、AC与地面MN的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC长为米,求该夜行灯距离地面的高度AN的长.(参考数据:)3.太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光与玻璃吸热管垂直).已知:支架CF=100cm,CD=20cm,FE⊥AD于E,若θ=37°,求EF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)4.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)5.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)6.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)7.如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角∠CAB=45°,在距A点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除?(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)二、解直角三角形的应用:仰角俯角问题8.如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:≈1.41,≈1.73,精确到0.1m.)9.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)10.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼项M的仰角为45°,已知测角仪的高AD为1.5米.请根据他们的测量数据求此楼MF的高.(结果精到0.1m,参考数据:≈1.414,≈1.732,≈2.449)11.国庆期间,小明和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣.小明进行了以下的测量:他到与西塔距离26米的一栋大楼处,在楼底A处测得塔顶B的仰角为60°,再到楼顶C处测得塔顶B的仰角为30°.那么你能帮小明计算西塔BD和大楼AC的高度吗?12.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)13.某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).14.我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)三、解直角三角形的应用:方向角问题15.如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:≈1.73)16.如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)求景点A与C的距离.(结果保留根号)17.如图,轮船在A处观测灯塔C位于北偏东70°方向上,轮船从A处以每小时30海里的速度沿南偏东50°方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25°方向上,求灯塔C与码头B之间的距离(结果保留根号).18.如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile 的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)19.如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A 与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)20.某海域有A,B,C三艘船正在捕鱼作业,A船突然出现故障,向B,C两船发出紧急求救信号,此时C船位于B船的北偏西81°方向,距B船36海里的海域,A船位于B船的北偏东24°方向,同时又位于C船的北偏东69°方向.(1)求∠ACB的度数;(2)B船以每小时30海里的速度前去救援,问多长时间能到出事地点(结果精确到0.01小时.参考数据:≈1.414,≈1.732).21.如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A、B、C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB(结果用含非特殊角的三角函数和根式表示即可).参考答案一、解直角三角形的应用:坡度坡角问题1.【解答】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=AB sin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=9°,sin9°=,∴AC==≈32.05(m),答:改造后的斜坡AC的长度为32.05米.2.【解答】解:解:过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知:tan10°===,tan14°==,故4AD=DC,则=,解得:AD=1,答:该夜行灯距离地面的高度AN的长为1m.3.【解答】解:地面水平线与吸热管夹角∠1与θ互余,延长ED交BC的延长线于点H,则∠H=θ=37°,在Rt△CDH中,HC=,∴HF=HC+CF=+CF,在Rt△EFM中,EF=(+CF)•sin37°≈=76答:EF的长为76cm.4.【解答】解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4﹣0.6=1.8,∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2.在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.5.【解答】解:∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,∴∠ABE=30°,∴AE=AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴,即,解得,ED=320,∴CD==米,答:斜坡CD的长是米.6.【解答】解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=900(9﹣5)立方米.7.【解答】解:由题意知,AH=10米,BC=10米,在Rt△ABC中,∵∠CAB=45°,∴AB=BC=10米在Rt△DBC中,∵∠CDB=30°,∴DB==10(米)∵DH=AH﹣DA=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米)∴建筑物需要拆除.二、解直角三角形的应用:仰角俯角问题8.【解答】解:如图,过点E作EF⊥AC于F,则四边形CDEF为矩形,∴EF=CD,CF=DE=10,设AC=xm,则CD=EF=xm,BF=(x﹣16)m,在Rt△BEF中,∠EBF=60°,tan∠EBF=,∴=,∴x=24+8≈37.8m答:乙楼的高度AC的长约为37.8m.9.【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.10.【解答】解:设MC=x,∵∠MAC=30°,∴在Rt△MAC中,AC===x.∵∠MBC=45°,∴在Rt△MCB中,MC=BC=x,又∵AB=DE=40,∴AC﹣BC=AB=40,即x﹣x=40,解得:x=20+20≈54.6,∴MF=MC+CF=54.6+1.5=56.1(米),答:楼MF的高56.1米.11.【解答】解:作CE⊥BD于E,则四边形ACED为矩形,∴CE=AD=26,AC=DE,在Rt△BAD中,tan∠BAD=,则BD=AD•tan∠BAD=26,在Rt△BCE中,tan∠BCE=,则BE=CE•tan∠BCE=,∴AC=DE=BD﹣BE=,答:西塔BD的高度为26米,大楼AC的高度为米.12.【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.13.【解答】解:作DE⊥BC于E,则四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DE=BD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴AD=AF=70(米),答:电动扶梯DA的长为70米.14.【解答】解:如图所示:连接MN,由题意可得:∠AMN=90°,∠ANM=30°,∠BNM =45°,AN=8km,在直角△AMN中,MN=AN•cos30°=8×=4(km).在直角△BMN中,BM=MN•tan45°=4km≈6.9km.答:此时火箭所在点B处与发射站点M处的距离约为6.9km.三、解直角三角形的应用:方向角问题15.【解答】解:高速公路AB不穿过风景区.过点C作CH⊥AB于点H,如图所示.根据题意,得:∠CAB=30°,∠CBA=45°,在Rt△CHB中,∵tan∠CBH==1,∴CH=BH.设BH=tkm,则CH=tkm,在Rt△CAH中,∵tan∠CAH==,∴AH=tkm.∵AB=150km,∴t+t=150,∴t=75﹣75≈75×1.73﹣75=54.75.∵54.75>50,∴高速公路AB不穿过风景区.16.【解答】解:(1)过点C作CD⊥直线l,垂足为D,如图所示.根据题意,得:∠CAD=30°,∠CBD=60°.设CD=xkm.在Rt△ACD中,cot∠CAD==,∴AD=xkm;在Rt△BCD中,cot∠CBD==,sin∠CBD==,∴BD=xkm,BC=xkm.∴AB=AD﹣BD=x=10,∴x=5,∴BC=x=10km.(2)在Rt△ACD中,sin∠CAD==,∴AC=2CD=10km.17.【解答】解:过点B作BD⊥AC,交AC于点D由题意知,AB=30海里,∠DAB=60°,∠ABC=50°+25°=75°,∴∠C=45°在Rt△ABD中,∵sin∠DAB=,∴sin60°=∴BD=海里在Rt△BCD中,∵sin∠C=,∴sin45°=∴BC=海里答:灯塔C与码头B之间的距离为海里.18.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,如图所示.则DE∥CF,∠DEA=∠CF A=90°.∵DC∥EF,∴四边形CDEF为平行四边形.又∵∠CFE=90°,∴▱CDEF为矩形,∴CF=DE.根据题意,得:∠DAB=45°,∠DBE=60°,∠CBF=45°.设DE=x(nmile),在Rt△DEA中,∵tan∠DAB=,∴AE==x(nmile).在Rt△DEB中,∵tan∠DBE=,∴BE==x(nmile).∵AB=20×0.3=6(nmile),AE﹣BE=AB,∴x﹣x=6,解得:x=9+3,∴CF=DE=(9+3)nmile.在Rt△CBF中,sin∠CBF=,∴BC===9+3≈20(nmile).答:此时快艇与岛屿C的距离约为20nmile.19.【解答】解:(1)在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sin B=,∴AC=AB•sin37°=25×=15(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,由题意易知,D、C、M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=15×=12,AM=AC•cos∠CAM=15×=9.在Rt△AMD中,tan∠DAM=,∴DM=AM•tan76°=9×4=36,∴AD===9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.20.【解答】解:(1)∵BD∥CE,∴∠DBC+∠ECB=180°,∴∠ECB=180°﹣81°=99°,∴∠ACB=99°﹣69°=30°;(2)如图,作BH⊥AC,垂足为H.在△ABC中,∠CAB=180°﹣81°﹣24°﹣30°=45°.∵∠ACB=30°,∴在Rt△BCH中,BH=BC=18,∵在Rt△ABH中,sin∠CAB=,∴AB===18.则B船到A船出事地点的时间是:≈≈0.85(小时).答:B船约0.85小时能到达A船出事地点.21.【解答】解:过点C作CD⊥AB于点D,∵丙地位于甲地北偏西30°方向,距离甲地460km,.在Rt△ACD中,∠ACD=30°,∴AD=AC=230km.CD=AC=230km.∵丙地位于乙地北偏东66°方向,在Rt△BDC中,∠CBD=24°,∴BD==(km).∴AB=BD+AD=230+(km).答:公路AB的长为(230+)km.。

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。

中考数学 考点系统复习 第四章 三角形 微专题(一) 解直角三角形的实际应用

中考数学 考点系统复习 第四章 三角形 微专题(一) 解直角三角形的实际应用

得起点 B 的仰角为 40°.斜坡 CD 的坡度为 i=1∶2.4,底端点 C 与顶端
点 D 的距离为 26 m.参赛运动员们将从点 A 出发乘车沿水平方向行驶 100
m 到达点 C 处,再沿斜坡 CD 行驶至点 D 处,最后乘垂直于水平方向的电
梯到达点 B 处,则电梯 BD 的高度约为(参考数据:sin 40°≈0.64,cos

BD=AB
CD=EA,BD+DA=BA AD+CE+FB=AB
1.(2021·南岸区校级期中)如图,某大楼 AB 正前方有一栋小楼 ED,小
明从大楼顶端 A 测得小楼顶端 E 的俯角为 45°,从大楼底端 B 测得小楼
顶端 E 的仰角为 24°,小楼底端 D 到大楼前梯坎 BC 的底端 C 有 90 m,
在坡比为 5∶12 的山坡上走了 1 300 m,此时小明看山顶的角度为 60°,
则山高为
( B)
A.(600-250 5)m
B.(600 3-250)m
C.(350+350 3)m
D.500 3 m
6.(2021·重庆一中三模)如图,小欢同学为了测量建筑物 AB 的高度,
从建筑物底端点 B 出发,经过一段坡度 i=1∶2.4 的斜坡,到达 C 点,
则高楼 AB 的高度为(参考数据:sin 22°≈0.37,cos 22°≈0.93,tan
22°≈0.40)
(D)
A.60 m
B.70 m
C.80 m
D.90 m
4.如图,斜坡 AB 长 20 m,其坡度 i=1∶0.75,BC⊥AC,斜坡 AB 正前
方一座建筑物 ME 上悬挂了一幅巨型广告,小明在点 B 测得广告顶部 M 点
梯坎 BC 长 65 m,梯坎 BC 的坡度 i=1∶2.4,则大楼 AB 的高度为(结果

考点24 解直角三角形的实际应用【无答案】

考点24 解直角三角形的实际应用【无答案】

考点二十四解直角三角形的实际应用【命题趋势】在中考中,锐角三角形函数主要选择题、填空题,解答题考查为主,难度系数低。

【中考考查重点】解直角三角形的实际应用1.解一个直角三角形2.背靠背型3.母子型考点解直角三角形的实际应用1.(2021秋•包河区期末)如图,在离铁塔BC底部30米的D处,用测角仪从点A处测得塔顶B的仰角为α=30°,测角仪高AD为1.5米,则铁塔的高BC为()A.16.5米B.(10+1.5)米C.(15+1.5)米D.(15+1.5)米2.(2021秋•丛台区校级期末)如图,小东在教学楼距地面8米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗匀速上升的速度为()米/秒.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.0.3B.0.2C.0.25D.0.353.(2021秋•历城区期末)如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是()A.B.C.D.4.(2021秋•汉寿县期末)如图,某办公楼AB的后面有一建筑物CD(办公楼AB与建筑物CD均垂直于地面BCF),当光线与地面的夹角是22°时,办公楼在建筑物CD的墙上留下的影子CE=2米,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F 与墙角C有25米的距离(点B,F,C在同一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°≈,tan22°≈,)5.(2021秋•淇县期末)如图,河坝横断面迎水坡AB的坡比为1:,坝高BC=3m,则AC 的长度为()A.6m B.m C.9m D.m16.(2021秋•莱芜区期末)如图,某水库大坝的横断面是梯形ABCD,坝高DE=5m,斜坡BC的坡比为5:12,则斜坡BC=()A.13m B.8m C.18m D.12m 6.(2021秋•龙口市期末)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡;(1)求改造前坡顶与地面的距离BE的长;(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)【参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】7.(2021秋•汝阳县期末)如图,点A到点C的距离为100米,要测量河对岸B点到河岸AD的距离.小明在A点测得B在北偏东60°的方向上,在C点测得B在北偏东30°的方向上,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米8.(2021•钦州模拟)如图,一艘测量船在A处测得灯塔S在它的南偏东60°方向,测量船继续向正东航行30海里后到达B处,这时测得灯塔S在它的南偏西75°方向,则灯塔S离观测点A的距离是()A.15海里B.(15﹣15)海里C.(15﹣15)海里D.15海里9.(2021秋•成武县期中)如图在某监测点B处望见一艘正在作业的渔船在南偏西15方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行半小时后到达C处,在C 处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.30海里B.20海里C.20海里D.30海里1.(2021秋•历下区期末)我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点A处时,在P处测得A点的仰角∠DP A为30°,A与P两点的距离为10千米;它沿铅垂线上升到达B处时,此时在P处测得B点的仰角∠DPB为45°,则天舟二号从A处到B处的距离AB的长为()(参考数据:≈1.7,≈1.4).A.2.0千米B.1.5千米C.2.5千米D.3.5千米2.(2021秋•盐湖区期末)如图,一艘轮船在小岛A的西北方向距小岛40海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40)海里D.(40+40)海里3.(2021秋•柯城区期末)如图,河坝横断面迎水坡AB的坡比是1:2(坡比是坡面铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度最接近()(参考数据:≈1.73,≈2.24)A.5.2m B.6m C.6.7m D.9m4.(2021秋•通州区期末)如图,要测量山高CD,可以把山坡“化整为零”地划分为AB 和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为()A.(300+800)m B.700mC.(300+400)m D.(400+300)m5.(2021秋•安居区期末)如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为()米.A.20B.20C.10D.206.(2021秋•临淄区期末)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE=10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)7.(2021•抚顺)某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C 处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)1.(2021•深圳)如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin32°B.15tan64°C.15sin64°D.15tan32°2.(2021•重庆)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为i=1:2.4,坡顶D到BC的垂直距离DE=50米(点A,B,C,D,E在同一平面内),在点D处测得建筑物顶点A的仰角为50°,则建筑物AB的高度约为()(参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19)A.69.2米B.73.1米C.80.0米D.85.7米3.(2020•自贡)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为米(结果保留根号).4.(2020•泰安)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°≈1.2)5.(2021•黔西南州)如图,热气球的探测器显示,从热气球底部A处看一栋楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为150m,则这栋楼的高度是m.6.(2021•广西)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为米(结果保留根号).7.(2019•潍坊)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)1.(2021•双阳区一模)某课外数学兴趣小组的同学进行关于测量楼房高度的综合实践活动.如图,他们在距离楼房35米的C处测得楼顶的仰角为α,则楼房AB的高为()A.35sinα米B.35tanα米C.米D.米2.(2021•南山区校级二模)如图,从一热气球的探测器A点,看一栋高楼顶部的仰角为55°,看这栋高楼底部的俯角为35°,若热气球与高楼的水平距离为35m,则这栋高楼度大约是()(考数据:sin55°≈,cos55°≈,tan55°≈)A.74米B.80米C.84米D.98米3.(2021•长春模拟)如图,建筑工地划出了三角形安全区△ABC,一人从A点出发,沿北偏东53°方向走50m到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C 点,则点A与点B相距()(tan53°≈)A.B.C.D.130m 4.(2021•松北区三模)如图,胡同左右两侧是竖直的墙,一架3米长的梯子BC斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D处,此时测得梯子AD与地面的夹角为60°,则胡同左侧的通道拓宽了()A.米B.3米C.(3﹣)米D.(3﹣)米5.(2021•河南模拟)如图,AD是土坡AB左侧的一个斜坡,坡度为55°,村委会在坡底D处建另一个高为3米的平台,并将斜坡AD改为AC,坡比i=1:1,求土坡AB的高度.(精确到0.1米,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43.)6.(2021•九江模拟)如图1是甘棠湖上的一座拱桥,图2是其侧面示意图,斜道AB的坡度tan A=,斜道CD的坡度tan D=,得湖宽AD=76米,AB=10米,CD=12米,已知所在圆的圆心O在AD上.(1)分别求点B,C到直线AD的距离;(2)求的长.7.(2021•九龙坡区模拟)重庆市某校数学兴趣小组在水库某段CD的附近借助无人机进行实物测量的社会实践活动.如图所示,兴趣小组在水库正面左岸的C处测得水库右岸D 处某标志物DE顶端的仰角为α.在C处一架无人飞机以北偏西90°﹣β方向飞行100米到达点A处,无人机沿水平线AF方向继续飞行30米至B处,测得正前方水库右岸D 处的俯角为30°.线段AM的长为无人机距地面的铅直高度,点M、C、D在同一条直线上.(1)求无人机的飞行高度AM;(2)求标志物DE的高度.(结果精确到0.1米)(已知数据:sinα=,cosα=,tanα=,sinβ=,cosβ=,tanβ=2,≈1.732)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习解直角三角形的实际应用
【复习要点】解直角三角形在中考中一直占有一定比例,有关题型亮相也比较新颖,着重考查学生的基础知识和基本能力.中考要求及命题趋势:1.理解锐角三角形的三角函数
值的概念;2.会由已知锐角求它的三角函数,由已知三角函数值求它对应的锐角;3.会运用
三角函数解决与直角三角形有关的简单实际问题.
应试对策1.要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值:2掌握根据已知条件解直角三角形的方法,运用解直角三角
形的知识解决实际问题具体做到:①了解某些实际问题中的仰角、俯角、坡度等概念;②将实
际问题转化为数学问题,建立数学模型;③涉及解斜三角形的问题时,会通过作适当的辅助
线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题.
【复习流程】
一 .自我检测激活旧知
1.回忆表格
2.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=2
3
,求AB的长.
3.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
[ ] A.12
B.4米
C.5米
D.6米
二.归纳整理形成网络
1.仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.
2.俯角:视线在水平线下方的角叫做俯角.
3.坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作
i=________.
4.坡角:坡面与水平面的夹角叫做坡角,记作α.
i=tanα,坡度越大,α角越大,坡面越陡.
5.方位角:指北或指南方向线与目标方向线所成的小于90°的角叫做方位角.
注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指
北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下
南,左西右东.
三.明确考纲了解中考
C等级
近几年都以解答题为主,预测2017年中考,也会延续近五年的趋势,考一个解答题
四.讲练结合感受方法
类型一构造单个直角三角形
1.(2010安徽)如图,若河岸的两边平行,河宽为900m,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5m/s,求船从A处到B处约需时间几分(参考数据: 1.7 )
2.(2008•安徽)如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米≈1.732)
分析:由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.
解答:解:在Rt△BCD中,CD=BC×sin60°=20× =10
又DE=AB=1.5,
∴CE=CD+DE=CD+AB=10+1.5≈18.8
答:此时风筝离地面的高度约是18.8米.
点评:本题考查直角三角形知识在解决实际问题中的应用.
类型二构造双直角三角形
1.辅助线在三角形外(母子型)
3.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.
【解答】解:过点D作l1的垂线,垂足为F,
∵∠DEB=60°,∠DAB=30°,
∴∠ADE=∠DEB﹣∠DAB=30°,
∴△ADE为等腰三角形,
∴DE=AE=20,
在Rt△DEF中,EF=DE•cos60°=20× =10 (m)
∵DF⊥AF,
∴∠DFB=90°,
∴AC∥DF,
由已知l1∥l2,
∴CD∥AF,
∴四边形ACDF为矩形,CD=AF=AE+EF=30,
答:C、D两点间的距离为30m.
F
4.(2016临沂) 一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P南偏西45方向上的B处(参考数据:≈1.732,
结果精确到0.1)?
5.(2013安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)
2.辅助线在三角形内(背靠背型)
6.(2015安徽)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(≈1.732)
五.巩固练习形成能力
7.如图,在一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离.现测得AC=30 m,BC=70 m,∠CAB=120°,请计算A、B两个凉亭之间的距离.
如图23-6,一水库大坝的横断面为梯形ABCD,坝顶BC 8
宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之
比).
解:如图,分别过点B,C作BE⊥AD,CF⊥AD,垂足分别为E,F.
由题意可知BE=CF=20米,BC=EF=6米,∠D=30°.
在Rt△ABE中,i=BE
AE

1
2.5
,即
20
AE

1
2.5

∴AE=50米.
在Rt△CDF中,tan30°=CF
D F
,即
20
D F

3
3

∴DF=20×3
3
≈34.64米.
∴AD=AE+EF+FD=50+6+34.64≈90.6(米).
六.课堂总结归纳提升
你都回忆起来了么?
七.课后练习能力提升
1.如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A-C-B 行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10km,∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1km)(参考数据:≈1.41)
2.(2016贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据 1.414, 1.732)
解:由题意得,AH=10米,BC=10米,
在Rt△ABC中,∠CAB=45°,
∴AB=BC=10,
在Rt△DBC中,∠CDB=30°,
∴DB=10,
∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),
∵2.7米<3米,
∴该建筑物需要拆除.
八.布置作业
九.课后反思:
本节内容相对简,课堂反映较好,绝大多数学生能很好的掌握此内容解单直角三角形的例题可以少一些,多一些变式。

相关文档
最新文档