粒子群优化算法(详细易懂,很多例子)PPT课件

合集下载

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

粒子群优化算法PPT上课讲义

粒子群优化算法PPT上课讲义

02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想

粒子群算法(基础精讲)课件

粒子群算法(基础精讲)课件

神经网络训练
神经网络训练是指通过训练神经网络来使其能够学习和模拟特定的输入输出关系 。粒子群算法可以应用于神经网络的训练过程中,通过优化神经网络的参数来提 高其性能。
例如,在机器视觉、语音识别、自然语言处理等领域中,神经网络被广泛应用于 各种任务。粒子群算法可以用于优化神经网络的结构和参数,从而提高其分类、 预测等任务的准确性。
优势
在许多优化问题中,粒子群算法表现出了良好的全局搜索能 力和鲁棒性,尤其在处理非线性、多峰值等复杂问题时具有 显著优势。
粒子群算法的核心要素
02
粒子个体
01
粒子
在粒子群算法中,每个解被称为一个粒子,代表问题的 一个潜在解。
02
粒子状态
每个粒子的位置和速度决定了其状态,其中位置表示解 的优劣,速度表示粒子改变方向的快慢。
社会认知策略的引入
总结词
引入社会认知策略可以增强粒子的社会性,提高算法的群体协作能力。
详细描述
社会认知策略是一种模拟群体行为的方法,通过引入社会认知策略,可以增强粒子的社会性,提高算 法的群体协作能力。在粒子群算法中引入社会认知策略,可以使粒子更加关注群体最优解,促进粒子 之间的信息交流和协作,从而提高算法的全局搜索能力和鲁棒性。
03 粒子群算法的实现步骤
初始化粒子群
随机初始化粒子群的 位置和速度。
初始化粒子的个体最 佳位置为随机位置, 全局最佳位置为随机 位置。
设置粒子的个体最佳 位置和全局最佳位置 。
更新粒子速度和位置
根据粒子个体和全局最佳位置计 算粒子的速度和位置更新公式。
更新粒子的速度和位置,使其向 全局最佳位置靠近。
每个粒子都有一个记录其历史最 佳位置的变量,用于指导粒子向

粒子群优化算法PPT

粒子群优化算法PPT

Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体, 蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚集成 群可以有效地逃避捕食者,因为任何一只鱼发现异常 都可带动整个鱼群逃避。蚂蚁成群则有利于寻找食物, 因为任一只蚂蚁发现食物都可带领蚁群来共同搬运和 进食。一只蜜蜂或蚂蚁的行为能力非常有限,它几乎 不可能独立存在于自然世界中,而多个蜜蜂或蚂蚁形 成的Swarm则具有非常强的生存能力,且这种能力不 是通过多个个体之间能力简单叠加所获得的。社会性 动物群体所拥有的这种特性能帮助个体很好地适应环 境,个体所能获得的信息远比它通过自身感觉器官所 取得的多,其根本原因在于个体之间存在着信息交互ce(续)
由于SI的理论依据是源于对生物群落社会性的模拟, 因此其相关数学分析还比较薄弱,这就导致了现有研 究还存在一些问题。首先,群智能算法的数学理论基 础相对薄弱,缺乏具备普遍意义的理论性分析,算法 中涉及的各种参数设置一直没有确切的理论依据,通 常都是按照经验型方法确定,对具体问题和应用环境 的依赖性比较大。其次,同其它的自适应问题处理方 法一样,群智能也不具备绝对的可信性,当处理突发 事件时,系统的反应可能是不可测的,这在一定程度上 增加了其应用风险。另外,群智能与其它各种先进技 术(如:神经网络、模糊逻辑、禁忌搜索和支持向量机 等) 的融合还不足。
Swarm Intelligence(续)
信息的交互过程不仅仅在群体内传播了信息,而 且群内个体还能处理信息,并根据所获得的信息 (包括环境信息和附近其它个体的信息)改变自身 的一些行为模式和规范,这样就使得群体涌现出一 些单个个体所不具备的能力和特性,尤其是对环境 的适应能力。这种对环境变化所具有适应的能力可 以被认为是一种智能(关于适应性与智能之间的关 系存在着一些争议,Fogel认为智能就是具备适应 的能力),也就是说动物个体通过聚集成群而涌现 出了智能。因此,Bonabeau 将SI的定义进一步推 广为:无智能或简单智能的主体通过任何形式的聚 集协同而表现出智能行为的特性。这里我们关心的 不是个体之间的竞争,而是它们之间的协同。

粒子群优化算法ppt

粒子群优化算法ppt

01 算法介绍
PSO是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新 的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化 算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭 代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算 法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变 异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全 局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学 术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法 是一种并行算法。
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。 在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更 新自己。 在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和 位置。 (1)式
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒子的总数
02 算法原理
01 算法介绍
社会组织的全局群行为是由群内个体行为以非线性方式出现的。 个体间的交互作用在构建群行为中起到重要的作用。从不同的群研 究得到不同的应用。最引人注目的是对蚁群和鸟群的研究。
其中粒群优化方法就是模拟鸟群的社会行为发展而来。对鸟群 行为的模拟:Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改变方向,散开或者 聚集等。那么一定有某种潜在的能力或规则保证了这些同步的行为。 这些科学家都认为上述行为是基于不可预知的鸟类社会行为中的群 体动态学。在这些早期的模型中仅仅依赖个体间距的操作,也就是 说,这种同步是鸟群中个体之间努力保持最优的距离的结果。

基本粒子群优化算法课件

基本粒子群优化算法课件
更新粒子位置
根据粒子的新速度,结合粒子的位置 更新公式,计算粒子的新位置。
终止条件和迭代次数
01
终止条件:当达到预设的迭代次数或满足其他终止条件时,算 法停止迭代。
Байду номын сангаас
02
迭代次数:根据问题规模和复杂度,设定合适的最大迭代次数

以上内容仅供参考,具体内容可以根据您的需求进行调整优化
03 。
04 粒子群优化算法的改进
基本粒子群优化算法课 件
目录
Contents
• 基本粒子群优化算法概述 • 粒子群优化算法的数学基础 • 粒子群优化算法的实现 • 粒子群优化算法的改进 • 粒子群优化算法的应用实例 • 总结与展望
01 基本粒子群优化算法概述
起源和背景
起源
粒子群优化算法起源于对鸟群、 鱼群等动物群体行为的研究。
理论分析
深入分析基本粒子群优化算法的数学性质和收敛 性,有助于更好地理解算法的工作原理,为算法 改进提供理论支持。
拓展应用领域
随着技术的发展,基本粒子群优化算法有望在更 多领域得到应用。例如,在人工智能领域,可探 索与其他优化算法的结合,以解决更复杂的机器 学习、深度学习等问题。
与其他智能算法的交叉研究
机器学习问题
机器学习问题
粒子群优化算法还可以应用于机器学习领域,如分类、聚类、特征选择等。
举例
例如,在分类问题中,可以使用粒子群优化算法来训练一个分类器,通过迭代和更新粒子的位置和速度,找到最 优的分类器参数。
06 总结与展望
当前研究进展和挑战
研究进展
基本粒子群优化算法在多个领域得到广泛应 用,如函数优化、神经网络训练、数据挖掘 等。近年来,随着研究的深入,算法的性能 和收敛速度得到了显著提升。

粒子群优化算法课件

粒子群优化算法课件

实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。

《粒子群优化算法》课件

《粒子群优化算法》课件
《粒子群优化算法》PPT课件
CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数

粒子群优化算法详细易懂很多例子共51页文档

粒子群优化算法详细易懂很多例子共51页文档

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
粒子群优化算法详细易懂很多例子
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

粒子群优化算法(详细易懂)

粒子群优化算法(详细易懂)

粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN

粒子群算法ppt课件

粒子群算法ppt课件

粒子群算法Reynolds,Heppner,Grenader等发现,鸟群在行进过程中会突然同步地改变方向,散开或聚集。

一定有种潜在的规则在起作用,据此他们提出了对鸟群行为的模拟。

在他们的早期模型中,仅仅依赖个体间距的操作,即群体的同步是个体之间努力保持最优距离的结果。

1987年Reynolds对鸟群社会系统的仿真研究,一群鸟在空中飞行,每个鸟遵守以下三条规则:1)避免与相邻的鸟发生碰撞冲突;2)尽量与自己周围的鸟在速度上保持协调和一致;3)尽量试图向自己所认为的群体中靠近。

仅通过使用这三条规则,系统就出现非常逼真的群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它们会分开绕行而过,随后又会重新形成群体。

作为CASKennedy和Eberhart在CAS中加入了一个特定点,定义为食物,鸟根据周围鸟的觅食行为来寻找食物。

他们的初衷是希望通过这种模型来模拟鸟群寻找食源的现象,然而实验结果却揭示这个仿真模型中蕴涵着很强的优化能力,尤其是在多维空间寻优中。

鸟群觅食行为Food Global BestSolutionPast BestSolution车辆路径问题构造一个2L维的空间对应有L个发货点任务的VRP问题,每个发货点任务对应两维:完成该任务车辆的编号k,该任务在k车行驶路径中的次序r为表达和计算方便,将每个粒子对应的2L维向量X分成两个L维向量:Xv(表示各任务对应的车辆)和Xr(表示各任务在对应的车辆路径中的执行次序)。

例如,设VRP问题中发货点任务数为7,车辆数为3,若某粒子的位置向量X为:发货点任务号: 1 2 3 4 5 6 7Xv : 1 2 2 2 2 3 3Xr : 1 4 3 1 2 2 1则该粒子对应解路径为:车1:0 → 1 → 0车2:0 → 4 →5 → 3→ 2→ 0车3:0 → 7→ 6→ 0粒子速度向量V与之对应表示为Vv和Vr。

该表示方法的最大优点是使每个发货点都得到车辆的配送服务,并限制每个发货点的需求仅能由某一车辆来完成,使解的可行化过程计算大大减少。

粒子群优化算法(详细易懂,很多例子)PPT课件

粒子群优化算法(详细易懂,很多例子)PPT课件
26
粒子群算法的构成要素 -停止准则 停止准则一般有如下两种: 最大迭代步数 可接受的满意解
27
粒子群算法的构成要素 - 粒子空间的初始化
较好地选择粒子的初始化空间,将大大缩短收 敛时间.初始化空间根据具体问题的不同而不同, 也就是说,这是问题依赖的.
从上面的介绍可以看到,粒子群算法与其他现代 优化方法相比的一个明显特色就是所需调整的参数很 少.相对来说,惯性因子和邻域定义较为重要.这些 为数不多的关键参数的设置却对算法的精度和效率有 着显著影响.
前次迭代中自身的速度 vk
自我认知部分
c1r1( pbestid

xk 1 id
)
社会经验部分c2r2 (gbestd

xk 1 id
)
c1,c2都不为0,称为 完全型粒子群算法
完全型粒子群算法更容易保持收敛速度和搜索效
果的均衡,是较好的选择.
23
粒子群算法的构成要素-最大速度
作用: 在于维护算法的探索能力与开发能力的平衡. Vm较大时,探索能力增强, 但 粒子容易飞过最优解. Vm较小时,开发能力增强, 但 容易陷入局部最优.
但它们能感受到当前的位置离食物还有多远. 那么:找到食物的最优策略是什么呢?
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。 PSO正是从这种模型中得到了启发. PSO的基础: 信息的社会共享
7
生物学家对鸟(鱼)群捕食的行为研究 社会行为 (Social-Only Model) 个体认知 (Cognition-Only Model)
vk1 vk 2 ( pk xk ) 2( pg xk ),
xk 1 xk vk 1
33
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单易行 收敛速度快 设置参数少
已成为现代优化方法领域研究的热点.
4
粒子群算法的基本思想
粒子群算法的思想源于对鸟群捕食行为的研究. 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群
体达到最优目的,是一种基于Swarm Intelligence的优化 方法。 马良教授在他的著作《蚁群优化算法》一书的前言中写到:
第三部分为“社会”部分,表示粒子间的信息共享与合作, 可理解为粒子i当前位置与群体最好位置之间的距离。
13
vid (t 1) wvid (t) c1 rand ()( pid xid (t)) c2 rand () ( pgd xid (t))
xi (t 1) xi (t) vi (t)
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
4. Find the Gbest:
对每个粒子,将其当前适应值与全局最佳位置(gbest)对应的适 应值做比较,如果当前的适应值更高,则将用当前粒子的位置更新 全局最佳位置gbest。
Vi = Vi1,Vi2,...,Vid
Xi =Xi1,Xi2,...,Xid
Study Factor 區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
14
Vik =Vik1+C1*r1*(Pbesti -Xik1)+C2*r2*(gbest -Xik1) Xik =Xik 1 +Vik 1
5. Update the Velocity:
根据公式更新每个粒子的速度与位置。
6. 如未满足结束条件,则返回步骤2
通常算法达到最大迭代次数 G
某个给定的阈值时算法停止。
max
或者最佳适应度值的增量小于
16
粒子群优化算法流程图
开始 初始化粒子群 计算每个粒子的适应度
根据适应度更新pbest、gbest,更新粒子位置速度
8
粒子群特性
9
算法介绍
每个寻优的问题解都被想像成一只鸟,称为“粒 子”。所有粒子都在一个D维空间进行搜索。
所有的粒子都由一个fitness function 确定适应值 以判断目前的位置好坏。
每一个粒子必须赋予记忆功能,能记住所搜寻到 的最佳位置。
每一个粒子还有一个速度以决定飞行的距离和方 向。这个速度根据它本身的飞行经验以及同伴的 飞行经验进行动态调整。
模拟退火算法(SA)
模模仿金属物质退火过程
2
解决最优化问题的方法
传统搜索方法 保证能找到最优解
Heuristic Search 不能保证找到最优解
3
粒子群算法发展历史简介
由Kennedy和Eberhart于1995年提出.
群体迭代,粒子在解空间追随最优的粒子进行搜索.
粒子群算法:
但它们能感受到当前的位置离食物还有多远. 那么:找到食物的最优策略是什么呢?
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。 PSO正是从这种模型中得到了启发. PSO的基础: 信息的社会共享
7
生物学家对鸟(鱼)群捕食的行为研究 社会行为 (Social-Only Model) 个体认知 (Cognition-Only Model)
c1r1( pbestid

xk 1 id
)

c2
r2
(
gbestd

xk 1 id
)
粒子i的第d维位置更新公式:
xikd

xk 1 id

vk 1 id
vikd —第k次迭代粒子i飞行速度矢量的第d维分量 xikd —第k次迭代粒子i位置矢量的第d维分量
c1,c2—加速度常数,调节学习最大步长
粒子群优化算法(PS0)
Particle Swarm Optimization
智能算法
向大自然学习
遗传算法(GA)
物竞天择,设计染色体编码,根据适应 值函数进行染色体选择、交叉和变异操 作,优化求解
人工神经网络算法(ANN)
模仿生物神经元,透过神经元的信息传 递、训练学习、联想,优化求解
“自然界的蚁群、鸟群、鱼群、 大自然羊对群我、们牛的群最、大蜂恩群赐等!,其实时时刻刻都在给予
我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
5
6
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里;
Vi =Vi1,Vi2,...,ViN
Xi = Xi1,Xi2,...,XiN
15
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
通常,在第d(1≤d≤D)维的位置变化范围限定在 [Xmin,d , X内m,ax,d ]
速度变化范围限定在 [-Vmax,d ,内V(ma即x,d在] 迭代中若
vid、xid
超出了边界值,则该维的速度或位置被限制为该维最大速度或边界位置)11源自 粒子i的第d维速度更新公式:
vikd =wvikd-1
r1,r2—两个随机函数,取值范围[0,1],以增加搜索随机 性
w —惯性权重,非负数,调节对解空间的搜索范围
12
vikd =wvikd-1
c1r1( pbestid

xk 1 id
)

c2r2
(
gbestd

xk 1 id
)
粒子速度更新公式包含三部分:
第一部分为粒子先前的速度
第二部分为“认知”部分,表示粒子本身的思考,可理解为 粒子i当前位置与自己最好位置之间的距离。
no
达到最大迭代次数或
全局最优位置满足最小界限?
yes
结束
17
2維簡例
區域
Note
10
粒子群优化算法求最优解
D维空间中,有N个粒子; 粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值; 粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD) 种群所经历过的最好位置:gbest=(g1,g2,…gD)
相关文档
最新文档