粒子群优化算法(详细易懂_很多例子)

合集下载

粒子群优化算法(详细易懂_很多例子)

粒子群优化算法(详细易懂_很多例子)

惯性权重
1998年,Shi和Eberhart引入了惯性权重w,并提出动态调整惯性权重以平衡收敛的全局性和收敛速度,该算法被称为标准PSO算法 惯性权重w描述粒子上一代速度对当前代速度的影响。w值较大,全局寻优能力强,局部寻优能力弱;反之,则局部寻优能力强。当问题空间较大时,为了在搜索速度和搜索精度之间达到平衡,通常做法是使算法在前期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度。所以w不宜为一个固定的常数。
单击此处可添加副标题
粒子群算法的思想源于对鸟群捕食行为的研究. 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。 马良教授在他的著作《蚁群优化算法》一书的前言中写到: 大自然对我们的最大恩赐! “自然界的蚁群、鸟群、鱼群、 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
社会经验部分
前次迭代中自身的速度
自我认知部分
粒子的速度更新主要由三部分组成:
c1,c2都不为0,称为 完全型粒子群算法
完全型粒子群算法更容易保持收敛速度和搜索效果的均衡,是较好的选择.
粒子群算法的构成要素-最大速度
添加标题
第1步 在初始化范围内,对粒子群进行随机初始化,
添加标题
第5步 更新粒子的速度和位置,公式如下.
添加标题
第3步 更新粒子个体的历史最优位置.
添加标题
第6步 若未达到终止条件,则转第2步.
添加标题
包括随机位置和速度.
添加标题
第4步 更新粒子群体的历史最优位置.
初始位置:

粒子群优化算法

粒子群优化算法

粒⼦群优化算法粒⼦群优化算法属于群智能(swarm intelligence)优化算法。

群智能分两种,⼀种是粒群优化,另⼀种是蚁群优化。

群智能概念假设你和你的朋友正在寻宝,每个⼈有个探测器,这个探测器可以知道宝藏到探测器的距离。

你们⼀群⼈在找,每个⼈都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有⼈距离宝藏的距离,这样,你看谁离宝藏最近,就向谁靠近,这样会使你发现宝藏的机会变⼤,⽽且,这种⽅法⽐你单⼈找要快的多。

这是⼀个群⾏为(swarm behavior)的简单实例,群中各个体交互作⽤,使⽤⼀个⽐单⼀个体更有效的⽅法求解全局⽬标。

可以把群(swarm)定义为某种交互作⽤的组织或Agent之结构集合,在群智能计算研究中,群的个体组织包括蚂蚁,⽩蚁,蜜蜂,黄蜂,鱼群,鸟群等。

在这些群体中,个体在结构上是很简单的,⽽它们的集体⾏为却可能变得相当复杂。

研究⼈员发现,蚂蚁在鸟巢和⾷物之间的运输路线,不管⼀开始多随机,最后蚂蚁总能找到⼀条最短路径。

粒群优化概念粒群优化(particle swarm optimization,PSO)算法是⼀种基于群体搜索的算法,它建⽴在模拟鸟群社会的基础上。

粒群概念的最初含义是通过图形来模拟鸟群优美和不可预测的舞蹈动作,发现鸟群⽀配同步飞⾏和以最佳队形突然改变飞⾏⽅向并重新编队的能⼒。

这个概念已经被包含在⼀个简单有效的优化算法中。

在粒群优化中,被称为“粒⼦”(particle)的个体通过超维搜索空间“流动”。

粒⼦在搜索空间中的位置变化是以个体成功地超过其他个体的社会⼼理意向为基础的,因此,群中粒⼦的变化是受其邻近粒⼦(个体)的经验或知识影响的。

⼀个粒⼦的搜索⾏为受到群中其他粒⼦的搜索⾏为的影响。

由此可见,粒群优化是⼀种共⽣合作算法。

算法描述先通过⼀个形象的场景来描述⼀下:5只鸟觅⾷,每个鸟都知道⾃⼰与⾷物的距离,并将此信息与其他鸟共享。

⼀开始,5只鸟分散在不同的地⽅,假设没只鸟每秒钟更新⾃⼰的速度和⽅向,问题是怎么更新呢?每只鸟记下⾃⼰离⾷物最近的位置,称为pbest,pbest0,pbest1,..分别表⽰5只鸟的pbest,从这⾥⾯选⼀个gbest,组⾥最好的。

粒子群优化算法ppt

粒子群优化算法ppt

联合优化
粒子群优化算法可以用于联合优化神经网络的参数和结构,进一步提高神经网络的性能。
粒子群优化算法在神经网络训练中的应用
粒子群优化算法可以用于优化控制系统的控制器参数,以提高控制系统的性能和稳定性。
控制器参数优化
鲁棒性优化
联合优化
粒子群优化算法可以用于提高控制系统的鲁棒性,以应对系统中的不确定性和干扰。
粒子群优化算法可以用于联合优化控制系统的参数和结构,进一步提高控制系统的性能和稳定性。
03
粒子群优化算法在控制系统中的应用
02
01
06
总结与展望
粒子群优化算法是一种高效的全局优化算法,具有速度快、简单易行、易于并行化等优点。它利用群体智慧,通过粒子间的协作与信息共享,可以快速找到全局最优解。
优点
PSO算法的特点包括:简单易懂、易实现、能够处理高维问题、对初始值不敏感、能够处理非线性问题等。
定义与特点
粒子群优化算法的起源与发展
PSO算法的起源可以追溯到1995年,由 Kennedy 和 Eberhart博士提出,受到鸟群觅食行为的启发。
最初的PSO算法主要应用于函数优化问题,后来逐渐发展应用到神经网络训练、模式识别、图像处理、控制等领域。
边界条件的处理
通过对粒子速度进行限制,可以避免粒子在搜索空间中过度震荡,从而更好地逼近最优解。
粒子速度的限制
实例一
针对函数优化问题,通过对粒子速度和位置进行更新时加入随机扰动,可以增加粒子的探索能力,从而寻找到更好的最优解。
实例二
针对多峰函数优化问题,将粒子的个体最佳位置更新策略改为基于聚类的方法,可以使得粒子更好地逼近问题的全局最优解。
粒子的适应度函数用于评估其位置的好坏。

粒子群优化算法原理

粒子群优化算法原理

粒子群优化算法原理PSO算法的基本原理是模拟鸟群或鱼群等自然现象的群体行为,通过社会化学习的方式不断最佳解。

PSO算法依靠粒子的位置和速度来进行,并通过不断地更新粒子的速度和位置来逐步找到最佳解。

下面将详细介绍PSO算法的基本原理:1.个体和群体的表示:在PSO算法中,解被表示为多维空间中的一个点,称为粒子。

每个粒子代表一个当前解,其位置和速度表示了该解的状态。

在最优化问题中,每个粒子代表了一组可能的解。

2.粒子的位置更新:在每一次迭代中,粒子的速度和位置都会发生变化。

粒子的位置更新基于其当前速度和位置以及目标解。

通过以下公式进行更新:v(i,j) = w * v(i,j) + c1 * rand1 * (p(i,j) - x(i,j)) + c2 * rand2 * (p(g,j) - x(i,j))x(i,j)=x(i,j)+v(i,j)其中,v(i,j)为粒子i在维度j上的速度,w为惯性权重,c1和c2分别为加速因子,rand1和rand2为随机数,p(i,j)和p(g,j)表示个体最佳位置和群体最佳位置,x(i,j)表示粒子i在维度j上的位置。

3.个体和群体的最佳位置更新:每个粒子都会记录自身的最佳位置,也就是使目标函数达到最小值或最大值的位置。

对于每个粒子i,如果当前位置的目标函数值优于历史最佳值,则将其当前位置作为个体最佳位置,并更新群体最佳位置。

4.终止条件:PSO算法通常设置一个迭代次数作为终止条件,当达到指定的迭代次数后,算法终止并给出最佳解。

另外,还可以根据目标函数的收敛程度来判断终止条件。

5.算法参数的选择:PSO算法中有几个重要的参数需要选择,包括惯性权重w、加速因子c1和c2等。

这些参数的选择会影响算法的能力和收敛速度,在实际应用中需要根据问题的性质进行调整。

综上所述,PSO算法通过模拟鸟群或鱼群等自然群体的行为来最佳解。

算法通过粒子的位置和速度来进行,并通过不断地更新粒子的位置和速度来逐步优化解。

粒子群算法

粒子群算法

粒子群算法原理及简单案例[ python ]介绍粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。

1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。

假设一群鸟在觅食,在觅食范围内,只在一个地方有食物,所有鸟儿都看不到食物(即不知道食物的具体位置。

当然不知道了,知道了就不用觅食了),但是能闻到食物的味道(即能知道食物距离自己是远是近。

鸟的嗅觉是很灵敏的)。

假设鸟与鸟之间能共享信息(即互相知道每个鸟离食物多远。

这个是人工假定,实际上鸟们肯定不会也不愿意),那么最好的策略就是结合自己离食物最近的位置和鸟群中其他鸟距离食物最近的位置这2个因素综合考虑找到最好的搜索位置。

粒子群算法与《遗传算法》等进化算法有很多相似之处。

也需要初始化种群,计算适应度值,通过进化进行迭代等。

但是与遗传算法不同,它没有交叉,变异等进化操作。

与遗传算法比较,PSO的优势在于很容易编码,需要调整的参数也很少。

一、基本概念与遗传算法类似,PSO也有几个核心概念。

粒子(particle):一只鸟。

类似于遗传算法中的个体。

1.种群(population):一群鸟。

类似于遗传算法中的种群。

2.位置(position):一个粒子(鸟)当前所在的位置。

3.经验(best):一个粒子(鸟)自身曾经离食物最近的位置。

4.速度(velocity ):一个粒子(鸟)飞行的速度。

5.适应度(fitness):一个粒子(鸟)距离食物的远近。

与遗传算法中的适应度类似。

二、粒子群算法的过程可以看出,粒子群算法的过程比遗传算法还要简单。

1)根据问题需要,随机生成粒子,粒子的数量可自行控制。

2)将粒子组成一个种群。

这前2个过程一般合并在一起。

3)计算粒子适应度值。

4)更新种群中每个粒子的位置和速度。

粒子群优化算法综述

粒子群优化算法综述

粒子群优化算法综述粒子群优化算法的核心思想是模拟粒子通过信息交流来寻找最优解的过程。

每个粒子在空间中通过位置和速度进行与移动。

它们通过个体极值和全局极值的引导来调整自己的速度和位置。

具体而言,每个粒子根据自身经验和信息共享来更新速度和位置,并不断跟随历史经验和全局经验向最优解逼近。

在原始的粒子群优化算法中,粒子的速度和位置更新公式如下:\begin{{align*}}V_{ij}(t+1) &= wV_{ij}(t) + c_1r_1(p_{ij}(t) - x_{ij}(t)) + c_2r_2(g_{ij}(t) - x_{ij}(t)) \\x_{ij}(t+1) &= x_{ij}(t) + V_{ij}(t+1)\end{{align*}}\]其中,$V_{ij}(t)$为粒子$i$在维度$j$上的速度,$x_{ij}(t)$为粒子$i$在维度$j$上的位置,$p_{ij}(t)$为粒子$i$当前的个体最优位置,$g_{ij}(t)$为全局最优位置,$r_1$和$r_2$为[0, 1]的随机数,$c_1$和$c_2$为学习因子。

尽管原始的粒子群优化算法在一些简单问题上表现出良好的性能,但对于复杂问题,其效率和精度有待提升。

因此,研究者进行了一系列的改进与发展。

首先是关于学习因子的改进。

学习因子的选择会影响算法的性能。

经典的学习因子取值策略是将$c_1$和$c_2$设置为常数,但这种策略缺乏自适应性。

改进的学习因子选择方法包括线性递减学习因子、非线性学习因子和自适应学习因子等。

其次是关于收敛性和多样性的改进。

经典的粒子群优化算法容易陷入局部最优解,从而导致的收敛性不佳。

研究者通过引入惯性权重、控制种群多样性、引入随机性等方式改善了算法的收敛性和多样性。

此外,还有一些改进的算法思想在粒子群优化算法中得到了应用。

例如,粒子竞争机制、学习机制和混合策略等。

这些改进方法可以提高粒子群优化算法的效率和精度。

粒子群优化算法

粒子群优化算法

粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。

遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。

这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。

粒子群优化方法范文

粒子群优化方法范文

粒子群优化方法范文
具体而言,粒子群优化算法包括以下几个步骤:
1.初始化粒子群:设定种群中粒子的初始位置和初始速度,并为每个粒子随机分配初始解。

2.评估个体适应度:通过适应度函数评估每个粒子的适应度,确定其解的质量。

3.更新粒子速度和位置:根据自身历史最优解和全局历史最优解,调整粒子的速度和位置,并更新粒子自身的最优解。

4.更新全局最优解:根据所有粒子的最优解,更新全局最优解,记录当前到的最佳解。

5.判断终止条件:设定终止条件,例如达到最大迭代次数、适应度值的收敛等,判断是否结束优化。

6.迭代更新:不断重复步骤2至5,直到满足终止条件。

相对于其他优化算法,粒子群优化算法具有以下优点:
1.简单而直观:算法的核心思想易于理解,模拟了生物群体的行为规律。

2.全局能力:粒子群优化算法可以问题的全局最优解,避免陷入局部最优解。

3.并行化和分布式计算:粒子群优化算法的并行化和分布式计算非常容易实现,能够加速求解过程。

然而,粒子群优化算法也存在一些不足之处:
1.对参数的敏感性:算法的性能受到参数设置的影响,不同问题需要不同的参数组合。

2.适应度函数的选取:适应度函数的选择对算法的结果有着重要的影响,需要根据问题的特点进行合理的设计。

3.收敛速度较慢:在寻找复杂问题的最优解时,粒子群优化算法可能需要较长的时间来收敛。

总之,粒子群优化算法是一种有效的全局优化算法,能够在多种问题中找到较优解。

通过合理选择参数和适应度函数,并结合其他优化方法,可以进一步提高算法的性能和收敛速度。

粒子群优化算法课件

粒子群优化算法课件

实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。

粒子群优化算法

粒子群优化算法
与模拟退火算法结合
模拟退火算法是一种基于物理退火原理的优化算法,具有较好的局部搜索能力和鲁棒性。将粒子群优 化算法与模拟退火算法结合,可以利用模拟退火算法的优点,弥补粒子群优化算法在搜索过程中的不 足之处,提高算法的性能和鲁棒性。
04
粒子群优化算法在解决实际问题 中的应用案例
求解函数最大值问题
总结词
决定粒子在更新速度时自身的惯 性大小,通常根据问题的特性来
选择。
02
速度和位置范围
粒子的速度和位置都有一定的范 围限制,这些限制根据问题的约
束条件来确定。
04
学习因子
决定粒子在更新速度时对自身最 优解和全局最优解的参考程度, 通常根据问题的特性来选择。
粒子群优化算法的流程
初始化
更新个体最优解
更Hale Waihona Puke 全局最优解结合强化学习技术,设计具有自适应和学习能力的粒子群优化 算法,以适应动态环境和复杂任务。
THANKS
感谢观看
更新速度和位置
终止条件
根据问题的约束条件随 机初始化粒子的速度和 位置。
比较每个粒子的当前解 和个体最优解,更新个 体最优解。
比较每个粒子的个体最 优解和全局最优解,更 新全局最优解。
根据粒子的个体最优解 和全局最优解以及粒子 的速度和位置,按照一 定的规则更新粒子的速 度和位置。
判断是否满足终止条件 (如达到最大迭代次数 或全局最优解满足一定 的精度要求),若满足 则停止迭代,否则返回 步骤2。
05
总结与展望
粒子群优化算法的优点与不足
01
优点
02
简单易实现:粒子群优化算法是一种基于群体智能的优化算法
,其实现原理简单,算法流程清晰,易于理解和实现。

多目标粒子群算法实例

多目标粒子群算法实例

多目标粒子群算法实例多目标粒子群算法(Multi-objective Particle Swarm Optimization,简称MOPSO)是一种用于解决多目标优化问题的智能优化算法。

它基于粒子群算法(Particle Swarm Optimization,简称PSO)并进行了改进,能够在解空间中搜索并找到满足多个目标的最优解。

在本文中,我们将通过一个实例来介绍多目标粒子群算法的应用。

实例背景假设我们要解决一个多目标优化问题,即同时优化两个目标函数:最小化函数f1(x)和最小化函数f2(x),其中x为决策变量。

我们的目标是找到一组解,使得f1和f2都能取得最小值。

多目标粒子群算法步骤1. 初始化参数:- 粒子群中每个粒子的位置和速度;- 搜索空间的上下界限;- 群体的最大迭代次数。

2. 根据当前位置和速度,更新每个粒子的位置和速度。

这一步可参考标准粒子群算法的更新过程。

3. 计算每个粒子的适应度值。

在多目标问题中,适应度值是一个向量,包含每个目标函数的值。

4. 根据适应度值和非支配排序,对粒子群进行排序。

非支配排序可以用来评估粒子是否处于非劣解集合中,即是否有其他解不能同时优化目标函数。

5. 选择非支配解,将其作为当前群体的解集合。

6. 判断是否达到停止条件,如果满足则跳至步骤9;否则,进行下一步。

7. 根据当前解集合,更新每个粒子的个体和全局最优值。

8. 跳至步骤2。

9. 输出最终解集合,作为问题的近似最优解。

实例应用现在我们来应用多目标粒子群算法解决一个具体的问题。

问题描述:我们希望找到一个最优的投资组合,使得同时最小化风险和最大化收益。

我们有若干个金融产品可供投资,每个产品的预期收益率和风险都不同,我们需要选择适当的投资比例。

解决方案:1. 定义决策变量:投资比例向量x = [x1, x2, ..., xn],其中xi表示第i个金融产品的投资比例,0 ≤ xi ≤ 1,∑xi = 1。

2. 定义目标函数:我们的目标是最小化风险和最大化收益,因此可以定义两个目标函数:- f1(x)表示风险,可以通过计算投资组合的方差或标准差来度量;- f2(x)表示收益,可以通过计算投资组合的期望收益率来度量。

基本粒子群优化算法

基本粒子群优化算法

基本粒子群优化算法基本粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自于鸟群捕食行为中的信息共享和合作。

该算法能够在空间内找到不错的解决方案,并且具有较强的全局收敛性和鲁棒性。

本文将详细介绍基本粒子群优化算法的原理、流程、变种以及应用领域。

一、基本粒子群优化算法的原理基本粒子群优化算法的原理是模拟社会性行为中物种群体的行为方式。

每个空间中的解被视为一个粒子,这些粒子之间通过其中一种形式的信息交流来寻找全局最优解。

在算法的每一代中,每个粒子记录着自身的位置、速度和当前最优解。

粒子迭代更新自己的速度和位置,通过与邻居粒子和全局最优解比较来引导方向。

通过不断迭代,粒子逐渐收敛于全局最优解。

二、基本粒子群优化算法的流程1.初始化粒子群:随机生成粒子群,设置每个粒子的初始位置和速度。

2.计算目标函数值:根据粒子的当前位置计算目标函数值,并更新该粒子的当前最优解。

3.更新全局最优解:比较粒子群中所有粒子的当前最优解,选取最优解作为全局最优解。

4.更新速度和位置:根据当前速度和位置,更新粒子的下一步速度和位置。

新位置在空间内随机选择,并根据速度进行调整。

5.收敛判断:判断是否满足停止条件,如果满足则结束;否则返回第2步。

三、基本粒子群优化算法的变种1.改进的基本粒子群优化算法:对基本粒子群优化算法进行改进,比如引入加速因子、惯性权重等参数来提升算法的收敛速度和精度。

2.多种群粒子群优化算法:将粒子群分为多个子群,在子群间进行信息共享和合作,以提高效率。

3.自适应权重的粒子群优化算法:根据过程中的适应度变化情况,自适应地调整粒子的权重,以提高算法的鲁棒性和全局收敛性。

四、基本粒子群优化算法的应用领域1.组合优化问题:如旅行商问题、背包问题等。

2.函数优化问题:如非线性优化、函数拟合等。

3.机器学习:如神经网络训练、特征选择等。

4.工程设计:如电力系统优化、通信网络设计等。

粒子群优化算法粒子群优化算法简介

粒子群优化算法粒子群优化算法简介

粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物。

计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。

并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。

粒子群优化算法(详细易懂)

粒子群优化算法(详细易懂)

粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位置:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位置:pbesti=(pi1,pi2,…piD)
种群所经历过的最好位置:gbest=(g1,g2,…gD)
Xi =Xi1,Xi 2 ,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
“自然界的蚁群、鸟群、鱼群、 大自然对我们的最大恩赐! 羊群、牛群、蜂群等,其实时时刻刻都在给予 我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里; 但它们能感受到当前的位置离食物还有多远.
Xi =Xi1,Xi 2 ,...,Xid
Study Factor
區域 最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik 1 +C1*r1*(Pbest i -Xik 1 )+C2 *r2 *(gbest -Xik 1 )
Xik =Xik 1 +Vik 1
Vi =Vi1,Vi 2 ,...,ViN

粒子群优化算法

粒子群优化算法

3.基本原理
⑵标准粒子群优化算法
为改善算法收敛性能,Shi 和 Eberhart 在 1998 年的论文中引入 了惯性权重的概念,将速度更新方程修改为式(2-3)所示
vk 1 iD
vikD
c1 (
pikD
xikD
)
c2 (
pgkD
xikD )
(7.3)
这里, 称为惯性权重,其大小决定了对粒子当前速度继承的多 少,合适的选择可以是粒子具有均衡的探索和开发能力。可见,基本 PSO 算法是惯性权重 =1 的特殊情况。
5.PSO研究方向
⑷随着计算机的不断发展,并行计算机越来越受到人们的重视。 由于 PSO 算法具有内在的并行性,因而,并行计算也是发展 PSO 算 法时应考虑研究的重要方向之一。
⑸PSO 算法主要应用于连续问题,也可应用于离散问题,但对于 离散问题算法,往往难以取得理想的优化结果,如何提高 PSO 算法的 方法学应用到离散空间的优化效果也是值得研究的一类问题。
4.PSO应用领域
PSO 算法的优势在于算法的简洁性,易于实现,没有很多参数需 要调整,且不需要梯度信息。PSO 算法是非线性连续优化问题、组合 优化问题和混合整数费线性优化问题的有效优化工具。
⑴函数优化 大量的问题最终可归结为函数的优化问题,通常这些函数是非常 复杂的,PSO 算法通过改进或结合其它算法,对高维复杂函数可以实 现高效优化。 ⑵神经网络的训练 与 BP 算法相比,使用 PSO 算法训练神经网络的优点在于不使用 梯度信息,可使用一些不可微的传递函数。多数情况下其训练结果优 于 BP 算法,而且训练速度非常快。
粒子群优化算法
1. 引言
粒 子 群 优 化 算 法 (Particle Swarm Optimization , PSO)由 Kennedy 博士和 Eberhart 教授在 1995 年提出,该算法模拟鸟群、 鱼群、蜂群等动物群体觅食的行为,通过个体之间的相互协作使 群体达到最优目的,是一种基于群智能(Swarm Intelligence,SI) 的优化方法。

粒子群优化算法(详细易懂)

粒子群优化算法(详细易懂)

更新速度,得:
60
60
60
60
vk1 vk 2 ( pk xk ) 2( pg xk ),
初始位置: 初始速度:
群体历史最优解:pg
x(0) 1
个体历史最优解:pi xi0 , (i 1, 2, 3, 4, 5)
更新位置,得:
不强行拉回解空间
xk 1 xk vk 1
初始位置: 初始速度:
c1r1( pbestid
xk 1 id
)
c2r2 (gbestd
xk 1 id
)
• 粒xi子kd i的第xikdd维1 位v置ikd更1 新公式:
vikd xikd
—第k次迭代粒子i飞行速度矢量的第d 维分量
—第k次迭代粒子i位置矢量的第d维分 量
vikd =wvikd-1
c1r1( pbestid
我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里;
但它们能感受到当前的位置离食物还有多远. 那么:找到食物的最优策略是什么呢?
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。 PSO正是从这种模型中得到了启发. PSO的基础: 信息的社会共享
前次迭代中自身的速度 vk
自我认知部分
c1r1( pbestid
xk 1 id
)
社会经验部分c2r2 (gbestd
xk 1 id
)
c1,c2都不为0,称为 完全型粒子群算法
完全型粒子群算法更容易保持收敛速度和搜索效 果的均衡,是较好的选择.

粒子群优化算法介绍

粒子群优化算法介绍

粒子群优化算法介绍
粒子群优化算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过不断地迭代寻找最优解。

该算法最初由美国加州大学的Eberhart和Kennedy于1995年提出,目前已经被广泛应用于各种优化问题中。

粒子群优化算法的基本思想是将待优化问题转化为一个多维空间中的搜索问题,将每个解看作空间中的一个粒子,每个粒子的位置表示该解的参数值,速度表示该解的变化方向和速度。

在算法的每一次迭代中,每个粒子都会根据自身的历史最优解和群体最优解来更新自己的速度和位置,以期望找到更优的解。

具体来说,粒子群优化算法的实现过程如下:
1. 初始化粒子群,包括粒子的位置和速度等信息。

2. 计算每个粒子的适应度值,即待优化问题的目标函数值。

3. 更新每个粒子的速度和位置,包括考虑自身历史最优解和群体最优解的影响。

4. 判断是否满足停止条件,如果满足则输出最优解,否则返回第2步。

粒子群优化算法的优点在于其简单易懂、易于实现和收敛速度较快等特点。

同时,该算法还具有较好的全局搜索能力和鲁棒性,能够
应对复杂的非线性优化问题。

然而,粒子群优化算法也存在一些缺点,如易陷入局部最优解、对参数的选择较为敏感等问题。

因此,在实际应用中需要根据具体问题进行调整和优化。

粒子群优化算法是一种有效的优化算法,已经被广泛应用于各种领域,如机器学习、图像处理、控制系统等。

随着人工智能和大数据技术的不断发展,相信粒子群优化算法将会有更广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包括随机初始化各粒子的位置和速度
设各粒子的初始位置 和初始速度 为:
初始位置:
第九讲daili
粒子群算法
31
对粒子群进行随机初始化
包括随机初始化各粒子的位置和速度
设各粒子的初始位置 和初始速度 为:

32
初始位置:
初始速度:
计算每个粒子的适应值
按照
计算适应值
历史最优解
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。 PSO正是从这种模型中得到了启发. PSO的基础: 信息的社会共享
生物学家对鸟(鱼)群捕食的行为研究 社会行为 (Social-Only Model) 个体认知 (Cognition-Only Model)
粒子群特性
1. 粒子自己历史最优值 2. 粒子群体的全局最优值
局部粒子群算法
1. 粒子自己历史最优值 2. 粒子邻域内粒子的最优值
邻域随迭代次数的增加线性变大,最后邻域扩展到整个粒子群。
经过实践证明:全局版本的粒子群算法收敛速度快,但是容易陷 入局部最优。局部版本的粒子群算法收敛速度慢,但是很难陷入局部 最优。现在的粒子群算法大都在收敛速度与摆脱局部最优这两个方面 下功夫。其实这两个方面是矛盾的。看如何更好的折中了。
pg

x(0) 1
pi xi0 , (i 1, 2, 3, 4, 5)
第九讲daili
粒子群算法
33
初始位置:
初始速度:
群体历史最优解:pg

x(0) 1
个体历史最优解:pi xi0 , (i 1, 2, 3, 4, 5)
更新粒子的速度和位置:


, 得到速度和位置的更新函数为
vk1 vk 2 ( pk xk ) 2( pg xk ),
vikd =wvikd-1
c1r1( pbestid

xk 1 id
)

c2
r2
(
gbestd

xk 1 id
)
粒子的速度更新主要由三部分组成:
前次迭代中自身的速度 vk
自我认知部分
c1r1( pbestid

xk 1 id
)
社会经验部分c2r2 (gbestd

xk 1 id
)
c1,c2都不为0,称为 完全型粒子群算法
简单易行 收敛速度快 设置参数少
已成为现代优化方法领域研究的热点.
粒子群算法的基本思想
粒子群算法的思想源于对鸟群捕食行为的研究. 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群
体达到最优目的,是一种基于Swarm Intelligence的优化 方法。 马良教授在他的著作《蚁群优化算法》一书的前言中写到:
“自然界的蚁群、鸟群、鱼群、 大自然羊对群我、们牛的群最、大蜂恩群赐等!,其实时时刻刻都在给予
我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里;
但它们能感受到当前的位置离食物还有多远. 那么:找到食物的最优策略是什么呢?
第九讲daili
粒子群算法
29
3. 粒子群算法示例
例 求解如下四维Rosenbrock函数的优化问题.
解 算法的相关设计分析如下. 种群大小:即算法中粒子的数量,取
编码:因为问题的维数是4,所以每个粒子的位置和 速度均4 维的实数向量.
设定粒子的最大速度:
第九讲daili
粒子群算法
30
对粒子群进行随机初始化

c1r1( pbestid

xk 1 id
)

c2r2 (gbestd

xk 1 id
)
粒子i的第d维位置更新公式:
xikd

xk 1 id

vk 1 id
vikd —第k次迭代粒子i飞行速度矢量的第d维分量 xikd —第k次迭代粒子i位置矢量的第d维分量
c1,c2—加速度常数,调节学习最大步长
4. Find the Gbest:
对每个粒子,将其当前适应值与全局最佳位置(gbest)对应的适 应值做比较,如果当前的适应值更高,则将用当前粒子的位置更新 全局最佳位置gbest。
5. Update the Velocity:
根据公式更新每个粒子的速度与位置。
6. 如未满足结束条件,则返回步骤2
前次迭代中自身的速度 vk
学习因子
自我认知部分
c1r1( pbestid

xk 1 id
)
自我认知型粒子群算法
社会经验部分c2r2 (gbestd

xk 1 id
)
“只有自我,没有社会”
完全没有信息的社会共享 导致算法收敛速度缓慢
粒子群算法的构成要素-权重因子 权重因子:惯性因子 、学习因子
粒子群算法的构成要素- 邻域的拓扑结构
粒子群算法的邻域拓扑结构包括两种, 一种是将群体内所有个体都作为粒子的邻域, 另一种是只将群体中的部分个体作为粒子的邻域.
邻域拓扑结构 决定 群体历史最优位置 由此,将粒子群算法分为
全局粒子群算法和局部粒子群算法.
粒子群算法的构成要素- 邻域的拓扑结构
全局粒子群算法
通常算法达到最大迭代次数 G
某个给定的阈值时算法停止。
max
或者最佳适应度值的增量小于
粒子群优化算法流程图
开始 初始化粒子群 计算每个粒子的适应度
根据适应度更新pbest、gbest,更新粒子位置速度
no
达到最大迭代次数或
全局最优位置满足最小界限?
yes
结束
2維簡例
區域
Note
合理解
目前最優解
區域最佳解
通常,在第d(1≤d≤D)维的位置变化范围限定在 [Xmin,d , X内m,ax,d ]
速度变化范围限定在 [-Vmax,d ,内V(ma即x,d在] 迭代中若
vid、xid
超出了边界值,则该维的速度或位置被限制为该维最大速度或边界
位置)
粒子i的第d维速度更新公式:
vikd =wvikd-1

x(0) 1
个体历史最优解:pi xi0 , (i 1, 2, 3, 4, 5)
Vi =Vi1,Vi2,...,ViN
Xi = Xi1,Xi2,...,XiN
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置和速度。
2. Evaluation:
根据fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
第三部分为“社会”部分,表示粒子间的信息共享与合作, 可理解为粒子i当前位置与群体最好位置之间的距离。
vid (t 1) wvid (t) c1 rand ()( pid xid (t)) c2 rand () ( pgd xid (t))
xi (t 1) xi (t) vi (t)
Vi =Vi1,Vi2,...,Vid
Xi =Xi1,Xi2,...,Xid
Study Factor 區域
最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik1+C1*r1*(Pbesti -Xik1)+C2*r2*(gbest -Xik1)
Xik =Xik 1 +Vik 1
r1,r2—两个随机函数,取值范围[0,1],以增加搜索随机 性
w —惯性权重,非负数,调节对解空间的搜索范围
vikd =wvikd-1

c1r1( pbestid

xk 1 id
)

c2r2 (gbestd

xk 1 id
)
粒子速度更新公式包含三部分:
第一部分为粒子先前的速度
第二部分为“认知”部分,表示粒子本身的思考,可理解为 粒子i当前位置与自己最好位置之间的距离。
第九讲daili
粒子群算法
35
初始位置:
初始速度:
群体历史最优解:pg

x(0) 1
个体历史最优解:pi xi0 , (i 1, 2, 3, 4, 5)
更新位置,得:
不强行拉回解空间
xk 1 xk vk 1
第九讲daili
粒子群算法
36
初始位置:
初始速度:
群体历史最优解:pg
完全型粒子群算法更容易保持收敛速度和搜索效 果的均衡,是较好的选择.
粒子群算法的构成要素-最大速度
作用: 在于维护算法的探索能力与开发能力的平衡. Vm较大时,探索能力增强, 但 粒子容易飞过最优解. Vm较小时,开发能力增强, 但 容易陷入局部最优.
Vm一般设为每维变量变化范围的10%~20%.

xk 1 id
)

c2
r2
(
gbestd

xk 1 id
)
粒子的速度更新主要由三部分组成:
前次迭代中自身的速度 vk
自我认知部分
c1r1( pbestid

xk 1 id
)
社会经验部分c2r2 (gbestd

xk 1 id
)
惯性因子
基本粒子群算法
失去对粒子本身
的速度的记忆
相关文档
最新文档