集合的概念难题汇编(附答案)

合集下载

高一数学试题-集合的概念(含答案)

高一数学试题-集合的概念(含答案)

集合的概念一、单选题1.下列式子:①5∈Q ;②13∈R ;③-5∉Z ;④-3∉N ,其中正确的个数为()A .1B .2C .3D .42.下列选项中集合P 与Q 表示同一个集合的是()A .P 是由元素1,3,π组成的集合,Q 是由元素π,1,|-3|组成的集合B .P 是由π组成的集合,Q 是由3.1415926组成的集合C .P 是由3,4组成的集合,Q 是由有序实数对(3,4)组成的集合D .P 是满足不等式-1≤x ≤1的自然数组成的集合,Q 是方程x 2=1的解集3.将集合{}620(,)|{x y x y x y +=-=用列举法表示,正确的是()A .{2,4}B .{(2,4)}C .{x =2,y =4}D .(2,4)4.已知集合A ={*x N x ∈≤≤,则必有()A .﹣1∈AB .0∈AC .3∈AD .1∈A5.由a 2,2﹣a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是()A .1B .﹣2C .﹣1D .26.由大于5-且小于13的偶数所组成的集合是()A .{}513,x x x -<<∈ZB .{}513x x -<<C .{}513,2,x x x k k -<<=∈ND .{}513,2,x x x k k -<<=∈Z7.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有()A .2个元素B .3个元素C .4个元素D .5个元素8.若集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ),则下列选项中元素与集合的关系都正确的是()A .2∈A 且2∈B B .(1,2)∈A 且(1,2)∈BC .2∈A 且(3,10)∈BD .(3,10)∈A 且2∈B二、多选题9.下列每组对象,能构成集合的是()A .中国各地最富饶的乡村B .直角坐标系中横、纵坐标相等的点C .2022年参加北京冬奥会的优秀运动员D .北京大学2022年入学的全体学生10.已知集合{}{}2210x mx x n -+==,则m n +的值可能为()A .0B .12C .1D .211.已知集合A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是()A .-2∈AB .-11∉AC .3k 2-1∈AD .-34∉A12.下列说法不正确的是()A .在直角坐标平面内,第一、三象限的点的集合为{(x ,y)|xy >0}B .方程x -2+|y +2|=0的解集为{-2,2}C .集合{(x ,y)|y =1-x}与{x|y =1-x}是相等的D .若A ={x ∈Z |-1≤x ≤1},则-1.1∈A 三、填空题13.用符号“∈”和“∉”填空:(1)12______N ;(2)2______Z ;(3)1-______R ;(4)π______Q +;(5)24______N ;(6)0______∅.14.下列各组对象不能组成集合的是______(用题号填空).①中国古代四大发明③方程210x -=的实数解④周长为20cm 的三角形⑤接近于0的数15.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =________.16.由a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,则a 2022+b 2022=________.四、解答题17.设{}0,2,3,5,7A =,{}22,31B a a =++,已知5A ∈,5B ∉,求a 的值.18.用适当的方法表示下列集合.(1)方程2+2+1=0的解集;(2)在自然数集中,小于1000的奇数构成的集合.参考答案1--8BABDC DAC 9.BD 10.BD 11.BC 12.BCD13.(1)∉(2)∈(3)∈(4)∉(5)∈(6)∉.14.②⑤15.616.117.【解析】由5B ∉知,2315a a ++≠,即2340a a +-≠,解得1a ≠且4a ≠-又集合元素具有互异性,知2312a a ++≠,即2310a a +-≠解得32a -≠且32a -+≠综上所述,a 的取值为{a 32a --≠且32a -≠且1a ≠且}4a ≠-18.【解析】(1)因为方程2+2+1=0的解为0或-1,所以解集为{0,-1}.(2)在自然数集中,奇数可表示为x=2n+1,n∈N,故在自然数集中,小于1000的奇数构成的集合为{x|x=2n+1,且n<500,n∈N}.。

高三数学集合的概念试题答案及解析

高三数学集合的概念试题答案及解析

高三数学集合的概念试题答案及解析1.设集合,,若,则的值为()A.B.1C.D.0【答案】D【解析】由题意得且,则,,所以.【考点】集合的运算与集合的元素.2.对于集合,定义集合,记集合中的元素个数为.若是公差大于零的等差数列,则=____________.【答案】17【解析】不妨设,由题意,集合中最小项为,最大项为,对任意的,如果,则可取,若,可取,显然由于,有,即,所以.【考点】集合的元素.3.若x∈A,则∈A,就称A是“伙伴关系集合”,集合M=的所有非空子集中具有伙伴关系的集合的个数是________.【答案】3【解析】具有伙伴关系的元素组是-1;,2,所以具有伙伴关系的集合有3个:{-1},,4.若集合A={0,1},B={-1,a2},则“a=1”是“A∩B={1}”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】a=1A∩B={1};A∩B={1}a=±1,故为充分不必要条件.5.已知集合M={1,2,3},N={2,3,4},则M∩N=________.【答案】M∩N={2,3}【解析】M∩N={1,2,3}∩{2,3,4}={2,3}.6.已知全体实数集,集合(1)若时,求;(2)设,求实数的取值范围.【答案】(1);(2).【解析】(1)集合的运算,要先确定集合中的元素时,,,则,并集就是两集合的所有元素组成,要注意几何元素的互异性.(2)即集合A中的元素都在集合B中,所以.试题解析:(1)当时,,则故(2),,若,则【考点】1、集合的运算;2、集合见得关系;3、集合中元素的确定性.7.设集合,,则使M∩N=N成立的的值是()A.1B.0C.-1D.1或-1【答案】C【解析】由于集合中的元素互不相同,所以.又因为M∩N=N,所以.【考点】集合的特征及集合的基本运算.8.已知集合,集合.(1)求集合;(2)若,求实数的取值范围.【答案】(1);(2) .【解析】(1)求集合,要认清这个集合的代表元是什么?这个代表元具有什么性质?也即这人集合实质是什么?象本题中集合实质就是不等式的解集,故我们只要解这个不等式即可,当然分式不等式的解法是移项,把不等式的右边变为0,左边变成若干因式的积或商,再转化为整式不等式,还要注意的转化时要注意等价转化(主要是原分式不等式中分母不能为0);(2)条件,说明,不需要求出,而是利用集合的关系解决问题.试题解析:解:(1)由,得 2分所以 2分(2) 2分2分由,得 2分所以或所以的范围为 2分【考点】(1)分式不等式;(2)子集的性质.9.若集合,则满足条件有个.【答案】3【解析】集合A显然一定含有元素1,2,而元素3,4可以都没有,也可以有一个,但不能两个都含有,故这样的A有3个,实质是这里集合A的个数是集合的真子集的个数.【考点】子集.10.设非空集合满足:当时,有,给出如下三个命题:①若则;②若则;③若则.其中正确命题的是 ( )A.①B.①②C.②③D.①②③【答案】D【解析】①若则,根据“当时,有”可得即,所以正确;②若则或,根据题意可得,所以正确;③若则,所以正确.【考点】集合的概念11.设集合,.(1)当1时,求集合;(2)当时,求的取值范围.【答案】(1);(2).【解析】(1)当时,集合就是函数的定义域,解不等式就可得到集合;(2)由知,集合是不等式的解集,在解不等式时可先化为一元二次不等式,然后对相应方程的根的大小进行讨论,具体化集合,再由确定的取值范围.试题解析:(1)当1时,,由, 3分解得,所以集合; 7分(2)因为,则, 8分由,得.(ⅰ)当时,,显然不满足题意; 10分(ⅱ)当时,,由题意知解得. 13分综上所述,所求的取值范围是. 14分【考点】集合的运算、子集的含义.12.已知集合,则的所有非空真子集的个数是.【答案】【解析】,则,则,即.故中共有9个元素,因此的所有非空真子集的个数是个.【考点】1.集合中元素的确定;2.集合的子集个数.13.若集合则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,,∵,∴,∴,∴是的充分不必要条件.【考点】1.一元二次不等式的解法;2.绝对值不等式的解法;3.集合间的关系;4.充分必要条件. 14.设集合,,,则M中元素的个数为()A.3B.4C.5D.6【答案】B【解析】由题意知,,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B.【考点】集合的概念15.对于E={a1,a2,….a100}的子集X={,,…, },定义X的“特征数列”为x1,x2…,x100,其中==…==1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,0,0,…,0 子集{a1,a3,a5}的“特征数列”的前三项和等于________________;若E的子集P的“特征数列”P1,P2,…,P100满足P1+Pi+1="1," 1≤i≤99;E 的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q1+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为___________.【答案】2;17【解析】(1)子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故前3项和为2;(2)依题意,E的子集P的“特征数列”为1,0,1,0,1,0…,1;E 的子集Q的“特征数列”为1,0,0,1,0,0,1,0,0…,1,0;将目标转化为求数列与数列在时有几个公共元素,可知有17个.16.集合的元素个数是 ( )A.1B.2C.3D.4【答案】C【解析】={0,1,2},所以,集合的元素个数是3个,故选C。

高一数学集合较难题(完整资料)

高一数学集合较难题(完整资料)

此文档下载后即可编辑高一数学集合较难题一、选择题:1.全集U R =,集合{|112},{|21,},M x Z x N x x k k N +=∈-≤-≤==+∈则图1中阴影部分所示集合的元素共有( )个A .1B .2C .3D .无穷多2.设全集U={2,3,2a +2a-3},A={|a+1|,2},A C U ={5},则a 的值为( )A 、2B 、-3或1C 、-4D 、-4或23. 已知集合{1,2}{21}M N a a M ==∈-,,则M N ⋂=( )A .}1{B . }2,1{C . }3,2,1{D .空集 4.记全集},,111|{N x x x U ∈<≤=则满足}9,7,5,1{}10,97531{=⋂P C U ,,,,的所有集合P 的个数是( )A.4B.6C.8D.165.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( )A .{}1,AB y y => B.{}2A B y y =>C.{}21A B y y ⋃=-<<D. {}21A B y y y ⋃=<>-或6.设全集为R ,}3x 3|x {B }5x 3x |x {A <<-=><=,或,则( )A. R B A R C =B. R B A R C =C. R B A R R C C =D. R B A =7.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)8.已知不等式8.03)1(4)54(22>+-+-+x k x k k 对任何实数x 都成立,则关于x 的方程0108)2(2232=-+-+k x k x ( )A.有两个相等的实根B. 有两个不等的实根C.无实根 有无实根不确定9.满足)3,}(,,,,,{},{132121≥∈⊂⊆-≠n N n a a a a a P a a n n 21,a a 21,a a 的集合P 共有( ) A.123--n 个 B. 122--n 个 C. 121--n 个 D. 12-n 个10. 设集合{|||1,}A x x a x R =-<∈,{|||2,}.B x x b x R =->∈若,A B ⊆则实数a,b 满足A. ||3a b +≤B.||3a b +≥C. ||3a b -≤D. ||3a b -≥二、填空题:1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I}8,6,4{)(1=B A C ,则=)(1B C A ___________。

集合(含答案)(1)

集合(含答案)(1)

集合几类常考的概念与运算含详细参考答案考点一:集合的含义1.(1)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________.解:由题得m +2=3或2m 2+m =3,则m =1或m =-32, 当m =1时, m +2=3且2m 2+m =3(舍);当m =-32时,m +2=12,而2m 2+m =3,故m =-32.(2)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是________.解:当x =0,y =0时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时, x -y =1;当x =1,y =1时,x -y =0;当x =1,y =2时, x -y =-1;当x =2,y =0时,x -y =2;当x =2,y =1时, x -y =1;当x =2,y =2时,x -y =0.根据集合中元素的互异性知,B 中元素有0,-1,-2,1,2,共5个.(3) 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中的元素个数为________. 解:集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以:当b =4时,a =1,2,3,此时x =5,6,7.当b =5时,a =1,2,3,此时x =6,7,8.:根据互异性可知,x =5,6,7,8.即M ={5,6,7,8},共有4个元素.考点二:集合间的基本关系(1)已知A ={x|x 2-3x +2=0},B ={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为________. 解:由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4}.∴满足A ⊆C ⊆B 的集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.(2)若集合A ={x|ax 2-3x +2=0}的子集只有两个,则实数a =________.解:∵集合A 的子集只有两个,∴A 中只有一个元素.当a =0时,x =23符合要求; 当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.(3)设集合A ={0,-4},B ={x|x 2+2(a +1)x +a 2-1=0}.若B ⊆A ,则实数a 的取值范围是________. 解:因为A ={0,-4},所以B ⊆A 分以下三种情况: ①当B ={0,-4},则0和-4是方程的两个根,得⎩⎪⎨⎪⎧ Δ=4a +12-4a 2-1>0,-2a +14,a 2-1=0,解得a =1; ②当B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a<-1.综上所述,所求实数a 的取值范围是a ≤-1或a =1.(4)设A =x|x 2-3x +2=0},B ={x|x 2-2x +a -1=0}.若B ⊆A ,则实数a 的取值范围是________.解:因为A ={1,2},所以B ⊆A 分以下三种情况: ①当B ={1,2},则⎩⎨⎧==∴⎩⎨⎧=-+-=-+-1201440121a a a a (舍); ②当B ={1}或B ={2},并且Δ=4-4(a -1)=0,解a =2,此时B ={1}满足题意;③当B =∅时,Δ=4-4(a -1)<0,解得a>2.综上所述,所求实数a 的取值范围是a 》2.(5)已知集合A ={x|y =ln(x +3)},B ={x|x ≥2},则下列结论正确的是( )A.A =BB.A ∩B =∅C.A ⊆BD.B ⊆A解:A ={x|x>-3},B ={x|x ≥2},结合数轴可得:B ⊆A.(6)已知A ={x|1<x<4},B ={x|x<a},若A ⊆B ,则实数a 的取值范围是________.解:由题:a>4.(7)已知A ={x|x 2-2 017x +2 016<0},B ={x|x<a},若A ⊆B ,则实数a 的取值范围是________. 解:A ={x|1<x<2 016},又B ={x|x<a},A ⊆B 如图所示,得a ≥2 016.(8)已知集合A ={x|log 2x ≤2},B ={x|x<a},若A ⊆B ,则实数a 的取值范围是________.解:由log 2x ≤2,得0<x ≤4,即A ={x|0<x ≤4},而B ={x|x<a},由于A ⊆B ,如图所示,则a>4.(9)已知集合A ={x|-2≤x ≤7},B ={x|m +1<x<2m -1},若B ⊆A ,求实数m 的取值范围.解:当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.,则⎩⎪⎨⎪⎧ m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m ≤4.考点三:集合的基本运算命题点1:集合的运算(1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则A ∩(∁U B)等于________. 解:∁U B ={2,5,8},则A ∩(∁U B)={2,5}.(2)设全集U ={x ∈N +|x<6},集合A ={1,3},B ={3,5},则∁U (A ∪B)等于________.解:(1)U ={1,2,3,4,5},A ∪B ={1,3,5},所以∁U (A ∪B)={2,4}.(6)设集合U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则图中阴影部分表示的集合为( )A.{x|x ≥1}B.{x|1≤x<2}C.{x|0<x ≤1}D.{x|x ≤1} 解:A ={x|2x(x -2)<1}={x|x(x -2)<0}={x|0<x<2},B ={x|y =ln(1-x)}={x|1-x>0}={x|x<1},则∁U B ={x|x ≥1},阴影部分表示的集合为A ∩(∁U B)={x|1≤x<2}.(7)设A=}{542+-=x x y y ,B=}{x y x -=5,求A B 等于________.解:A=}{1≥y y ,B=}{5≤x x ,则A B=[]5,1命题点2:利用集合运算求参数(2)设A ={-4,2a ,2a-1},B ={9,a -5,1-a},若A ∩B=}{9,求a. 解:当2a-1=9,即a=5,A ={-4,25,9},B ={9,-4,0},则A ∩B=}{9,4-(舍); 当2a =9,即a=3,A ={-4,5,9},B ={9,-2,-2}(舍);a=-3,A ={-4,-7,9},B ={9,-8,4}; 则a=-3.(3)设A ={-3,2a ,a+1},B ={a-3,2a -1,12+a },若A ∩B=}{3-,求A ∪B 。

集合复习题带答案解析

集合复习题带答案解析

集合复习题带答案解析1. 集合A={1,2,3},集合B={2,3,4},求A∩B。

答案:A∩B={2,3}。

解析:集合A与集合B的交集是指同时属于A和B 的元素组成的集合。

2. 集合A={1,2,3},集合B={2,3,4},求A∪B。

答案:A∪B={1,2,3,4}。

解析:集合A与集合B的并集是指属于A或B 的所有元素组成的集合。

3. 集合A={1,2,3},求A的补集。

答案:若全集U={1,2,3,4,5},则A的补集为{4,5}。

解析:集合A的补集是指全集中不属于A的元素组成的集合。

4. 集合A={1,2,3},集合B={2,3,4},判断A是否是B的子集。

答案:否。

解析:若集合A的所有元素都属于集合B,则A是B的子集。

在本例中,元素1属于A但不属于B,因此A不是B的子集。

5. 集合A={1,2,3},集合B={3,4,5},求A∆B。

答案:A∆B={1,2,4,5}。

解析:集合A与集合B的对称差是指属于A或B但不属于A∩B的元素组成的集合。

6. 集合A={1,2,3},集合B={2,3,4},求A-B。

答案:A-B={1}。

解析:集合A与集合B的差集是指属于A但不属于B的元素组成的集合。

7. 集合A={1,2,3},集合B={2,3,4},求B-A。

答案:B-A={4}。

解析:集合B与集合A的差集是指属于B但不属于A的元素组成的集合。

8. 集合A={1,2,3},集合B={3,4,5},判断A和B是否不相交。

答案:否。

解析:若集合A与集合B没有共同元素,则称A和B不相交。

在本例中,元素3同时属于A和B,因此A和B相交。

9. 集合A={1,2,3},求A的幂集。

答案:A的幂集为{∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}。

解析:集合A的幂集是指由A的所有子集构成的集合,包括空集和A本身。

10. 集合A={1,2,3},集合B={2,3,4},求A∩(B∪{5})。

集合(有答案)

集合(有答案)

1(一)集合一.考点梳理1.集合的基本概念(1)集合的概念:把一些元素组成的______叫集合;(2)集合中元素的三个特性:______、______、________;(3)集合的三种表示方法:_______、描述法、________.2.集合间的基本关系(1)子集:若对∀x ∈A ,都有x ∈B ,则A ⊆B ;(2)真子集:若A ⊆B ,但______________,则A B ;(3)相等:若A ⊆B ,且______,则A =B ;(4)∅是______集合的子集,是____________集合的真子集.3.集合的基本运算4、有限集的子集个数:① n 个元素的集合有______个子集 ② n 个元素的集合有______个真子集③ n 个元素的集合有______个非空子集 ④ n 个元素的集合有______个非空真子集典例探究考点一:集合中元素的互异性与无序性例1.(1)集合{}c b a S ,,=中的三个元素可构成∆ABC 的三条边长,那么∆ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 (2)如果A=}1|{->x x ,那么 ( )DA .A ⊆0B .A ∈}0{C .A ∈ΦD .A ⊆}0{变式练习1.(1)若集合{}R a a x ax x A ∈=++=,02|2中有且只有一个元素,则a 的取值集合是A .{1}B .{-1}C .{0,1}D .{-1,0,1} (2)若21{,x x ∈},则x = . -1(3)(2007.全国)设,,R b a ∈集合{},,,0,,1⎭⎬⎫⎩⎨⎧=+b a b a b a 则=-b a A .1 B .-1 C .2 D .-22 (4)【2010北京一模】若集合{}0,1,2P =,10(,),,20x y Q x y x y P x y ⎧⎫-+>⎧⎪⎪=∈⎨⎨⎬--<⎩⎪⎪⎩⎭,则Q 中元素的个数是( ) A .3 B .5 C .7 D .9考点二:集合的子集个数例2: 【2010·古田一中高三第一次月考】集合6|,6A x N y y N x *⎧⎫=∈=∈⎨⎬-⎩⎭的真子集的个数为 . A . 16 B .8 C .7 D .4变式练习2(1)集合{}N x ,30∈<≤=x A 的真子集个数是_______(2) 已知集合{1,2}A =,集合B 满足{1,2}A B = ,则集合B 有 个.13. 44.(08山东)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的M 有( )个A .1 B.2 C .3 D .4(3)定义集合运算A ◇B ={}|,,c c a b a A b B =+∈∈,设{}0,1,2A =,{}3,4,5B =,则集合A ◇B 的子集个数为( )AA .32B .31C .30D .14考点三:集合间的基本关系例3:(2014惠州调研)集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}变式练习3. 若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==,},16|{Z n n a c C ∈+==,则A 、B 、C 的关系是( )CA .A B C B . A B=C C .A=B C D .A=B=C 。

集合的概念及运算例题及答案

集合的概念及运算例题及答案

1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括 号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合 例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗? 答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合: (1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(12)

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(12)

1.1 集合的概念1.由实数x ,x -,x 所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素答案:A解析:分0x =、0x >、0x <三种情况讨论,即可得答案.详解:x ,x =-, 当0x =时,它们均为0;当0x >时,它们分别为x ,-x ,x ,x ,-x ;当0x <时,它们分别为x ,-x ,-x ,-x ,-x.通过以上分析,它们最多表示两个不同的数,故此集合中元素最多含有2个.故选:A点睛:本题主要考查了集合元素的互异性,涉及根式的化简,属于基础题.2.已知{}{},14||A x x a B x x =<=<<,若R A B ⊆,则实数a 的取值范围为( )A .{}|1a a <B .{}4|a a ≤C .{}|1a a ≤D .{}|1a a ≥答案:C解析:由题知|1{R B x x =≤或}4x ≥,在结合集合关系即可得答案.详解:因为{}{},14||A x x a B x x =<=<<,所以|1{R B x x =≤或}4x ≥,因为R A B ⊆,所以1a ≤.故实数a 的取值范围为{}|1a a ≤故选:C3.已知集合{}1,2A =,{},,B x x a b a A b A ==-∈∈,则集合B 中元素个数为( )A .1B .2C .3D .4答案:C解析:由集合B 的描述知{1,2}a ∈、{1,2}b ∈,可求出x a b =-,即得集合B 的元素个数. 详解:解:由题意知:{1,2}a ∈,{1,2}b ∈,{}{}|,,0,1,1B x x a b a A b A ==-∈∈=-,∴集合B 中元素个数为3.故选:C.4.若正实数x ,y ,z ,w 构成集合A ,以A 中四个元素为边长的四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形答案:A解析:根据集合中元素的互异性判断对应四边形的形状.详解:由于集合中的元素具有互异性,所以正实数互不相等.结合平行四边形、菱形、矩形均有相等的边,而梯形的四条边可以不相等,可知以A 中四个元素为边长的四边形可能是梯形,故选A.点睛:本题考查集合中元素的特性:互异性,难度较易.互异性:集合中的任意两个元素不相同.5.用列举法表示集合{}23,x x x *-<∈N 为. A .{}0,1,2,3,4B .{}1,2,3,4C .{}0,1,2,3,4,5D .{}1,2,3,4,5答案:B 解析:由23,x x *-<∈N ,解得1,2,3,4x =,再根据集合的表示方法,即可求解,得到答案.详解:由题意,因为23x -<,解得5x <,又由x *∈N ,所以1,2,3,4x =, 所以{}{}23,1,2,3,4x x x *-<∈=N . 故选B .点睛:本题主要考查了集合的表示方法,其中解答中熟记集合的表示方法,准确运算与改写是解答的关键,着重考查了推理与运算能力,属于基础题.6.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2答案:B解析:直接根据交集的定义计算可得;详解:解:∵{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B.7.已知集合{}2|ln 1A x N x =∈<,则A =( )A .1|x x e e ⎧⎫<<⎨⎬⎩⎭B .{}1C .{}2D .{}1,2答案:D解析:通过解不等式2ln 1x <,可得:1ln 1x -<< ,所以1x e e <<,再结合x ∈N ,即可得解. 详解:由2ln 1x <,可得:1ln 1x -<< ,所以1x e e <<,又因为:x ∈N ,所以{}1,2A =,故选:D点睛:本题考查了求集合元素,考查了对数不等式的计算,需注意描述对象的取值范围,属于基础题.8.下面四个命题正确的个数是( ).①集合*N 中最小的数是1;②若*N a -∈,则*N a ∈;③若**N ,N a b ∈∈,则a b +的最小值是2;④296+=x x 的解集是{}3,3.A .0B .1C .2D .3答案:C解析:由*N 是正整数集可判断①②③,根据集合中元素的互异性知④错误.详解:*N 是正整数集,最小的正整数是1,故①正确; 当0a <时,*a N -∈,但*a N ∉,故②错误;若*a N ∈,则a 的最小值为1.又*b N ∈,则b 的最小值为1,当a 和b 都取最小值时,a b +取最小值2,故③正确;由集合中元素的互异性知④错误.故选:C点睛:本题考查常用数集、集合中元素的性质,属于基础题.9.集合(){}**,|4,,x y x y x N y N +=∈∈用列举法可表示为( )A .{}1,2,3,4B .()(){}1,3,2,2C .()(){}3,1,2,2D .()()(){}1,3,2,2,3,1答案:D解析:根据集合中的元素的特性,求得x 的范围,取逐次取x 的合适的值,得到对应的y 的值,然后组成对应的有序数对(x,y),由所有的这些有序数对列举写在大括号内,即为集合的列举法表示.详解:由y∈N *,所以y≥1,又 x+y=4,得x≤3,又x∈N *,所以x=1,2,3,对应y 的值依次为3,2,1,有序数对(x,y )的值分别为(1,3),(2,2),(3,1),题中集合用列举法表示为(1,3),(2,2),(3,1)},故选:D.点睛:本题考查集合的描述法转化为列举法表示,属基础题.注意题中所给集合的代表元素为(x,y ) .10.把集合2|450{}x x x --=用列举法表示为( )A .{|1,5}x x x =-=B .{|15}x x x =-=或C .2{450}x x --=D .{-1,5}答案:D解析:先解一元二次方程2450x x --=的根,然后直接利用列举法表示集合.详解:解方程2450x x --=得1x =-或5x =,因此集合2|450{}x x x --=用列举法表示为{1,5}-. 故选:D.点睛:本题考查了一元二次方程的求解和集合列举法的应用,属于基础题.11.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-=B .{(-1,3)}C .{3,-1}D .{-1,3}答案:B 解析:由题意知,集合A 代表点集,解方程组即可求解.详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)},故选:B.12.下列说法正确的是A NB .1N -∈C .12N ∈D .9N ∈答案:D解析:由题意,AB 中,10-<,C 中,12不是自然数,可判定A 、B 、C 都不正确,即可得到答案.详解:由题意,对于AN 不正确;对于B 中,10-<,所以1N -∈不正确;对于C 中,12不是自然数,所以12N ∈不正确; 故选D.点睛:本题主要考查了常见数集的表示问题,以及元素与集合的关系,其中解答中熟记常见数集的表示形式,以及元素与集合的关系是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.13.关于集合下列正确的是A .0N ∉B .R ∅∈C .*0N ∉D .12Z ∈答案:C详解:0∉N 错误,R ∅∈错误,0∉N *正确,12∈Z 错误,故选C.14.以下五个关系:{}{},,a b b a ⊆,{}0∅∈,0∈∅,{}{}0∅⊆,{}0∅,其中正确的个数是A .1B .2C .3D .4答案:B解析:∅是集合,0是元素,注意集合与集合、元素的关系表示符号.详解: {}{},,a b b a 、是相等的集合,具有子集关系,故正确;∅与{}0是集合与集合的关系,不能使用∈符号,故错误;0与∅是元素与集合的关系,但是∅中不包含元素0,故错误;{}∅表示集合中包含的元素也是集合,且是∅,而{}0表示集合中包含的是元素是数字0,两者之间没有关系,故错误;根据空集是任何非空集合的真子集,故正确.正确的有2个.故选B.点睛:本题考查元素与集合、集合与集合的关系判断,难度较易.注意空集是任何非空集合的真子集.15.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=A .50B .100C .150D .200答案:D详解: 当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D .考点:推理与证明.16.已知集合且,则实数的值为 A .3B .2C .0或3D .0,2,3均可答案:A详解:试题分析:由题意可知2m =或2322m m -+=,集合集合元素的互异性可知3m =考点:元素集合的关系17.设,,则的元素个数是 A .5B .4C .3D .无数个 答案:C详解: 试题分析:依题意有,代入得到,故有个元素. 考点:绝对值不等式,元素与集合的关系.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是定义域还是值域,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.18.下列所给对象能构成集合的是( )A .2020年全国I 卷数学试题的所有难题B .比较接近2的全体正数C .未来世界的高科技产品D .所有整数答案:D解析:选项,,A B C 的对象都具有不确定性,选项D 的对象具有确定性,即可判断得解. 详解:选项,,A B C 的对象都具有不确定性,所以它们的对象不能构成集合;而选项D 的对象具有确定性,能构成集合.故选:D点睛:本题主要考查集合元素的性质,意在考查学生对该知识的理解掌握水平.19.已知集合{}1,2,3,,4A a A =∈,则a =( )A .1B .2C .3D .4答案:D解析:由元素与集合的关系即可求解.详解:{}A a A=∈,1,2,3,,4a∴=4故选:D20.下列关系中,正确的有()Q① 1A.1个B.2个C.3个D.4个答案:C解析:根据元素与集合之间的关系判断可得答案.详解:1|-3|=3是非负整数,|. 2因此,①②③正确,④错误.故选:C.点睛:本题考查了元素与集合之间的关系,考查了几个特殊的数集,属于基础题.。

高中数学集合难题

高中数学集合难题

高中数学集合难题集合在高中数学中是一个重要的概念,它是数学中的一个基础部分,也是解决问题的关键。

本文将介绍一些高中数学中的集合难题,帮助学生更好地理解和应用集合概念。

问题1:设集合A={1,2,3,4,5,6,7,8,9},集合B={5,6,7,8,9,10,11,12,13},求A∪B和A∩B。

解析:A∪B表示集合A和集合B的并集,即包含了A和B中所有的元素,不重复计算。

而A∩B表示集合A和集合B的交集,即A和B中共有的元素。

对于本题,集合A中的元素为{1,2,3,4,5,6,7,8,9},集合B中的元素为{5,6,7,8,9,10,11,12,13}。

所以A∪B的结果为{1,2,3,4,5,6,7,8,9,10,11,12,13},A∩B的结果为{5,6,7,8,9}。

问题2:设集合A={x | -3 ≤ x ≤ 3, x∈Z},集合B={x | -1 ≤ x ≤ 4, x∈Z},求A∪B和A∩B。

解析:题目中的集合A和集合B都是由条件表达式定义的集合。

集合A表示满足-3 ≤ x ≤ 3的整数集合,集合B表示满足-1 ≤x ≤ 4的整数集合。

要求A∪B,即找出满足条件-3 ≤ x ≤ 3或-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-3 ≤ x ≤ 4,所以A∪B的结果为{-3,-2,-1,0,1,2,3,4}。

要求A∩B,即找出同时满足条件-3 ≤ x ≤ 3和-1 ≤ x ≤ 4的整数集合。

可以将两个条件合并为-1 ≤ x ≤ 3,所以A∩B的结果为{-1,0,1,2,3}。

问题3:集合A={a, b, c, d, e, f, g, h, i, j},集合B={c, d, e, f, g},集合C={f, g, h, i, j},求(A∩B)∪C。

解析:首先求A∩B,即集合A和集合B的交集。

集合A中的元素为{a, b, c, d, e, f, g, h, i, j},集合B中的元素为{c, d, e, f, g}。

集合的概念习题答案

集合的概念习题答案

集合的概念习题答案集合是数学中的一个基本概念,它表示一组具有某种特定性质的对象的全体。

以下是一些集合概念的习题及其答案:1. 定义集合习题:定义一个集合A,包含所有小于10的正整数。

答案:集合A可以表示为A = {1, 2, 3, 4, 5, 6, 7, 8, 9}。

2. 集合的表示习题:用描述法和列举法表示集合B,B包含所有偶数。

答案:描述法:B = {x | x是偶数};列举法:B = {2, 4, 6,8, ...}。

3. 子集习题:判断集合C = {1, 3, 5, 7}是否是集合D = {1, 2, 3, 4, 5, 6, 7}的子集。

答案:C不是D的子集,因为C中的元素1, 3, 5, 7并不完全包含在D中。

4. 并集习题:求集合E = {1, 2, 3}和集合F = {3, 4, 5}的并集。

答案:E和F的并集是E ∪ F = {1, 2, 3, 4, 5}。

5. 交集习题:求集合G = {1, 2, 3, 4}和集合H = {3, 4, 5, 6}的交集。

答案:G和H的交集是G ∩ H = {3, 4}。

6. 差集习题:求集合I = {1, 2, 3, 4, 5}和集合J = {4, 5, 6, 7}的差集。

答案:I和J的差集是I - J = {1, 2, 3}。

7. 幂集习题:求集合K = {a, b}的幂集。

答案:K的幂集是P(K) = {∅, {a}, {b}, {a, b}}。

8. 集合的运算习题:求集合L = {1, 2}和集合M = {2, 3}的差集、交集和并集。

答案:L和M的差集是L - M = {1},交集是L ∩ M = {2},并集是L ∪ M = {1, 2, 3}。

9. 无限集合习题:描述自然数集合N。

答案:自然数集合N可以表示为N = {1, 2, 3, ...}。

10. 集合的相等习题:判断集合O = {1, 2, 3}和集合P = {3, 2, 1}是否相等。

集合复习题含答案

集合复习题含答案

集合复习题含答案1. 定义与性质- 题目:什么是集合?请给出集合的三个基本性质。

- 答案:集合是由一些明确的、互不相同的元素所组成的整体。

集合的三个基本性质是:确定性、互异性和无序性。

2. 元素与集合的关系- 题目:如何表示元素属于某个集合?不属于呢?- 答案:如果元素a属于集合A,我们用符号a∈A表示;如果元素a不属于集合A,我们用符号a∉A表示。

3. 集合的表示方法- 题目:列举集合的两种表示方法,并给出例子。

- 答案:集合的两种表示方法有枚举法和描述法。

例如,集合A={1,2,3}是枚举法表示,而集合B={x|x是小于10的正整数}是描述法表示。

4. 集合的运算- 题目:解释集合的并集、交集、差集和补集的概念,并给出相应的符号。

- 答案:并集是两个集合所有元素的集合,用符号A∪B表示。

交集是两个集合共有元素的集合,用符号A∩B表示。

差集是第一个集合中有而第二个集合中没有的元素的集合,用符号A-B表示。

补集是全集中不属于某个集合的所有元素的集合,用符号A'表示。

5. 子集与幂集- 题目:什么是子集?什么是幂集?- 答案:如果集合A的所有元素都是集合B的元素,那么A是B的子集,用符号A⊆B表示。

幂集是某个集合所有子集的集合,包括空集和该集合本身。

6. 集合的包含关系- 题目:如何判断一个集合是否是另一个集合的子集?- 答案:如果集合A的所有元素都是集合B的元素,那么A是B的子集。

7. 集合的相等性- 题目:两个集合何时相等?- 答案:如果两个集合的元素完全相同,那么这两个集合是相等的。

8. 集合的笛卡尔积- 题目:什么是集合的笛卡尔积?请给出一个例子。

- 答案:集合A和集合B的笛卡尔积是所有可能的有序对(a,b)的集合,其中a属于A,b属于B。

例如,如果A={1,2},B={x,y},则A×B={(1,x),(1,y),(2,x),(2,y)}。

9. 集合的划分- 题目:什么是集合的划分?请给出划分的条件。

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)

集合的概念练习题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.下列选项中,表示同一集合的是()A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}C.A={x|–1<x≤1,x∈N},B={1}D.A=∅,2.下列各项中,不能组成集合的是()A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素5.下列关于集合的命题正确的有()①很小的整数可以构成集合②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;③1,2,|-|,0.5,这些数组成的集合有5个元素④空集是任何集合的子集A.0个B.1个C.2个D.3个x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260示成集合的是( )A .②B .③C .①②③D .②③评卷人得分 二、填空题7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},则集合A -B =____________.9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为___________________________________.评卷人得分 三、解答题11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.答案1.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1<x≤1,x∈N},B={1}D .A=∅,【答案】B【解析】【分析】利用集合相等的定义直接求解.【详解】在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1<x≤1,x∈N}={0,1},B={1},二者不相等,不表示同一集合,故C错误;在D中,A=∅,={0},二者不相等,不表示同一集合,故D错误.故选B.【点睛】本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.下列各项中,不能组成集合的是A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明【答案】B【解析】【分析】根据集合的三要素:确定性、互异性、无序性得到选项.【详解】集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.【点睛】本题考查集合中元素满足的三要素:确定性、互异性、无序性.3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【答案】D【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.选D4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】【分析】根据集合的含义逐一分析判断即可得到答案【详解】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C【点睛】本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。

集合重点难点易错题完整版

集合重点难点易错题完整版

集合与简易逻辑(重点、易错点)一.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q中元素的有________个。

(答:8) (2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________ (答:5,1<->n m ); (3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_ _个 (答:7) 二.遇到A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。

如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =__ _.(答:10,1,2a =)已知集合A={x|x 2+(m +2)x +1=0,x∈R},若A∩R *=∅,则实数m 的取值范围是_________.(答:m>-4)三.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n.22-n 如 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有___个。

(答:7)四.集合的运算性质:⑴A B A B A =⇔⊆; ⑵A B B B A =⇔⊆; ⑶A B ⊆⇔B C A C U U ⊇;⑷B A B C A U ⊆⇔Φ=⋂; ⑸B A U B A C U ⊆⇔=⋃; ⑹()U C A B U U C A C B =;⑺()U U U C AB C A C B =.如:(1) 设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =__ __,B =__ _. (答:{2,3}A =,{2,4}B =)(2) 设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A 、B 是________.(答:A={1,3,5,7},B={2,3,4,6,8})五.研究集合问题,一定要理解集合的意义――抓住集合的代表元素。

集合的概念难题汇编(附答案)

集合的概念难题汇编(附答案)

.2013年9月犀利哥的高中数学组卷一.选择题(共11小题)1.(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V 是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的2.(2007•湖北)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3} 3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个5.用C(A)表示非空集合A中的元素个数,定义A*B=,若A={1,2},B={x||x2+ax+1|=1},且A*B=1,由a的所有可能值构成的集合是S,那么C(S)等于()A.4B.3C.2D.16.(2013•宁波模拟)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3﹣a2≤6,那么满足条件的集合A的个数为()A.78 B.76 C.84 D.837.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个8.若x∈A则∈A,就称A是伙伴关系集合,集合M={﹣1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C.28D.259.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18 D.2710.已知元素为实数的集合A满足条件:若a∈A,则,那么集合A中所有元素的乘积为()A.﹣1 B.1C.0D.±111.设集合P={x|x=2k﹣1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则()A.a∈P,b∈Q B.a∈Q,b∈P C.a∈P,b∈P D.a∈Q,b∈Q二.填空题(共14小题)12.(2004•虹口区一模)定义集合A,B的一种运算“*”,A*B={p|p=x+y,x∈A,y∈B}.若A={1,2,3},B={1,2},则集合A*B中所有元素的和_________ .13.(2011•上海模拟)已知集合,且2∈A,3∉A,则实数a的取值范围是_________ .14.集合S={1,2,3,4,5,6},A是S的一个子集,当x∈A时,若x﹣1∉A,x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4元子集的个数是_________ .15.(2006•四川)非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法.②G={偶数},⊕为整数的乘法.③G={平面向量},⊕为平面向量的加法.④G={二次三项式},⊕为多项式的加法.⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是_________ .(写出所有“融洽集”的序号)16.(2012•安徽模拟)给定集合A,若对于任意a,b∈A,有a+b∈A,则称集合A为闭集合,给出如下五个结论:①集合A={﹣4,﹣2,0,2,4}为闭集合;②正整数集是闭集合;③集合A={n|n=3k,k∈Z}是闭集合;④若集合A1,A2为闭集合,则A1∪A2为闭集合;⑤若集合A1,A2为闭集合,且A1⊆R,A2⊆R,则存在c∈R,使得c∉(A1∪A2).其中正确的结论的序号是_________ .17.(2011•绵阳三模)设集合A⊆R,对任意a、b、c∈A,运算“⊕具有如下性质:(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c给出下列命题:①0∈A②若1∈A,则(1⊕1)⊕1=0;③若a∈A,且a⊕0=a,则a=0;④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,则a=c.其中正确命题的序号是_________ (把你认为正确的命题的序号都填上).18.已知集合A={a1,a2,…,a n,n∈N*且n>2},令T A={x|x=a i+a j},a i∈A,a j∈A,1≤i≤j≤n,card(T A)表示集合T A中元素的个数.①若A={2,4,8,16},则card(T A)= _________ ;②若a i+1﹣a i=c( 1≤i≤n﹣1,c为非零常数),则card(T A)= _________ .19.设集合M={1,2,3,4,5,6},S1,S2,…,S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有(min{x,y}表示两个数x,y中的较小者),则k的最大值是_________ .20.设集合A=,B=,函数f(x)=若x0∈A,且f[f(x0)]∈A,则x0的取值范围是_________ .21.(文)设集合A⊆R,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x0为集合A的聚点.则在下列集合中:(1)Z+∪Z﹣(2)R+∪R﹣(3)(4)以0为聚点的集合有_________ (写出所有你认为正确结论的序号).22.用描述法表示图中的阴影部分(包括边界)_________ .23.设,则A∩B用列举法可表示为_________ .24.如果具有下述性质的x都是集合M中的元素,即,其中a,b∈Q.则下列元素:①;②;③;④.其中是集合M的元素是_________ .(填序号)25.用列举法表示集合:= _________ .三.解答题(共5小题)26.(2007•北京)已知集合A={a1,a2,…,a k(k≥2)},其中a i∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣a∉A,则称集合A具有性质P.(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;(II)对任何具有性质P的集合A,证明:;(III)判断m和n的大小关系,并证明你的结论.27.对于集合A={x|x=m2﹣n2,m∈Z,n∈Z},因为16=52﹣32,所以16∈A,研究下列问题:(1) 1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.28.已知集合A={x|x=m+n,m,n∈Z}.(1)设x1=,x2=,x3=(1﹣3)2,试判断x1,x2,x3与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1•x2与A之间的关系.29.已知集合A的全体元素为实数,且满足若a∈A,则∈A.(1)若a=2,求出A中的所有元素;(2)0是否为A中的元素?请再举例一个实数,求出A中的所有元素;(3)根据(1)、(2),你能得出什么结论?30.设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10﹣x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?2013年9月犀利哥的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V 是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的考点:元素与集合关系的判断.专题:压轴题;阅读型;新定义.分析:本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.解答:解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确故选A.点评:此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.2.(2007•湖北)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}考点:元素与集合关系的判断;绝对值不等式的解法.专题:计算题.分析:首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P﹣Q即可.解答:解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B点评:本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组考点:元素与集合关系的判断;集合的表示法;等差数列;等比数列.专题:计算题.分析:首先将正偶数集合按大小顺序排列是一个等差数列,先求出2010是此数列中的第几项,然后按第n组有2n 个偶数进行分组,每组中集合元素的个数正好是等比数列,求出解答:解:正偶数集按从小到大的顺序排列组成数列2,4,6…2n2n=2010,n=1005由第一组{2,4}的元素是2个第二组{6,8,10,12}的元素是4个第三组{14,16,18,20,22,24,26,28}的元素是8个…第m组的元素是2n个2+4+8+…+2n==2m+1﹣22m+1﹣2<1005,解得2m<503.5m∈z,28=256,29=512,256<503.5<512所以,m=9,故选C.点评:此题表面是一个集合题,实际上考查等差数列的通项公式和等比数列求和公式,但过程中一定要思路清晰,否则容易出错.4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个考点:元素与集合关系的判断.专题:综合题;压轴题.分析:本题考查的是新定义和集合知识联合的问题.在解答时首先要明确集合A的所有子集是什么,然后严格按照题目当中对“孤立元”的定义逐一验证即可.当然,如果按照“孤立元”出现的情况逐一排查亦可.解答:解:“孤立元”是1的集合:{1};{1,3,4};{1,4,5};{1,3,4,5};“孤立元”是2的集合:{2};{2,4,5};“孤立元”是3的集合:{3};“孤立元”是4的集合:{4};{1,2,4};“孤立元”是5的集合:{5};{1,2,5};{2,3,5};{1,2,3,5}.点评:本题考查的是集合知识和新定义的问题.在解答过程当中应充分体会新定义问题概念的确定性,与集合子集个数、子集构成的规律.此题综合性强,值得同学们认真总结和归纳.5.用C(A)表示非空集合A中的元素个数,定义A*B=,若A={1,2},B={x||x2+ax+1|=1},且A*B=1,由a的所有可能值构成的集合是S,那么C(S)等于()A.4B.3C.2D.1考点:元素与集合关系的判断.专题:计算题;压轴题;新定义;分类讨论.分析:根据A={1,2},B={x||x2+ax+1|=1},且A*B=1,可知集合B要么是单元素集合,要么是三元素集合,然后对方程|x2+ax+1|=1的根的个数进行讨论,即可求得a的所有可能值,进而可求C(S).解答:解:|x2+ax+1|=1⇔x2+ax+1=1 或x2+ax+1=﹣1,即x2+ax=0 ①或x2+ax+2=0 ②,∵A={1,2},且A*B=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∴C(S)=3.故选B.点评:此题是中档题.考查元素与集合关系的判断,以及学生的阅读能力和对新定义的理解与应用.6.(2013•宁波模拟)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3﹣a2≤6,那么满足条件的集合A的个数为()A.78 B.76 C.84 D.83考点:元素与集合关系的判断.专题:计算题.分析:从集合S中任选3个元素组成集合A,一个能组成C93个,再把不符合条件的去掉,就得到满足条件的集合A的个数.解答:解:从集合S中任选3个元素组成集合A,一个能组成C93个,其中A={1,2,9}不合条件,其它的都符合条件,所以满足条件的集合A的个数C93﹣1=83.故选D.点评:本题考查元素与集合的关系,解题时要认真审题,仔细思考,认真解答.7.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个考点:集合的含义.专题:计算题.分析:(1)(3)中由集合元素的性质:确定性、互异性可知错误;(2)中注意集合中的元素是什么;(4)中注意x=0或y=0的情况.解答:解:(1)中很小的实数没有确定的标准,不满足集合元素的确定性;(2)中集合{y|y=x2﹣1}的元素为实数,而集合{(x,y)|y=x2﹣1}的元素是点;(3)有集合元素的互异性这些数组成的集合有3个元素;(4)集合{(x,y)|xy≤0,x,y∈R}中还包括实数轴上的点.故选A点评:本题考查集合元素的性质和集合的表示,属基本概念的考查.8.若x∈A则∈A,就称A是伙伴关系集合,集合M={﹣1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C.28D.25考点:元素与集合关系的判断.专题:综合题;压轴题;新定义.分析:先找出具有伙伴关系的元素:﹣1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,利用组合知识求解即可.解答:解:具有伙伴关系的元素组有﹣1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C41+C42+C43+C44=15故选A点评:本题考查集合的子集问题、排列组合等知识,考查学生利用所学知识分析问题、解决问题的能力.9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18 D.27考点:元素与集合关系的判断.专题:新定义.分析:首先根据题意,求出A⊗B中的元素,然后求出(A⊗B)⊗C中所含的元素,最后求和即可.解答:解:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.故选C点评:本题考查元素与集合关系的判断,通过集合间的关系直接判断最后求和即可,属于基础题.10.已知元素为实数的集合A满足条件:若a∈A,则,那么集合A中所有元素的乘积为()A.﹣1 B.1C.0D.±1考点:元素与集合关系的判断.专题:计算题;新定义.分析:根据若a∈A,则,依据定义令a=代入进行求解,依次进行赋值代入进行化简,把集合A中元素所有的形式全部求出,再求出它们的乘积.解答:解:由题意知,若a∈A,则,令a=,代入==;令a=代入==,令a=,代入==a,A={a,,,,},则所有元素的乘积为1,故选B.点评:本题主要考查集合的应用,题目比较新颖,以及阅读题意的能力,有一定的难度,主要对集合元素的理解.11.设集合P={x|x=2k﹣1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则()A.a∈P,b∈Q B.a∈Q,b∈P C.a∈P,b∈P D.a∈Q,b∈Q考点:元素与集合关系的判断.专题:计算题.分析:据集合中元素具有集合中元素的属性设出x0,y0,求出x0+y0,x0•y0并将其化简,判断其具有Q,P中哪一个集合的公共属性.解答:解:∵x0∈P,y0∈Q,设x0=2k﹣1,y0=2n,n,k∈Z,则x0+y0=2k﹣1+2n=2(n+k)﹣1∈P,x0y0=(2k﹣1)(2n)=2(2nk﹣n),故x0y0∈Q.故a∈P,b∈Q,故选A.点评:本题考查集合中的元素具有集合的公共属性、元素与集合关系的判断、等基础知识,考查化归与转化思想.属于基础题.二.填空题(共14小题)12.(2004•虹口区一模)定义集合A,B的一种运算“*”,A*B={p|p=x+y,x∈A,y∈B}.若A={1,2,3},B={1,2},则集合A*B中所有元素的和14 .考点:集合的含义.专题:新定义.分析:由A*B={p|p=x+y,x∈A,y∈B},A={1,2,3},B={1,2},知A*B={2,3,4,5},由此能求出集合A*B中所有元素的和.解答:解:∵A*B={p|p=x+y,x∈A,y∈B}.A={1,2,3},B={1,2},∴A*B={2,3,4,5},2+3+4+5=14.故答案为:14.点评:本题考查集合的概念,解题时要认真审题,注意新定义的灵活运用.13.(2011•上海模拟)已知集合,且2∈A,3∉A,则实数a的取值范围是.考点:元素与集合关系的判断.专题:计算题;转化思想.分析:根据集合,且2∈A,3∉A,知道2满足不等式,3不满足该不等式,即,解此不等式组即可求得实数a的取值范围.解答:解:∵,且2∈A,3∉A,∴,解得:.故答案为.点评:此题是个中档题.考查了元素与集合之间的关系,以及分式不等式的求解,对题意的正确理解和转化是解决此题的关键.14.集合S={1,2,3,4,5,6},A是S的一个子集,当x∈A时,若x﹣1∉A,x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4元子集的个数是 6 .考点:元素与集合关系的判断.专题:计算题;压轴题.分析:由S={1,2,3,4,5,6},结合x∈A时,若有x﹣1∉A,且x+1∉A,则称x为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得到答案.解答:解:∵S={1,2,3,4,5,6},其中不含“孤立元”的集合4个元素必须是:共有{1,2,3,6},{1,3,4,6},{1,4,5,6},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个那么S中无“孤立元素”的4个元素的子集A的个数是6个.故答案为6.点评:本题考查的知识点是元素与集合关系的判断,我们要根据定义列出满足条件列出所有不含“孤立元”的集合,及所有三元集的个数,进而求出不含“孤立元”的集合个数.(2)存在e∈G,都有a⊕e=e⊕a=a,(1)对任意的a,b∈G,都有a⊕b∈G,15.(2006•四川)非空集合G关于运算⊕满足:则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法.②G={偶数},⊕为整数的乘法.③G={平面向量},⊕为平面向量的加法.④G={二次三项式},⊕为多项式的加法.⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是①③.(写出所有“融洽集”的序号)考点:集合的含义.专题:压轴题;新定义;对应思想.分析:根据题意对给出的集合和运算对两个条件:运算的封闭性和单位量e进行验证,分别用加法、乘法和平面向量的线性运算的法则判断,只有都满足时才是G关于运算⊕为“融洽集”.解答:解:①G={非负整数},⊕为整数的加法,满足任意a,b∈G,都有a⊕b∈G,且令e=0,有a⊕0=0⊕a=a,∴①符合要求;②G={偶数},⊕为整数的乘法,若存在a⊕e=a×e=a,则e=1,矛盾,∴②不符合要求;③G={平面向量},⊕为平面向量的加法,两个向量相加结果仍为向量;取,满足要求,∴③符合要求;④G={二次三项式},⊕为多项式的加法,两个二次三项式相加得到的可能不是二次三项式,∴④不符合要求;⑤G={虚数},⊕为复数的乘法,两个虚数相乘得到的可能是实数,∴⑤不符合要求,这样G关于运算⊕为“融洽集”的有①③.故答案为:①③.点评:本题考查了学生对新定义的理解和运用能力,可结合学过的运算性质进行类比理解,比如:第一条是运算的封闭性,第二条如加法中的“0”或乘法中的“1”.16.(2012•安徽模拟)给定集合A,若对于任意a,b∈A,有a+b∈A,则称集合A为闭集合,给出如下五个结论:①集合A={﹣4,﹣2,0,2,4}为闭集合;②正整数集是闭集合;③集合A={n|n=3k,k∈Z}是闭集合;④若集合A1,A2为闭集合,则A1∪A2为闭集合;⑤若集合A1,A2为闭集合,且A1⊆R,A2⊆R,则存在c∈R,使得c∉(A1∪A2).其中正确的结论的序号是②③⑤.考点:元素与集合关系的判断.专题:计算题.分析:明确闭集合的定义,然后严格按照题目当中对“闭集合”的定义逐一验证即可.解答:解:对于①:集合A={﹣4,﹣2,0,2,,4};例如﹣4+(﹣2)=﹣6∉A,故不是闭集合,故不正确;对于②:任意a,b∈A,有a+b∈A,所以正整数集是闭集合,正确.对于③:由于任意两个3的倍数,它们的和、差仍是3 的倍数,故③是闭集合,故正确;对于④:假设A1={n|n=3k,k∈Z},A2={n|n=5k,k∈Z},3∈A1,5∈A2,但是,3+5∉A1∪A2,则A1∪A2不是闭集合,故错.对于⑤:设集合A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}都为闭集合,但5∉(A1∪A2).故⑤正确.正确结论的序号是②③⑤.故答案为:②③⑤.点评:本题考查的是集合知识和新定义的问题.充分体会新定义问题概念的确定性,与集合子集个数、子集构成的规律.此题综合性强,值得总结和归纳.17.(2011•绵阳三模)设集合A⊆R,对任意a、b、c∈A,运算“⊕具有如下性质:(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c给出下列命题:①0∈A②若1∈A,则(1⊕1)⊕1=0;③若a∈A,且a⊕0=a,则a=0;④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,则a=c.其中正确命题的序号是①③④(把你认为正确的命题的序号都填上).考点:元素与集合关系的判断.专题:压轴题;新定义;综合法.分析:根据定义中所给的规则(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c,对四个命题逐一进行验证,得出正确命题.解答:解:①由(1)a⊕b∈A;(2)a⊕a=0,0∈A,故①正确;②由(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c知1∈A,则(1⊕1)⊕1=1,故②不正确;③当a=0时,若a∈A,且a⊕0=a,则a=0显然成立,当a≠0时,若若a∈A,且a⊕0=a,则在(3)中令c=0,发现此时(a⊕b)⊕c=a⊕c+b⊕c+c无意义,故a=0,③正确;④a⊕0=a或得a=0,又a⊕b=c⊕b,故有a=c=0,所以④正确;综上①③④正确故答案为①③④点评:本题考查元素与集合关系的判断,正确解答本题,关键是掌握并理解新定义中所给的规则,以及灵活选用规则判断命题是否正确.本题比较抽象,应好好总结做题规律.18.已知集合A={a1,a2,…,a n,n∈N*且n>2},令T A={x|x=a i+a j},a i∈A,a j∈A,1≤i≤j≤n,card(T A)表示集合T A中元素的个数.①若A={2,4,8,16},则card(T A)= 10 ;②若a i+1﹣a i=c( 1≤i≤n﹣1,c为非零常数),则card(T A)= 2n﹣3 .考点:元素与集合关系的判断.专题:计算题;新定义.分析:对于①若A={2,4,8,16},直接计算出T A={6,10,18,12,20,24},即可得出答案;②若a i+1﹣a i=c( 1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,a n,构成等差数列,利用特殊化思想,取特殊的等差数列进行计算,结合类比推理可得card(T A)=2n﹣3.解答:解:①若A={2,4,8,16},则T A={6,10,18,12,20,24,4,8,16,32},∴card(T A)=10;②若a i+1﹣a i=c( 1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,a n,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则T A={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴T A中共2n﹣3个元素,利用类比推理可得若a i+1﹣a i=c( 1≤i≤n﹣1,c为非零常数),则card(T A)=2n﹣3.故答案为:10;2n﹣3.点评:本题考查集合与元素的位置关系和数列的综合应用,综合性较强,解题时注意特殊化思想和转化思想的运用,解题时要认真审题,仔细解答,避免错误,属基础题.19.设集合M={1,2,3,4,5,6},S1,S2,…,S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有(min{x,y}表示两个数x,y中的较小者),则k的最大值是11 .考点:元素与集合关系的判断.专题:计算题.分析:含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,由此能求出满足条件的两个元素的集合的个数.解答:解:含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,故满足条件的两个元素的集合有11个.故答案为:11.点评:本题考查元素与集合的关系的判断,解题时要认真审题,仔细解答.20.设集合A=,B=,函数f(x)=若x0∈A,且f[f(x0)]∈A,则x0的取值范围是.考点:元素与集合关系的判断.专题:计算题.分析:这是一个分段函数,从x0∈A入手,依次表达出里层的解析式,最后得到1﹣2x0∈A,解不等式得到结果.解答:解:x0∈A,即,所以,,即,即f(x0)∈B,所以f[f(x0)]=2[1﹣f(x0)]=1﹣2x0∈A,即,解得:,又由,,所以.故答案为:(,)点评:本题考查元素与集合间的关系,考查分段函数,解题的关键是看清自变量的范围,代入适合的代数式.21.(文)设集合A⊆R,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x0为集合A的聚点.则在下列集合中:(1)Z+∪Z﹣(2)R+∪R﹣(3)(4)以0为聚点的集合有(2)(4)(写出所有你认为正确结论的序号).考点:元素与集合关系的判断.专题:阅读型;新定义.分析:根据集合聚点的新定义,我们逐一分析四个集合中元素的性质,并判断是否满足集合聚点的定义,进而得到答案.解答:解:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z﹣,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不可能0<|x﹣0|<0.5,从而0不是Z+∪Z﹣的聚点;(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a ∴0是集合{x|x∈R,x≠0}的聚点;(3)中,集合中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,∴0不是集合的聚点;(4)集合中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a∴0是集合的聚点故答案为(2)(4)点评:本题的考点是函数恒成立问题,主要考查的知识点是集合元素的性质,其中正确理解新定义﹣﹣集合的聚点的含义,是解答本题的关键.22.用描述法表示图中的阴影部分(包括边界){(x,y)|xy>0,且.考点:集合的表示法.专题:计算题.分析:利用图中的阴影部分的点的坐标满足的条件即为集合的元素的公共属性.解答:解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣或0,0≤y≤1}={(x,y)|xy>0且﹣1}故答案为:{(x,y)|xy>0,且}点评:本题考查用集合表示平面图形,注意代表元素是数对.23.设,则A∩B用列举法可表示为{(1,1),(0,1),(0,﹣1)} .考点:集合的表示法.专题:计算题.分析:欲求出A∩B中的元素,只须求解方程组的解.将方程组的解用列举法写出来即得答案.解答:解:∵求解方程组的解,或或由此可知集合A∩B用列举法可表示为{(1,1),(0,1),(0,﹣1)}故答案为{(1,1),(0,1),(0,﹣1)}点评:本题考查集合的表示法、集合的性质和应用,解题时要注意不重复、不遗漏.24.如果具有下述性质的x都是集合M中的元素,即,其中a,b∈Q.则下列元素:①;②;③;④.其中是集合M的元素是①③④.(填序号)考点:元素与集合关系的判断.专题:新定义.分析:通过a,b取值直接判断①②,是否正确,通过化简③④,确定a,b的值判断③④是否满足题意.解答:解:对于①,显然a=0,b=1,满足题意;对于②;显然a=3,b=π,π是无理数,所以②不满足题意;对于③==3+2,所以a=3,b=2满足题意;对于④==4,a=4,b=0,满足题意.是集合M的元素是①③④.故答案为:①③④.点评:本题考查元素与集合关系的判断,考查计算能力,逻辑推理能力.25.用列举法表示集合:= {﹣11,﹣6,﹣3,﹣2,0,1,4,9} .考点:集合的表示法.专题:计算题.分析:首先根据,对m值进行分析,当为整数时记录m的值,最后综合m的值构成集合M解答:解:∵;m=﹣11时,;m=﹣6时,=﹣2;m=﹣3时,=﹣5;m=﹣2时,=﹣10;m=0时,=10;m=1时,=5;m=4时,=2;m=9时,=1;∴M={﹣11,﹣6,﹣3,﹣2,0,1,4,9}故答案为:{﹣11,﹣6,﹣3,﹣2,0,1,4,9}点评:本题考查集合的表示方法,根据已知题意进行分析,通过对m值的分析为解题的关键,属于基础题.三.解答题(共5小题)26.(2007•北京)已知集合A={a1,a2,…,a k(k≥2)},其中a i∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣a∉A,则称集合A具有性质P.(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;(II)对任何具有性质P的集合A,证明:;(III)判断m和n的大小关系,并证明你的结论.考点:元素与集合关系的判断;集合的含义.专题:综合题;压轴题;分类讨论;转化思想.分析:(I)利用性质P的定义判断出具有性质P的集合,利用集合S,T的定义写出S,T.(II)据具有性质P的集合满足a∈A,总有﹣a∉A,得到0∉A得到(a i,a i)∉T;当(a i,a j)∈T时,(a j,a i)∉T,求出T中的元素个数.(III)对应S中的元素据S,T的定义得到也是T中的元素,反之对于T中的元素也是s中的元素,得到两个集合中的元素相同.解答:(I)解:集合{0,1,2,3}不具有性质P.集合{﹣1,2,3}具有性质P,其相应的集合S和T是S=(﹣1,3),(3,﹣1),T=(2,﹣1),(2,3).(II)证明:首先,由A中元素构成的有序数对(a i,a j)共有k2个.因为0∉A,所以(a i,a i)∉T(i=1,2,,k);又因为当a∈A时,﹣a∉A时,﹣a∉A,所以当(a i,a j)∈T时,(a j,a i)∉T(i,j=1,2,,k).从而,集合T中元素的个数最多为,即.(III)解:m=n,证明如下:(1)对于(a,b)∈S,根据定义,a∈A,b∈A,且a+b∈A,从而(a+b,b)∈T.如果(a,b)与(c,d)是S的不同元素,那么a=c与b=d中至少有一个不成立,从而a+b=c+d与b=d中也至少有一个不成立.故(a+b,b)与(c+d,d)也是T的不同元素.可见,S中元素的个数不多于T中元素的个数,即m≤n,(2)对于(a,b)∈T,根据定义,a∈A,b∈A,且a﹣b∈A,从而(a﹣b,b)∈S.如果(a,b)与(c,d)是T的不同元素,那么a=c与b=d中至少有一个不成立,从而a﹣b=c﹣d与b=d中也不至少有一个不成立,故(a﹣b,b)与(c﹣d,d)也是S的不同元素.可见,T中元素的个数不多于S中元素的个数,即n≤m,由(1)(2)可知,m=n.点评:本题考查利用题中的新定义解题;新定义题是近几年常考的题型,要重视.27.对于集合A={x|x=m2﹣n2,m∈Z,n∈Z},因为16=52﹣32,所以16∈A,研究下列问题:(1) 1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.考点:元素与集合关系的判断.专题:探究型.分析:(1)根据集合A的元素的性质证明1,3,4,5∈A,对于2和6用反证法进行证明,证明过程注意根据整数是奇(偶)进行分类说明;(2)根据集合A的元素的性质,在偶数中找出是集合A的元素和一些不是的A的元素,由这些数的特征进行归纳得出结论.解答:解:(1)∵1=12﹣02;3=22﹣12;5=32﹣22;4=22﹣02;∴1,3,4,5∈A,且2,6∉A;(5分)设2∈A,得存在m,n∈Z,使2=m2﹣n2成立.(m﹣n)(m+n)=2当m,n同奇或同偶时,m﹣n,m+n均为偶数∴(m﹣n)(m+n)为4的倍数,与2不是4倍数矛盾.当m,n同分别为奇,偶数时,m﹣n,m+n均为奇数(m﹣n)(m+n)为奇数,与2是偶数矛盾.∴2∉A同理6∉A(8分)(2)4=22﹣02;8=32﹣12;12=42﹣22;2,6,10,14,∉A,结论:是4的倍数的数属于A.(12分)点评:本题考查了元素与集合的关系,只要根据集合元素满足的性质进行判断,利用归纳推理思想方法进行归纳出集合元素的性质的结论,考查了分析和解决问题的能力.28.已知集合A={x|x=m+n,m,n∈Z}.(1)设x1=,x2=,x3=(1﹣3)2,试判断x1,x2,x3与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1•x2与A之间的关系.考点:元素与集合关系的判断.专题:证明题.分析:(1)经过分母有理化、开方、平方化简即可判断出x1,x2,x3是否属于集合A.(2)经过计算可判断出是否属于集合A.解答:解:(1)∵===﹣﹣.∴x1∉A.∵==.∴x2∈A.∵=19﹣6.∴x3∈A.(2)设,m,n∈Z,,c,d∈Z,则x1+x2=(m+c)+(n+d),∵(m+c),(n+d)∈Z,∴(x1+x2)∈Z.。

集合经典大题及解析 -回复

集合经典大题及解析 -回复

集合经典大题及解析一、集合的基本概念1.1 集合与元素问题:什么是集合?什么是元素?它们之间的关系是什么?解析:集合是由一组具有共同特征的元素组成的整体。

这个整体称为集合,而组成这个整体的每一个元素称为元素。

元素是集合的一部分,且必须满足集合的定义。

1.2 集合的子集问题:什么是子集?如何判断一个集合是否为另一个集合的子集?解析:如果一个集合中的所有元素都是另一个集合中的元素,那么这个集合称为另一个集合的子集。

判断一个集合是否为另一个集合的子集,可以通过将两个集合进行比较,检查前者是否包含在后者中。

1.3 集合的并集与交集问题:什么是并集和交集?如何计算两个集合的并集和交集?解析:并集是将两个集合的所有元素合并在一起,形成一个新的集合。

交集则是从两个集合中选出共同的元素组成一个新的集合。

计算并集和交集可以通过简单的数学运算来实现。

1.4 集合的补集问题:什么是补集?如何计算一个集合的补集?解析:补集是指在一个集合中去掉所有属于另一个集合的元素后剩下的元素组成的集合。

计算补集可以通过先找出不属于另一个集合的元素,然后将这些元素组成一个新的集合。

二、集合的关系2.1 子集与真子集问题:什么是真子集?如何判断一个集合是否为另一个集合的真子集?解析:真子集是指在一个集合中去掉所有不属于另一个集合的元素后剩下的元素组成的集合。

判断一个集合是否为另一个集合的真子集,可以通过比较两个集合的大小来确定。

2.2 集合相等问题:什么是集合相等?如何判断两个集合是否相等解析:如果两个集合中的元素完全相同,那么这两个集合相等。

判断两个集合是否相等,可以通过比较两个集合中的每一个元素来确定。

2.3 空集问题:什么是空集?空集有哪些性质?解析:空集是指没有任何元素的集合。

空集具有以下性质:(1) 空集是任何非空集合的真子集;(2) 任何元素都属于空集;(3) 空集的补集也是空集。

三、集合的运算性质3.1 集合的并运算问题:什么是并运算?如何计算两个集合的并运算?解析:并运算是指将两个或多个集合合并成一个新集合的操作。

集合的概念习题答案

集合的概念习题答案

集合的概念习题答案集合的概念习题答案在数学中,集合是一个基础概念,它是由一些确定的元素组成的。

在集合论中,我们学习了如何描述集合、如何操作集合以及集合之间的关系。

在这篇文章中,我将回答一些与集合相关的习题,帮助读者更好地理解集合的概念。

1. 问题:给定两个集合A和B,如何表示它们的交集?答案:交集是指同时属于集合A和集合B的元素所组成的集合。

我们可以用符号"∩"表示交集。

因此,集合A和集合B的交集可以表示为A ∩ B。

2. 问题:如果集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则它们的交集是什么?答案:根据题目给出的集合A和集合B,我们可以找到它们的交集。

集合A和集合B的交集包含同时属于两个集合的元素,即3和4。

因此,它们的交集可以表示为{3, 4}。

3. 问题:给定两个集合A和B,如何表示它们的并集?答案:并集是指属于集合A或者集合B的元素所组成的集合。

我们可以用符号"∪"表示并集。

因此,集合A和集合B的并集可以表示为A ∪ B。

4. 问题:如果集合A = {1, 2, 3},集合B = {3, 4, 5},则它们的并集是什么?答案:根据题目给出的集合A和集合B,我们可以找到它们的并集。

集合A和集合B的并集包含属于集合A或者集合B的元素,即1、2、3、4和5。

因此,它们的并集可以表示为{1, 2, 3, 4, 5}。

5. 问题:给定两个集合A和B,如何表示它们的差集?答案:差集是指属于集合A但不属于集合B的元素所组成的集合。

我们可以用符号"-"表示差集。

因此,集合A和集合B的差集可以表示为A - B。

6. 问题:如果集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则它们的差集是什么?答案:根据题目给出的集合A和集合B,我们可以找到它们的差集。

集合A和集合B的差集包含属于集合A但不属于集合B的元素,即1和2。

高二数学集合的概念试题答案及解析

高二数学集合的概念试题答案及解析

高二数学集合的概念试题答案及解析1.已知有限集.如果中元素满足,就称为“复活集”,给出下列结论:①集合是“复活集”;②若,且是“复活集”,则;③若,则不可能是“复活集”;④若,则“复合集”有且只有一个,且.其中正确的结论是.(填上你认为所有正确的结论序号).【答案】①③④【解析】故①正确;不妨设则由韦达定理知是一元二次方程的两个根,由△>0,可得t<0,或t>4,故②错;不妨设A中由得当时有所以于是无解即不存在满足条件的复活集故③正确;当n=3时,故只能求得于是复活集A只能有一个,当时,由即有也就是说复活集存在的必要条件是:事实上矛盾,故④正确.【考点】元素与集合,复活集的定义.2.在整数集中,被除所得余数为的所有整数组成一个“类”,记为,即,.给出如下四个结论:①;②;③;④当且仅当“”整数属于同一“类”.其中,正确结论的个数为.A.B.C.D.【答案】C【解析】①∵2011÷5=402…1,∴2011∈[1],故①对;②∵-3=5×(-1)+2,∴对-3∉[3];故②错;③∵整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③对;④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.故④对.∴正确结论的个数是3.故选C..【考点】新定义.3.已知集合,若,求实数的取值范围.【答案】【解析】本试题主要是考查了集合的交集的运算。

以及二次不等式的解集的运用。

解A得需要对参数m分类讨论得到集合B,然后借助于数轴法求解得到结论。

解:解A得……2分若,解B得:……4分因为,所以,……6分所以,得:……8分若,解B得:所以,得:……11分所以:……12分4.若集合,则满足的集合B的个数是()A.1B.2C.7D.8【答案】D【解析】解:因为集合,则满足,因此那么集合B的个数就是集合A的子集个数,共有8个,选D.5.集合的子集的个数为.【答案】16【解析】解:因为中有4个元素,因此子集个数为24=16.6.设集合函数,且,则的取值范围是 .【答案】【解析】,,,,,.7.(本小题满分13分)若集合具有以下性质:①②若,则,且时,.则称集合是“好集”.(Ⅰ)分别判断集合,有理数集Q是否是“好集”,并说明理由;(Ⅱ)设集合是“好集”,求证:若,则;(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.命题:若,则必有;命题:若,且,则必有;【答案】(Ⅰ)有理数集是“好集”.(Ⅱ).(Ⅲ)命题均为真命题..【解析】(I)先假设集合是“好集”.因为,,所以这与矛盾.这样就确定集合不是“好集”.有理数Q也采用同样的方法,进行推证.(II)根据好集的定义是“好集”,则,然后再根据x,y的任意性,可证明.(III)本小题也是先假设p、q都是真命题,然后根据好集的定义进行推证..(Ⅰ)集合不是“好集”. 理由是:假设集合是“好集”.因为,,所以. 这与矛盾.…………2分有理数集是“好集”. 因为,,对任意的,有,且时,.所以有理数集是“好集”.………………………………4分(Ⅱ)因为集合是“好集”,所以.若,则,即.所以,即. …………………………6分(Ⅲ)命题均为真命题. 理由如下:………………………………………7分对任意一个“好集”,任取,若中有0或1时,显然.下设均不为0,1. 由定义可知:.所以,即.所以. 由(Ⅱ)可得:,即. 同理可得.若或,则显然.若且,则.由(Ⅱ)可得:.所以. 所以.所以.综上可知,,即命题为真命题.若,且,则.所以,即命题为真命题. ……………………………………13分8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33B.34C.35D.36【答案】A【解析】解:不考虑限定条件确定的不同点的个数为C21C31A33=36,但集合B、C中有相同元素1,由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33个,故选A.9.设集合,则.【答案】【解析】,.10.(本小题满分14分)已知条件:条件:(Ⅰ)若,求实数的值;(Ⅱ)若是的充分条件,求实数的取值范围.【答案】解:(Ⅰ),,若,则,故(Ⅱ),若,则或,故或【解析】略11.已知集合,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是().A.18B.10C.16D.14【答案】D【解析】若以中的元素为横坐标中的元素为纵坐标,则可以表示第一象限内不同的点2×2=4个,第二象限内不同的点1×2=2个。

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)

集合的概念练习题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.下列选项中,表示同一集合的是()A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}C.A={x|–1<x≤1,x∈N},B={1}D.A=∅,2.下列各项中,不能组成集合的是()A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素5.下列关于集合的命题正确的有()①很小的整数可以构成集合②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;③1,2,|-|,0.5,这些数组成的集合有5个元素④空集是任何集合的子集A.0个B.1个C.2个D.3个x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260示成集合的是( )A .②B .③C .①②③D .②③评卷人得分 二、填空题7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},则集合A -B =____________.9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为___________________________________.评卷人得分 三、解答题11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.答案1.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1<x≤1,x∈N},B={1}D .A=∅,【答案】B【解析】【分析】利用集合相等的定义直接求解.【详解】在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1<x≤1,x∈N}={0,1},B={1},二者不相等,不表示同一集合,故C错误;在D中,A=∅,={0},二者不相等,不表示同一集合,故D错误.故选B.【点睛】本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.下列各项中,不能组成集合的是A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明【答案】B【解析】【分析】根据集合的三要素:确定性、互异性、无序性得到选项.【详解】集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.【点睛】本题考查集合中元素满足的三要素:确定性、互异性、无序性.3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【答案】D【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.选D4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】【分析】根据集合的含义逐一分析判断即可得到答案【详解】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C【点睛】本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。

集合习题(难)附答案

集合习题(难)附答案

1.(2013·广东)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2} [答案] D[解析] 化简两个集合,得M ={-2,0},N ={0,2},则M ∪N ={-2,0,2},故选D.2.(2013·天津)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1] [答案] D[解析] 易知A ={x ∈R |-2≤x ≤2},故A ∩B ={x |-2≤x ≤1}.故选D.3.(2013·北京朝阳)设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,34 B.⎣⎢⎡⎭⎪⎫34,43 C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞) [答案] B[解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0,根据对称性可知要使A ∩B 中恰含有一个整数,则这个整数为2,所以有f (2)≤0且f (3)>0,即⎩⎨⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧ a ≥34,a <43.即34≤a <43,故选B.4.(2014·原创)设有限集合A ={a 1,a 2,…,a n },则∑i =1na i 叫做集合A 的和,记作S A .若集合P ={x |x =2n -1,n ∈N *,n ≤4},集合P 的含有3个元素的全体子集分别为P 1,P 2,…,P k ,则∑i =14SP i =________.[答案] 48[解析] 易知P ={1,3,5,7},则含有3个元素的子集共有4个,分别是P 1={1,3,5},则SP 1=9,P 2={1,3,7},则SP 2=11,P 3={1,5,7},则SP 3=13,P 4={3,5,7},即SP 4=15,所以∑i =14SP i =SP 1+SP 2+SP 3+SP 4=48.1.非空数集A ={a 1,a 2,a 3,…,a n }(n ∈N *)中,所有元素的算术平均数记为E (A ),即E (A )=a 1+a 2+a 3+…+a n n.若非空数集B 满足下列两个条件:①B ⊆A ;②E (B )=E (A ),则称B 为A 的一个“保均值子集”.据此,集合{1,2,3,4,5}的“保均值子集”有( )A .5个B .6个C .7个D .8个[答案] C[解析] 非空数集A ={1,2,3,4,5}中,所有元素的算术平均数E (A )=1+2+3+4+55=3,所以集合A 的“保均值子集”有:{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{1,2,3,4,5},共7个. 2.已知茎叶图列举了集合U 中的所有元素,设A ={3,6,9},B ={3,5,12},则(∁U A )∩B =________.[答案] {5,12}[解析] 由茎叶图可知:U ={3,5,6,9,12,13},则∁U A ={5,12,13}故(∁U A )∩B={5,12}.———————————————已知全集U =R ,集合A ={x |y =ln(3x -1)},B ={y |y =sin(x +2)},则(∁U A )∩B =( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎦⎥⎤-1,13 D .∅ [答案] C[解析] ∵A ={x |y =ln(3x -1)}=⎝ ⎛⎭⎪⎫13,+∞,B ={y |y =sin(x +2)}=[-1,1],∴∁U A =⎝ ⎛⎦⎥⎤-∞,13, ∴(∁U A )∩B =⎣⎢⎡⎦⎥⎤-1,13,故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. ... ..2013年9月犀利哥的高中数学组卷一.选择题(共11小题)1.(2011•)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的2.(2007•)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3} 3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个5.用C(A)表示非空集合A中的元素个数,定义A*B=,若A={1,2},B={x||x2+ax+1|=1},且A*B=1,由a的所有可能值构成的集合是S,那么C(S)等于()A.4B.3C.2D.16.(2013•模拟)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3﹣a2≤6,那么满足条件的集合A的个数为()A.78 B.76 C.84 D.837.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限的点集.A.0个B.1个C.2个D.3个8.若x∈A则∈A,就称A是伙伴关系集合,集合M={﹣1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C.28D.259.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18 D.2710.已知元素为实数的集合A满足条件:若a∈A,则,那么集合A中所有元素的乘积为()A.﹣1 B.1C.0D.±111.设集合P={x|x=2k﹣1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则()A.a∈P,b∈Q B.a∈Q,b∈P C.a∈P,b∈P D.a∈Q,b∈Q二.填空题(共14小题)12.(2004•虹口区一模)定义集合A,B的一种运算“*”,A*B={p|p=x+y,x∈A,y∈B}.若A={1,2,3},B={1,2},则集合A*B中所有元素的和_________.13.(2011•模拟)已知集合,且2∈A,3∉A,则实数a的取值围是_________.14.集合S={1,2,3,4,5,6},A是S的一个子集,当x∈A时,若x﹣1∉A,x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4元子集的个数是_________.15.(2006•)非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法.②G={偶数},⊕为整数的乘法.③G={平面向量},⊕为平面向量的加法.④G={二次三项式},⊕为多项式的加法.⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是_________.(写出所有“融洽集”的序号)16.(2012•模拟)给定集合A,若对于任意a,b∈A,有a+b∈A,则称集合A为闭集合,给出如下五个结论:①集合A={﹣4,﹣2,0,2,4}为闭集合;②正整数集是闭集合;③集合A={n|n=3k,k∈Z}是闭集合;④若集合A1,A2为闭集合,则A1∪A2为闭集合;⑤若集合A1,A2为闭集合,且A1⊆R,A2⊆R,则存在c∈R,使得c∉(A1∪A2).其中正确的结论的序号是_________.17.(2011•三模)设集合A⊆R,对任意a、b、c∈A,运算“⊕具有如下性质:(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c给出下列命题:①0∈A②若1∈A,则(1⊕1)⊕1=0;③若a∈A,且a⊕0=a,则a=0;④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,则a=c.其中正确命题的序号是_________(把你认为正确的命题的序号都填上).18.已知集合A={a1,a2,…,a n,n∈N*且n>2},令T A={x|x=a i+a j},a i∈A,a j∈A,1≤i≤j≤n,card(T A)表示集合T A中元素的个数.①若A={2,4,8,16},则card(T A)=_________;②若a i+1﹣a i=c(1≤i≤n﹣1,c为非零常数),则card(T A)=_________.19.设集合M={1,2,3,4,5,6},S1,S2,…,S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有(min{x,y}表示两个数x,y中的较小者),则k的最大值是_________.20.设集合A=,B=,函数f(x)=若x0∈A,且f[f(x0)]∈A,则x0的取值围是_________.21.(文)设集合A⊆R,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x0为集合A的聚点.则在下列集合中:(1)Z+∪Z﹣(2)R+∪R﹣(3)(4)以0为聚点的集合有_________(写出所有你认为正确结论的序号).22.用描述法表示图中的阴影部分(包括边界)_________.23.设,则A∩B用列举法可表示为_________.24.如果具有下述性质的x都是集合M中的元素,即,其中a,b∈Q.则下列元素:①;②;③;④.其中是集合M的元素是_________.(填序号)25.用列举法表示集合:=_________.三.解答题(共5小题)26.(2007•)已知集合A={a1,a2,…,a k(k≥2)},其中a i∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣a∉A,则称集合A具有性质P.(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;(II)对任何具有性质P的集合A,证明:;(III)判断m和n的大小关系,并证明你的结论.27.对于集合A={x|x=m2﹣n2,m∈Z,n∈Z},因为16=52﹣32,所以16∈A,研究下列问题:(1)1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.28.已知集合A={x|x=m+n,m,n∈Z}.(1)设x1=,x2=,x3=(1﹣3)2,试判断x1,x2,x3与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1•x2与A之间的关系.29.已知集合A的全体元素为实数,且满足若a∈A,则∈A.(1)若a=2,求出A中的所有元素;(2)0是否为A中的元素?请再举例一个实数,求出A中的所有元素;(3)根据(1)、(2),你能得出什么结论?30.设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10﹣x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?2013年9月犀利哥的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2011•)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的考点:元素与集合关系的判断.专题:压轴题;阅读型;新定义.分析:本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V 的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.解答:解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确故选A.点评:此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.2.(2007•)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}考点:元素与集合关系的判断;绝对值不等式的解法.专题:计算题.分析:首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P﹣Q即可.解答:解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B点评:本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组考点:元素与集合关系的判断;集合的表示法;等差数列;等比数列.专题:计算题.分析:首先将正偶数集合按大小顺序排列是一个等差数列,先求出2010是此数列中的第几项,然后按第n组有2n 个偶数进行分组,每组中集合元素的个数正好是等比数列,求出解答:解:正偶数集按从小到大的顺序排列组成数列2,4,6…2n2n=2010,n=1005由第一组{2,4}的元素是2个第二组{6,8,10,12}的元素是4个第三组{14,16,18,20,22,24,26,28}的元素是8个…第m组的元素是2n个2+4+8+…+2n==2m+1﹣22m+1﹣2<1005,解得2m<503.5m∈z,28=256,29=512,256<503.5<512所以,m=9,故选C.点评:此题表面是一个集合题,实际上考查等差数列的通项公式和等比数列求和公式,但过程中一定要思路清晰,否则容易出错.4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个考点:元素与集合关系的判断.专题:综合题;压轴题.分析:本题考查的是新定义和集合知识联合的问题.在解答时首先要明确集合A的所有子集是什么,然后严格按照题目当中对“孤立元”的定义逐一验证即可.当然,如果按照“孤立元”出现的情况逐一排查亦可.解答:解:“孤立元”是1的集合:{1};{1,3,4};{1,4,5};{1,3,4,5};“孤立元”是2的集合:{2};{2,4,5};“孤立元”是3的集合:{3};“孤立元”是4的集合:{4};{1,2,4};“孤立元”是5的集合:{5};{1,2,5};{2,3,5};{1,2,3,5}.点评:本题考查的是集合知识和新定义的问题.在解答过程当中应充分体会新定义问题概念的确定性,与集合子集个数、子集构成的规律.此题综合性强,值得同学们认真总结和归纳.5.用C(A)表示非空集合A中的元素个数,定义A*B=,若A={1,2},B={x||x2+ax+1|=1},且A*B=1,由a的所有可能值构成的集合是S,那么C(S)等于()A.4B.3C.2D.1考点:元素与集合关系的判断.专题:计算题;压轴题;新定义;分类讨论.分析:根据A={1,2},B={x||x2+ax+1|=1},且A*B=1,可知集合B要么是单元素集合,要么是三元素集合,然后对方程|x2+ax+1|=1的根的个数进行讨论,即可求得a的所有可能值,进而可求C(S).解答:解:|x2+ax+1|=1⇔x2+ax+1=1 或x2+ax+1=﹣1,即x2+ax=0 ①或x2+ax+2=0 ②,∵A={1,2},且A*B=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∴C(S)=3.故选B.点评:此题是中档题.考查元素与集合关系的判断,以及学生的阅读能力和对新定义的理解与应用.6.(2013•模拟)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3﹣a2≤6,那么满足条件的集合A的个数为()A.78 B.76 C.84 D.83考点:元素与集合关系的判断.专题:计算题.分析:从集合S中任选3个元素组成集合A,一个能组成C93个,再把不符合条件的去掉,就得到满足条件的集合A的个数.解答:解:从集合S中任选3个元素组成集合A,一个能组成C93个,其中A={1,2,9}不合条件,其它的都符合条件,所以满足条件的集合A的个数C93﹣1=83.故选D.点评:本题考查元素与集合的关系,解题时要认真审题,仔细思考,认真解答.7.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限的点集.A.0个B.1个C.2个D.3个考点:集合的含义.专题:计算题.分析:(1)(3)中由集合元素的性质:确定性、互异性可知错误;(2)中注意集合中的元素是什么;(4)中注意x=0或y=0的情况.解答:解:(1)中很小的实数没有确定的标准,不满足集合元素的确定性;(2)中集合{y|y=x2﹣1}的元素为实数,而集合{(x,y)|y=x2﹣1}的元素是点;(3)有集合元素的互异性这些数组成的集合有3个元素;(4)集合{(x,y)|xy≤0,x,y∈R}中还包括实数轴上的点.故选A点评:本题考查集合元素的性质和集合的表示,属基本概念的考查.8.若x∈A则∈A,就称A是伙伴关系集合,集合M={﹣1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C.28D.25考点:元素与集合关系的判断.专题:综合题;压轴题;新定义.分析:先找出具有伙伴关系的元素:﹣1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,利用组合知识求解即可.解答:解:具有伙伴关系的元素组有﹣1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C41+C42+C43+C44=15故选A点评:本题考查集合的子集问题、排列组合等知识,考查学生利用所学知识分析问题、解决问题的能力.9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18 D.27考点:元素与集合关系的判断.专题:新定义.分析:首先根据题意,求出A⊗B中的元素,然后求出(A⊗B)⊗C中所含的元素,最后求和即可.解答:解:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.故选C点评:本题考查元素与集合关系的判断,通过集合间的关系直接判断最后求和即可,属于基础题.10.已知元素为实数的集合A满足条件:若a∈A,则,那么集合A中所有元素的乘积为()A.﹣1 B.1C.0D.±1考点:元素与集合关系的判断.专题:计算题;新定义.分析:根据若a∈A,则,依据定义令a=代入进行求解,依次进行赋值代入进行化简,把集合A中元素所有的形式全部求出,再求出它们的乘积.解答:解:由题意知,若a∈A,则,令a=,代入==;令a=代入==,令a=,代入==a,A={a,,,,},则所有元素的乘积为1,故选B.点评:本题主要考查集合的应用,题目比较新颖,以及阅读题意的能力,有一定的难度,主要对集合元素的理解.11.设集合P={x|x=2k﹣1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则()A.a∈P,b∈Q B.a∈Q,b∈P C.a∈P,b∈P D.a∈Q,b∈Q考点:元素与集合关系的判断.专题:计算题.分析:据集合中元素具有集合中元素的属性设出x0,y0,求出x0+y0,x0•y0并将其化简,判断其具有Q,P中哪一个集合的公共属性.解答:解:∵x0∈P,y0∈Q,设x0=2k﹣1,y0=2n,n,k∈Z,则x0+y0=2k﹣1+2n=2(n+k)﹣1∈P,x0y0=(2k﹣1)(2n)=2(2nk﹣n),故x0y0∈Q.故a∈P,b∈Q,故选A.点评:本题考查集合中的元素具有集合的公共属性、元素与集合关系的判断、等基础知识,考查化归与转化思想.属于基础题.二.填空题(共14小题)12.(2004•虹口区一模)定义集合A,B的一种运算“*”,A*B={p|p=x+y,x∈A,y∈B}.若A={1,2,3},B={1,2},则集合A*B中所有元素的和14.考点:集合的含义.专题:新定义.分析:由A*B={p|p=x+y,x∈A,y∈B},A={1,2,3},B={1,2},知A*B={2,3,4,5},由此能求出集合A*B 中所有元素的和.解答:解:∵A*B={p|p=x+y,x∈A,y∈B}.A={1,2,3},B={1,2},∴A*B={2,3,4,5},2+3+4+5=14.故答案为:14.点评:本题考查集合的概念,解题时要认真审题,注意新定义的灵活运用.13.(2011•模拟)已知集合,且2∈A,3∉A,则实数a的取值围是.考点:元素与集合关系的判断.专题:计算题;转化思想.分析:根据集合,且2∈A,3∉A,知道2满足不等式,3不满足该不等式,即,解此不等式组即可求得实数a的取值围.解答:解:∵,且2∈A,3∉A,∴,解得:.故答案为.点评:此题是个中档题.考查了元素与集合之间的关系,以及分式不等式的求解,对题意的正确理解和转化是解决此题的关键.14.集合S={1,2,3,4,5,6},A是S的一个子集,当x∈A时,若x﹣1∉A,x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4元子集的个数是6.考点:元素与集合关系的判断.专题:计算题;压轴题.分析:由S={1,2,3,4,5,6},结合x∈A时,若有x﹣1∉A,且x+1∉A,则称x为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得到答案.解答:解:∵S={1,2,3,4,5,6},其中不含“孤立元”的集合4个元素必须是:共有{1,2,3,6},{1,3,4,6},{1,4,5,6},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个那么S中无“孤立元素”的4个元素的子集A的个数是6个.故答案为6.点评:本题考查的知识点是元素与集合关系的判断,我们要根据定义列出满足条件列出所有不含“孤立元”的集合,及所有三元集的个数,进而求出不含“孤立元”的集合个数.15.(2006•)非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法.②G={偶数},⊕为整数的乘法.③G={平面向量},⊕为平面向量的加法.④G={二次三项式},⊕为多项式的加法.⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是①③.(写出所有“融洽集”的序号)考点:集合的含义.专题:压轴题;新定义;对应思想.分析:根据题意对给出的集合和运算对两个条件:运算的封闭性和单位量e进行验证,分别用加法、乘法和平面向量的线性运算的法则判断,只有都满足时才是G关于运算⊕为“融洽集”.解答:解:①G={非负整数},⊕为整数的加法,满足任意a,b∈G,都有a⊕b∈G,且令e=0,有a⊕0=0⊕a=a,∴①符合要求;②G={偶数},⊕为整数的乘法,若存在a⊕e=a×e=a,则e=1,矛盾,∴②不符合要求;③G={平面向量},⊕为平面向量的加法,两个向量相加结果仍为向量;取,满足要求,∴③符合要求;④G={二次三项式},⊕为多项式的加法,两个二次三项式相加得到的可能不是二次三项式,∴④不符合要求;⑤G={虚数},⊕为复数的乘法,两个虚数相乘得到的可能是实数,∴⑤不符合要求,这样G关于运算⊕为“融洽集”的有①③.故答案为:①③.点评:本题考查了学生对新定义的理解和运用能力,可结合学过的运算性质进行类比理解,比如:第一条是运算的封闭性,第二条如加法中的“0”或乘法中的“1”.16.(2012•模拟)给定集合A,若对于任意a,b∈A,有a+b∈A,则称集合A为闭集合,给出如下五个结论:①集合A={﹣4,﹣2,0,2,4}为闭集合;②正整数集是闭集合;③集合A={n|n=3k,k∈Z}是闭集合;④若集合A1,A2为闭集合,则A1∪A2为闭集合;⑤若集合A1,A2为闭集合,且A1⊆R,A2⊆R,则存在c∈R,使得c∉(A1∪A2).其中正确的结论的序号是②③⑤.考点:元素与集合关系的判断.专题:计算题.分析:明确闭集合的定义,然后严格按照题目当中对“闭集合”的定义逐一验证即可.解答:解:对于①:集合A={﹣4,﹣2,0,2,,4};例如﹣4+(﹣2)=﹣6∉A,故不是闭集合,故不正确;对于②:任意a,b∈A,有a+b∈A,所以正整数集是闭集合,正确.对于③:由于任意两个3的倍数,它们的和、差仍是3 的倍数,故③是闭集合,故正确;对于④:假设A1={n|n=3k,k∈Z},A2={n|n=5k,k∈Z},3∈A1,5∈A2,但是,3+5∉A1∪A2,则A1∪A2不是闭集合,故错.对于⑤:设集合A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}都为闭集合,但5∉(A1∪A2).故⑤正确.正确结论的序号是②③⑤.故答案为:②③⑤.点评:本题考查的是集合知识和新定义的问题.充分体会新定义问题概念的确定性,与集合子集个数、子集构成的规律.此题综合性强,值得总结和归纳.17.(2011•三模)设集合A⊆R,对任意a、b、c∈A,运算“⊕具有如下性质:(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c给出下列命题:①0∈A②若1∈A,则(1⊕1)⊕1=0;③若a∈A,且a⊕0=a,则a=0;④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,则a=c.其中正确命题的序号是①③④(把你认为正确的命题的序号都填上).考点:元素与集合关系的判断.专题:压轴题;新定义;综合法.分析:根据定义中所给的规则(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c,对四个命题逐一进行验证,得出正确命题.解答:解:①由(1)a⊕b∈A;(2)a⊕a=0,0∈A,故①正确;②由(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c知1∈A,则(1⊕1)⊕1=1,故②不正确;③当a=0时,若a∈A,且a⊕0=a,则a=0显然成立,当a≠0时,若若a∈A,且a⊕0=a,则在(3)中令c=0,发现此时(a⊕b)⊕c=a⊕c+b⊕c+c无意义,故a=0,③正确;④a⊕0=a或得a=0,又a⊕b=c⊕b,故有a=c=0,所以④正确;综上①③④正确故答案为①③④点评:本题考查元素与集合关系的判断,正确解答本题,关键是掌握并理解新定义中所给的规则,以及灵活选用规则判断命题是否正确.本题比较抽象,应好好总结做题规律.18.已知集合A={a1,a2,…,a n,n∈N*且n>2},令T A={x|x=a i+a j},a i∈A,a j∈A,1≤i≤j≤n,card(T A)表示集合T A中元素的个数.①若A={2,4,8,16},则card(T A)=10;②若a i+1﹣a i=c(1≤i≤n﹣1,c为非零常数),则card(T A)=2n﹣3.考点:元素与集合关系的判断.专题:计算题;新定义.分析:对于①若A={2,4,8,16},直接计算出T A={6,10,18,12,20,24},即可得出答案;②若a i+1﹣a i=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,a n,构成等差数列,利用特殊化思想,取特殊的等差数列进行计算,结合类比推理可得card(T A)=2n﹣3.解答:解:①若A={2,4,8,16},则T A={6,10,18,12,20,24,4,8,16,32},∴card(T A)=10;②若a i+1﹣a i=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,a n,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则T A={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴T A中共2n﹣3个元素,利用类比推理可得若a i+1﹣a i=c(1≤i≤n﹣1,c为非零常数),则card(T A)=2n﹣3.故答案为:10;2n﹣3.点评:本题考查集合与元素的位置关系和数列的综合应用,综合性较强,解题时注意特殊化思想和转化思想的运用,解题时要认真审题,仔细解答,避免错误,属基础题.19.设集合M={1,2,3,4,5,6},S1,S2,…,S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有(min{x,y}表示两个数x,y中的较小者),则k的最大值是11.考点:元素与集合关系的判断.专题:计算题.分析:含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,由此能求出满足条件的两个元素的集合的个数.解答:解:含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,故满足条件的两个元素的集合有11个.故答案为:11.点评:本题考查元素与集合的关系的判断,解题时要认真审题,仔细解答.20.设集合A=,B=,函数f(x)=若x0∈A,且f[f(x0)]∈A,则x0的取值围是.考点:元素与集合关系的判断.专题:计算题.分析:这是一个分段函数,从x0∈A入手,依次表达出里层的解析式,最后得到1﹣2x0∈A,解不等式得到结果.解答:解:x0∈A,即,所以,,即,即f(x0)∈B,所以f[f(x0)]=2[1﹣f(x0)]=1﹣2x0∈A,即,解得:,又由,,所以.故答案为:(,)点评:本题考查元素与集合间的关系,考查分段函数,解题的关键是看清自变量的围,代入适合的代数式.21.(文)设集合A⊆R,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x0为集合A的聚点.则在下列集合中:(1)Z+∪Z﹣(2)R+∪R﹣(3)(4)以0为聚点的集合有(2)(4)(写出所有你认为正确结论的序号).考点:元素与集合关系的判断.专题:阅读型;新定义.分析:根据集合聚点的新定义,我们逐一分析四个集合中元素的性质,并判断是否满足集合聚点的定义,进而得到答案.解答:解:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z﹣,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不可能0<|x﹣0|<0.5,从而0不是Z+∪Z﹣的聚点;(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a∴0是集合{x|x∈R,x≠0}的聚点;(3)中,集合中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,∴0不是集合的聚点;(4)集合中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a∴0是集合的聚点故答案为(2)(4)点评:本题的考点是函数恒成立问题,主要考查的知识点是集合元素的性质,其中正确理解新定义﹣﹣集合的聚点的含义,是解答本题的关键.22.用描述法表示图中的阴影部分(包括边界){(x,y)|xy>0,且.考点:集合的表示法.专题:计算题.分析:利用图中的阴影部分的点的坐标满足的条件即为集合的元素的公共属性.解答:解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣或0,0≤y≤1}={(x,y)|xy>0且﹣1}故答案为:{(x,y)|xy>0,且}点评:本题考查用集合表示平面图形,注意代表元素是数对.23.设,则A∩B用列举法可表示为{(1,1),(0,1),(0,﹣1)}.考点:集合的表示法.专题:计算题.分析:欲求出A∩B中的元素,只须求解方程组的解.将方程组的解用列举法写出来即得答案.解答:解:∵求解方程组的解,或或由此可知集合A∩B用列举法可表示为{(1,1),(0,1),(0,﹣1)}故答案为{(1,1),(0,1),(0,﹣1)}点评:本题考查集合的表示法、集合的性质和应用,解题时要注意不重复、不遗漏.24.如果具有下述性质的x都是集合M中的元素,即,其中a,b∈Q.则下列元素:①;②;③;④.其中是集合M的元素是①③④.(填序号)考点:元素与集合关系的判断.专题:新定义.分析:通过a,b取值直接判断①②,是否正确,通过化简③④,确定a,b的值判断③④是否满足题意.解答:解:对于①,显然a=0,b=1,满足题意;对于②;显然a=3,b=π,π是无理数,所以②不满足题意;对于③==3+2,所以a=3,b=2满足题意;对于④==4,a=4,b=0,满足题意.是集合M的元素是①③④.故答案为:①③④.点评:本题考查元素与集合关系的判断,考查计算能力,逻辑推理能力.25.用列举法表示集合:={﹣11,﹣6,﹣3,﹣2,0,1,4,9}.考点:集合的表示法.专题:计算题.分析:首先根据,对m值进行分析,当为整数时记录m的值,最后综合m的值构成集合M解答:解:∵;m=﹣11时,;m=﹣6时,=﹣2;m=﹣3时,=﹣5;m=﹣2时,=﹣10;m=0时,=10;m=1时,=5;m=4时,=2;m=9时,=1;∴M={﹣11,﹣6,﹣3,﹣2,0,1,4,9}故答案为:{﹣11,﹣6,﹣3,﹣2,0,1,4,9}点评:本题考查集合的表示方法,根据已知题意进行分析,通过对m值的分析为解题的关键,属于基础题.三.解答题(共5小题)26.(2007•)已知集合A={a1,a2,…,a k(k≥2)},其中a i∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣a∉A,则称集合A具有性质P.(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;(II)对任何具有性质P的集合A,证明:;(III)判断m和n的大小关系,并证明你的结论.考点:元素与集合关系的判断;集合的含义.专题:综合题;压轴题;分类讨论;转化思想.分析:(I)利用性质P的定义判断出具有性质P的集合,利用集合S,T的定义写出S,T.(II)据具有性质P的集合满足a∈A,总有﹣a∉A,得到0∉A得到(a i,a i)∉T;当(a i,a j)∈T时,(a j,a i)∉T,求出T中的元素个数.(III)对应S中的元素据S,T的定义得到也是T中的元素,反之对于T中的元素也是s中的元素,得到两个集合中的元素相同.解答:(I)解:集合{0,1,2,3}不具有性质P.集合{﹣1,2,3}具有性质P,其相应的集合S和T是S=(﹣1,3),(3,﹣1),T=(2,﹣1),(2,3).(II)证明:首先,由A中元素构成的有序数对(a i,a j)共有k2个.因为0∉A,所以(a i,a i)∉T(i=1,2,,k);又因为当a∈A时,﹣a∉A时,﹣a∉A,所以当(a i,a j)∈T时,(a j,a i)∉T(i,j=1,2,,k).从而,集合T中元素的个数最多为,即.(III)解:m=n,证明如下:(1)对于(a,b)∈S,根据定义,a∈A,b∈A,且a+b∈A,从而(a+b,b)∈T.如果(a,b)与(c,d)是S的不同元素,那么a=c与b=d中至少有一个不成立,从而a+b=c+d与b=d中也至少有一个不成立.故(a+b,b)与(c+d,d)也是T的不同元素.可见,S中元素的个数不多于T中元素的个数,即m≤n,(2)对于(a,b)∈T,根据定义,a∈A,b∈A,且a﹣b∈A,从而(a﹣b,b)∈S.如果(a,b)与(c,d)是T的不同元素,那么a=c与b=d中至少有一个不成立,从而a﹣b=c﹣d与b=d中也不至少有一个不成立,故(a﹣b,b)与(c﹣d,d)也是S的不同元素.可见,T中元素的个数不多于S中元素的个数,即n≤m,由(1)(2)可知,m=n.点评:本题考查利用题中的新定义解题;新定义题是近几年常考的题型,要重视.27.对于集合A={x|x=m2﹣n2,m∈Z,n∈Z},因为16=52﹣32,所以16∈A,研究下列问题:(1)1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.考点:元素与集合关系的判断.专题:探究型.分析:(1)根据集合A的元素的性质证明1,3,4,5∈A,对于2和6用反证法进行证明,证明过程注意根据整数是奇(偶)进行分类说明;(2)根据集合A的元素的性质,在偶数中找出是集合A的元素和一些不是的A的元素,由这些数的特征进行归纳得出结论.解答:解:(1)∵1=12﹣02;3=22﹣12;5=32﹣22;4=22﹣02;∴1,3,4,5∈A,且2,6∉A;(5分)设2∈A,得存在m,n∈Z,使2=m2﹣n2成立.(m﹣n)(m+n)=2当m,n同奇或同偶时,m﹣n,m+n均为偶数∴(m﹣n)(m+n)为4的倍数,与2不是4倍数矛盾.当m,n同分别为奇,偶数时,m﹣n,m+n均为奇数(m﹣n)(m+n)为奇数,与2是偶数矛盾.∴2∉A同理6∉A(8分)(2)4=22﹣02;8=32﹣12;12=42﹣22;2,6,10,14,∉A,结论:是4的倍数的数属于A.(12分)点评:本题考查了元素与集合的关系,只要根据集合元素满足的性质进行判断,利用归纳推理思想方法进行归纳出集合元素的性质的结论,考查了分析和解决问题的能力.28.已知集合A={x|x=m+n,m,n∈Z}.(1)设x1=,x2=,x3=(1﹣3)2,试判断x1,x2,x3与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1•x2与A之间的关系.考点:元素与集合关系的判断.专题:证明题.分析:(1)经过分母有理化、开方、平方化简即可判断出x1,x2,x3是否属于集合A.(2)经过计算可判断出是否属于集合A.解答:解:(1)∵===﹣﹣.∴x1∉A.∵==.∴x 2∈A.∵=19﹣6.∴x3∈A.(2)设,m,n∈Z,,c,d∈Z,则x1+x2=(m+c)+(n+d),∵(m+c),(n+d)∈Z,∴(x1+x2)∈Z.x1x2==mc+2nd+(md+cn),∵(mc+2nd),(md+cn)∈Z,∴x1x2∈Z.点评:本题考查了元素与集合之间的关系,正确理解和化简是解决问题的关键.29.已知集合A的全体元素为实数,且满足若a∈A,则∈A.(1)若a=2,求出A中的所有元素;(2)0是否为A中的元素?请再举例一个实数,求出A中的所有元素;(3)根据(1)、(2),你能得出什么结论?考点:元素与集合关系的判断.专题:计算题.分析:(1)由已知中若a∈A,则∈A,由a=2∈A,可得∈A,再由∈A,可得2∈A,进而得到A中的所有元素;。

相关文档
最新文档