六年级数学正反比例应用题例题汇编

合集下载

(完整)六年级正反比例实例练习题

(完整)六年级正反比例实例练习题

(完整)六年级正反比例实例练习题六年级正反比例实例练题
问题一
在某个比例中,正比例常数是4。

如果当x等于6时,y等于8,那么y是多少时,x等于10?
根据正比例的定义,我们可以得到以下比例关系式:
x y
- = -
6 8
再根据比例的性质,我们可以发现两个关键点:(6, 8) 和 (10, y)。

现在我们可以利用已知的关键点来求解未知的值:
6/8 = 10/y
通过交叉相乘的运算,我们可以得到:
6y = 80
最后,我们将上式解为y:
y = 80/6
因此,当x等于10时,y的值为13.33。

问题二
某公司的收入和投资之间存在着正反比例关系。

该公司的收入是100万美元,而投资是200万美元。

如果该公司的收入增加至150万美元,那么投资会减少到多少?
根据正反比例的定义,我们可以得到以下比例关系式:
收入投资
---- = ------
100万 200万
现在我们可以利用已知的比例关系来解决问题。

已知收入增加到150万美元,我们要求投资的值。

150/100 = 200/投资
通过交叉相乘的运算,我们可以得到:
150 * 投资 = 100 * 200
最后,我们将上式解为投资:
投资 = (100 * 200) / 150
因此,当收入增加到150万美元时,投资会减少到133.33万美元。

以上是关于六年级正反比例实例练习题的解答,希望对您有帮助。

如果还有其他问题,请随时提问。

六年级正反比例易错题应用题

六年级正反比例易错题应用题

六年级正反比例易错题应用题一、正比例应用题1. 题目一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。

甲乙两地之间的公路长多少千米?解析:根据题意可知汽车行驶的速度是一定的。

因为速度 = 路程÷时间,当速度一定时,路程和时间成正比例关系。

设甲乙两地之间的公路长x千米。

先求出汽车的速度,已知汽车2小时行驶140千米,速度为140÷2 = 70(千米/小时)。

根据正比例关系可列出比例式:(140)/(2)=(x)/(5)。

然后交叉相乘得到2x = 140×5,2x=700,解得x = 350千米。

2. 题目小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少钱?解析:因为练习本的单价是一定的,单价 = 总价÷数量,当单价一定时,总价和数量成正比例关系。

设买20本练习本需要付x元。

先求出单价,4.5÷9 = 0.5(元/本)。

列出比例式:(4.5)/(9)=(x)/(20)。

交叉相乘得9x = 4.5×20,9x = 90,解得x = 10元。

二、反比例应用题1. 题目一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块,如果改用面积是4平方分米的方砖,需要多少块?解析:房间地面的总面积是一定的。

因为每块砖的面积×砖的块数 = 房间地面总面积,当房间地面总面积一定时,每块砖的面积和砖的块数成反比例关系。

设改用面积是4平方分米的方砖需要x块。

房间地面总面积为9×96 = 864平方分米。

根据反比例关系可列出方程4x = 9×96。

解得x=(9×96)/(4)=216块。

2. 题目一辆汽车从甲地开往乙地,每小时行60千米,5小时到达。

如果要4小时到达,每小时应行多少千米?解析:甲乙两地的路程是一定的。

因为速度×时间 = 路程,当路程一定时,速度和时间成反比例关系。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
以下是一系列的数学正反比例练题,供学生练和巩固所学的知识。

1. 问题:一个园子总共有120棵树,如果每排10棵,共有几排?
答案:120 ÷ 10 = 12 排
2. 问题:一个长方形花坛的长为8米,宽为10米,如果每平方米能种5棵花,花坛能种多少棵花?
答案:8 × 10 × 5 = 400 棵花
3. 问题:某水果市场每个箱子里放20个苹果,如果共有3000个苹果,需要多少个箱子才能装完?
答案:3000 ÷ 20 = 150 个箱子
4. 问题:一辆车以每小时80公里的速度行驶,行驶300公里需要多少小时?
答案:300 ÷ 80 = 3.75 小时
5. 问题:一个水缸的容量为400升,每分钟排水20升,需要多少分钟才能排完?
答案:400 ÷ 20 = 20 分钟
6. 问题:小明每天花2小时做作业,如果他一共需要做8天,总共需要多少小时?
答案:2 × 8 = 16 小时
7. 问题:一辆公交车每小时能载客60人,需要载完400人,需要多少小时?
答案:400 ÷ 60 = 6.67 小时
8. 问题:某商品原价100元,打8折,现在售价多少?
答案:100 × (1 - 0.8) = 20 元
9. 问题:一桶油装满需要3分钟,如果用两个人一起装,需要多少时间?
答案:3 ÷ 2 = 1.5 分钟
10. 问题:橙子每斤售价5元,小明买了3斤橙子,一共需要支付多少元?
答案:5 × 3 = 15 元
以上是数学正反比例的练习题。

希望能帮助到你,加油!。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

正反比例应用题- 题目

正反比例应用题- 题目

正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)一.选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设χ天可以完成.正确列式是()A.400X=350×8 B.C.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.B.C.12x=124×33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.B.C.D.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用10cm2的方砖铺,需要()块.A.280 B.187 C.390 D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.5 0.7 0.8 0.9 1.1 1.5竹竿长(米) 1 1.4 1.6 1.8 2.2 3A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300 B.280 C.260 D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3 B.3:2 C.2:5二.填空题(共3小题)10.在一幅比例尺是的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是_________.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)“照这样计算”就是说_________是一定的.(2)_________和_________成_________比例.(3)所求结果用ⅹ表示,写出比例式:_________.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)一.选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A.因为12=2×2×3,所以不能化成有限小数;B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45 平方米,15 平方米和30平方米.图中阴影部分的面积是()平方米.A.60 B.75 C.80 D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.A.600 B.900 C.1200 D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)A.B.7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.A.3B.4C.5D.68.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.A.9B.12 C.24 D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()A.2B.3C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分 2 4 6 8 10 12 14数量/个100 200 300 400 500 600 700张阿姨打750个字需要_________分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米._________.13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时 2 _________路程/千米_________800这列动车行驶的时间和路程成_________比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成_________比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重_________kg.15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身高1.6米,在照片上她的高是5cm.欢欢在照片上高4cm,欢欢的身高是_________米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为_________cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高_________米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要_________块.20.(•江苏)生活中我们一般用摄氏度(℃)来描述温度,但也有一些国家用华氏度(℉)来描述.水的冰点是0℃,沸点是lO0℃,用华氏度描述水的冰点是32℉,沸点是212℉,那么我们人体正常体温36℃,用华氏度描述是_________℉.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工,实际多少天可以完工?(用比例解)26.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
1. 正比例练题
- 问题1:如果三辆车可以在4小时内完成一项工作,那么六辆相同的车可以在多少小时内完成同样的工作?
- 问题2:如果5人可以在10天内完成一项任务,那么需要多少人才能在5天内完成相同的任务?
- 问题3:如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内可以行驶多远?
- 问题4:如果用20升汽油行驶80公里,那么用40升汽油可以行驶多远?
- 问题5:某项工作需2小时完成,如果有12人同时进行,那么需要多长时间才能完成?
2. 反比例练题
- 问题1:如果六个工人可以在12天内完成一项任务,那么需要多少个工人才能在4天内完成相同的任务?
- 问题2:如果一项工作可以由10个工人在8小时内完成,那么需要多少个小时才能由5个工人完成?
- 问题3:如果一个有15个人的团队可以在20天内完成一个项目,那么需要多少天才能由25个人完成相同的项目?
- 问题4:如果一块土地上可以建造6个房子,那么在相同大小的土地上可以建造多少个房子?
- 问题5:如果一个工厂的产量与工人数成反比,当有20个工人时产量为1000个单位,那么有30个工人时产量为多少个单位?
这些练习题可以帮助你巩固正反比例的理解和运用。

请根据题意进行计算,并在所给的时间内完成解答。

完整版六年级正反比例练习题

完整版六年级正反比例练习题

正反比率的应用二例1、一个水池中水的深度与注水时间的关系如右以下图。

(1)水的深度与注水时间可否成比率?(2)从图中看,注水前,水池中的水深多少米?(3)每分钟向水池中注入的水深多少米?例 2、这个铁球吞没在长方体水槽中,当他把这个铁球拿出水面时,槽里的水面下降了 0.5 厘米,他又将一块棱长是 3 厘米的正方体铁块吞没在水槽中,槽里的水面上升了 0.3 厘米,算一下铁球的体积?例 3、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧后的长度是 7 厘米。

蜡烛最初的长度是多少厘米?8 分钟后,蜡烛的长度是12 厘米,18 分钟例 4、甲、乙两人分别从A、B 两地同时出发,相向而行,出发时他们的速度之比是遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达 B 地时,乙离3: 2,他们第一次相A 地还有 14 千米,那么 AB 两地的距离是多少千米?看看你会做吗?1、用不相同的杯子装水,水的高度与杯子的底面积的关系如右图。

( 1)从图中看,水的高度与杯子的底面积可否成比率?成什么比率?为什么?( 2)从图中估计,当杯子的底面积是50 平方厘米时,水深多少厘米?当水深25 厘米时,杯子的底面积是多少平方厘米?2、将一个圆柱体完好吞没在一个装满水的水槽中,拿出后水面下降了9 厘米。

尔后放入一个底面积和圆柱体相同,高是圆柱体1的圆锥,这时水面会上升多少厘米?23、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧12 分钟后,蜡烛的长度是17 厘米, 18 分钟后的长度是 9 厘米。

蜡烛最初的长度是多少厘米?4、甲、乙两人分别从A、 B 两地同时出发,相向而行,出发时他们的速度之比是后,甲的速度提高了20% ,乙的速度提高了40% ,当甲到达目的地后,乙还有AB 两地的距离是多少千米?4: 3,他们第一次相遇44 千米到达目的地,那么。

完整)六年级正反比例练习题

完整)六年级正反比例练习题

完整)六年级正反比例练习题1.判断1.当一个因数不变时,它与另一个因数的积成正比例。

(√)2.当长方形的长一定时,宽和面积成正比例。

(√)3.当圆的半径增加时,周长也会增加,它们成正比例。

(√)4.当铺地面积一定时,方砖的边长和所需的块数成反比例。

(√)5.当铺地面积一定时,方砖的面积和所需的块数成反比例。

(√)6.当圆的半径增加时,面积也会增加,它们成正比例。

(√)7.当圆的半径增加时,面积和圆的半径的平方成正比例。

(√)8.当圆的半径增加时,面积和圆的周长的平方成正比例。

(√)9.当正方形的边长增加时,面积也会增加,它们成正比例。

(√)10.当正方形的边长增加时,周长也会增加,它们成正比例。

(√)11.当长方形的面积一定时,长和宽成反比例。

(√)12.当长方形的周长一定时,长和宽成反比例。

(√)13.当梯形的面积一定时,上底和下底的和与高成反比例。

(√)简单说明理由:1.路程一定,速度和时间成反比例,因为速度越快,用的时间越短,反之亦然。

2.车轮的直径一定,所行的路程和车轮的转数成正比例,因为车轮转数越多,所行的路程也就越长。

3.图上距离一定,实际距离和比例尺成正比例,因为比例尺越大,实际距离也就越长。

4.数A与它的倒数成反比例,因为它们的积始终为1.5.收入一定,支出和结余成反比例,因为支出越多,结余越少。

6.除数一定,被除数和商成正比例,因为被除数越大,商也就越大。

7.5A=3B,A和XXX反比例,因为B随着A的增加而减少。

8.总价一定,观看同一场电影的票价和人数成反比例,因为人数越多,每人分摊的票价也就越少。

9.三角形的面积和它的高成正比例,因为高越高,底边也就越长,面积也就越大。

10.长方形的周长一定,它的长和宽成反比例,因为长和宽的和越大,周长也就越大。

11.年龄和身高无法确定成比例关系,因为年龄和身高并没有必然的联系。

12.比例尺一定,图上距离和实际距离成正比例,因为比例尺越大,实际距离也就越长。

六年级正反比例题100道

六年级正反比例题100道

六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。

2. 5本书的价格是20元,那么每本书的价格是多少元。

3. 一个足球的价格是50元,购买3个足球需要多少钱。

4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。

5. 4个橙子的总价是16元,1个橙子多少钱。

6. 一条绳子长6米,3条绳子总长多少米。

7. 如果每辆车能载5人,10辆车能载多少人。

8. 一盒巧克力有10块,3盒巧克力有多少块。

9. 每个学生要交100元的学费,10个学生总共交多少钱。

10. 一台电脑的价格是4000元,4台电脑的总价是多少元。

11. 如果1升油的价格是8元,5升油的价格是多少元。

12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。

13. 1本书的页数是200页,5本书的总页数是多少页。

14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。

15. 一棵树的高度是3米,5棵树的总高度是多少米。

16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。

17. 如果每本杂志售价10元,9本杂志总共多少钱。

18. 一辆车每小时行驶80公里,4小时能行驶多少公里。

19. 如果1公斤米的价格是5元,2公斤米总共多少钱。

20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。

21. 一支笔的价格是3元,12支笔总共多少钱。

22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。

23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。

24. 如果一个人的工资是3000元,5个人的总工资是多少元。

25. 每条鱼的重量是200克,10条鱼的总重量是多少克。

26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。

27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。

28. 每个学生要用5张纸,25个学生需要多少张纸。

29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。

正反比例练习题大全

正反比例练习题大全

正反比例练习题大全1、判断正方形的边长和周长是否成比例。

2、判断正方形的边长和面积是否成比例。

3、判断数a和数b是否成正比例,已知a是b的5倍。

4、已知4a=3b,判断a和b是否成反比例,成比例的比值是多少。

5、判断圆的直径和圆周率是否成正比例,已知圆的周长一定。

6、已知8A=B,判断A和B是否成反比例。

7、判断长方体的底面积和高是否成正比例,已知体积一定。

8、判断x与y是否成比例,已知3x与y成比例。

9、判断圆的面积和半径的平方是否成正比例。

10、判断圆锥的底面积和高是否成正比例,已知体积一定。

11、判断三角形的底和面积是否成正比例,已知高一定。

12、判断车轮的直径和转数是否成正比例,已知路程一定。

13、判断出勤人数和出勤率是否成正比例,已知全班总人数一定。

14、判断已走路程和未走路程是否成反比例,已知从甲地到乙地。

15、判断被减数和差是否成正比例,已知减数一定。

16、已知甲数的3/4是乙数,判断甲数和乙数是否成比例。

17、已知3x=y(x和y都不等于0),判断x和y是否成比例。

18、已知xy=1,判断x和y是否成反比例。

19、已知5A=B,判断A和B是否成反比例。

20、已知x+y=6,判断x和y是否成反比例。

21、已知x和y互为倒数,判断x和y是否成反比例。

22、已知3:x=y:16,判断x和y是否成比例。

23、已知20:x=12:y,判断x和y是否成比例。

24、已知ab=k+2(k一定),判断a和b是否成反比例。

25、已知《小学生作文》的单价一定,判断总价和订阅的数量是否成正比例。

26、判断小新跳高的高度和他的身高是否成比例。

27、已知学校全班的人数一定,判断每组的人数和级数是否成正比例。

28、判断圆柱的底面积和高是否成正比例,已知体积一定。

29、已知书的总册数一定,判断每包的册数和包数是否成正比例。

30、判断在一块菜地上种的黄瓜和西红柿的面积是否成比例。

31、已知小麦每公顷产量一定,判断小麦的公顷数和总产量是否成正比例。

正反、比例问题(讲义)六年级下册小升初数学应用题真题汇编通用版

正反、比例问题(讲义)六年级下册小升初数学应用题真题汇编通用版

小升初数学运用题真题汇编典型运用题—正反、比例问题班级姓名得分1.(广东深圳六年级期末)下列各图中的a和b是否成正比例或反比例?为什么?(1)三角形的面积为1。

(2)线段总长度为1。

(3)长方形的面积为1。

(4)长方体的体积为1。

2.(甘肃陇南小升初考试)厨房的师傅们每天要做1000个包子,今天他们30分钟做了240个,照这样计算,做完这些包子需要多少分钟?(用比例解)知识梳理基础题3.(湖南常德小升初考试)小红的身高为1.6米,她的影长是2.8米。

如果同一时间、同一地点测得一棵树的影长为4.2米,这棵树有多高?(用比例解)4.(山西太原六年级期末)一对互相咬合的齿轮,主动轮有25个齿,主动轮每分钟转多少转?列比例解答。

提高题5.(山西太原小升初考试)李奶奶要用下图这种84消毒液10克清洗浴缸,需要多少千克清水配制?使用说明消毒对象配制比例(原液:清水)一般物体表面1:300织物1:1256.(山东济南六年级期末)北京冬奥会的吉祥物冰墩墩以其可爱的造型和象征纯洁、坚强的冬奥会特点的寓意,一经上市就深受人们的喜爱。

据悉,某冬奥旗舰店“冰墩墩手办”的单29价是88元,“冰墩墩钥匙扣”的单价是“冰墩墩手办”的,买29个“冰墩墩手办”的钱,可44以买多少个“冰墩墩钥匙扣”?(用比例知识解答)7.(四川南充六年级期末)给一间屋子铺地砖,如果用边长为60厘米的方砖,要用96块,如果改用边长为80厘米的方砖来铺,需要多少块?8.(浙江温州小升初考试)工厂要加工600个零件,前5小时已加工120个零件。

照这样的速度,还要加工几小时才能完成任务?(用比例解答)培优题9.(河北承德六年级期末)Y丫看一本故事书,每天看18页,7天只看了这本书的一半,此后她每天多看3页,Y丫看完这本书还要多少天?10.(山东济宁小升初考试)亮亮利用课余时间读一本故事书,他计划每天读6页,20天可以读完。

现在他准备提前8天读完,你认为他每天要比原计划多读几页?(用比例知识解决)11.(陕西渭南小升初考试)某公益活动招募了216名志愿者,其中女性占,后来又来了若干名女性志愿者,使女性志愿者与男性志愿者的人数之比是3:7,后来又来了多少名女性志愿者?(用比例解答)12.(陕西榆林小升初考试)某工程队修一条路,3天修的路程与剩下的路程的3。

六下数学 正比例与反比例 应用题训练30题 带答案

六下数学 正比例与反比例 应用题训练30题 带答案
则第二次相遇时,汽车经过的路程为:x+x-130=2x-130 摩托车经过的路程为:x+130
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120

正反比例练习题六年级

正反比例练习题六年级

正反比例练习题六年级1. 问题描述在数学学习中,正反比例是一个非常重要的概念。

正反比例是指当两个量存在一种特定的关系时,其中一个量增加时,另一个量减少;反之,当一个量增加时,另一个量也增加。

本文将为六年级学生提供一些正反比例练习题,帮助学生更好地理解和掌握这个概念。

2. 练习题一某商店销售一种商品,每件商品的售价为20元。

现在商店决定对该商品进行促销,售价降低为15元。

请计算购买不同数量商品时,原价和促销价的总花费。

解答:- 购买1件商品:- 原价总花费:20元- 促销价总花费:15元- 购买2件商品:- 原价总花费:40元- 促销价总花费:30元- 购买3件商品:- 原价总花费:60元- 促销价总花费:45元- 购买4件商品:- 原价总花费:80元- 促销价总花费:60元由此可见,随着购买商品数量的增加,原价总花费和促销价总花费之间存在正比例关系。

3. 练习题二一辆汽车以每小时60公里的速度行驶。

现在汽车要提速,以每小时70公里的速度行驶。

请计算在不同时间内,汽车行驶的距离。

解答:- 行驶1小时:- 速度为60公里/小时,行驶距离为60公里- 速度为70公里/小时,行驶距离为70公里- 行驶2小时:- 速度为60公里/小时,行驶距离为120公里- 速度为70公里/小时,行驶距离为140公里- 行驶3小时:- 速度为60公里/小时,行驶距离为180公里- 速度为70公里/小时,行驶距离为210公里- 行驶4小时:- 速度为60公里/小时,行驶距离为240公里- 速度为70公里/小时,行驶距离为280公里可以看出,随着行驶时间的增加,汽车行驶的距离也在增加,存在着正比例关系。

4. 练习题三小明在一个小时内骑自行车绕操场跑步道骑行了10圈。

现在他决定增加骑行时间,每小时骑行12圈。

请计算在不同时间内,小明骑行的圈数。

解答:- 骑行半小时:- 一小时骑行10圈,半小时骑行5圈- 一小时骑行12圈,半小时骑行6圈- 骑行1小时:- 一小时骑行10圈- 一小时骑行12圈- 骑行1小时半:- 一小时骑行10圈,1小时半骑行15圈- 一小时骑行12圈,1小时半骑行18圈可见,随着骑行时间的增加,小明骑行的圈数也在增加,存在正比例关系。

正反比例应用题【范本模板】

正反比例应用题【范本模板】

正反比例应用题:1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0。

16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?8、小明读一本书,每天读12页,8天可以读完.如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6。

5吨,需黄豆多少吨?13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上,测得影长1。

2米,同时测得一根旗杆的影长为4。

8米,求旗杆的高是多少米?16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

(5分)17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。

人教版六年级下册数学用正反比例解决问题练习题(含答案)

人教版六年级下册数学用正反比例解决问题练习题(含答案)

用正反比例解决问题练习题、填空1.一种盐水,是由盐和水按1:50配制而成的。

其中,盐的重量占盐水的(),水的重量占盐水的()。

2.一幅地图,图上A、B距离3厘米,地面上A B距离150千米。

这幅图的比例尺是(3.如果x十y )0=11 X 5,那么x和y成()比例;如果x:4=5:y,那么x和y成()比例()比例;丙一定时,甲和乙成()比例5.在比例尺为1:8的图纸上,甲、乙两圆的直径比是2:3,那么甲、乙两圆的实际的直径比是()O二、选择1.如果3x=8y (x、y都不等于0),那么x和y ()A、成正比例B 、成反比例不成比例 D 、以上说法都不对x y2.如果一二_3 8(x、y都不等于0),那么x和y ()A、成正比例 B 、成反比例C、不成比例 D 、以上说法都不对3.下列表示x和y成反比例的式子是()A、x+3y=12 B 、y=4x23 3C、y= D 、y=__xx 24.已知kx=y,且x和y都不为0,当k 一定时,x和y ()A、成正比例 B 、成反比例C、不成比例 D 、以上说法都不对4.如果甲十乙=丙,那么,甲一定时,乙和丙成()比例;乙一定时,甲和丙成35.甲数警是乙数,那么甲数与乙数()A、成正比例、成反比例C、不成比例、以上说法都不对二、判断题1.正方形的边长和周长成正比例。

()2.正方形的边长和面积成正比例。

()53.a是b的7,数a和数b成正比例。

()4.如果4a=3b,那么a : b=3 : 4。

()A5.= B,那么A和B成反比例。

()86.长方体的体积一定,底面积和高成反比例。

()7.如果x与y成反比例,那么3 x与y也成反比例。

()8.圆的面积与半径的平方成正比例。

()9.圆锥的体积一定,底面积和高成反比例。

()10.全班总人数一定,出勤人数和出勤率成正比例。

()四、根据比例关系填表y1.根据—=10,填写下表。

x2.下表中x和y两个量成反比例,请把表格填写完整3.下表中x和y两个量相关联的量,观察规律,请把表格填写完整五、解决问题1.一种微型零件的长5毫米,画在设计图纸上长20厘米。

六年级正反比例奥数题及答案

六年级正反比例奥数题及答案

六年级正反比例奥数题及答案
正反比例奥数题及答案
一、正反比例题
1. 某工厂发出8000瓶汽水,其中百分之八十的汽水放在
2.5升的瓶桶中,尚餘的放在5升的桶中。

则5升的桶发出了多少瓶汽水?
答案:1000瓶。

2. 小明带了500元去旅行,其中百分之三十的钱用来买水,剩余的钱用来买礼物,请问小明可以买多少礼物?
答案:350元。

3. 某学校有650名学生,其中的75%的学生参加思想品德课,其余student参加英语课,问思想品德课一共有多少学生参加?
答案:487.5 名。

4. 李明在拍卖会上以620元买了一台电视,其中百分之50的钱用来买一台操作简单的DVD机,他剩下多少钱?
答案:310 元。

5. 李华有600元购物,其中百分之五十的钱用来买图书,其余的钱用来买衣服,他最多可以买多少件衣服?
答案:300 元。

二、反比例题
1. 某书店有5000本书,其中文学及历史类的书有七成,请问,数学及物理的书有多少本?
答案:2000 本。

2. 小芳有700元要购物,其中百分之25的钱用来买图书,那么剩下的
钱它最多可以买多少件衣服?
答案:525 元。

3. 某公司总收入6500元,其中百分之九十的收入用来购买原料,问剩下的收入可用来购买什么?
答案:650 元。

4. 一个幼儿园有200名小学生,其中百分之八十的小孩参加音乐课,问参加体育课的小孩有多少名?
答案:40 名。

5. 某工厂发出7500瓶汽水,其中6升的桶装的有七成,请问其余放在2.5升的桶中有多少。

答案:1500 瓶。

小学六年级正反比例练习(精品)

小学六年级正反比例练习(精品)

一、判断题:1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆根据规律判断比例关系,并填空。

的周长和圆的半径成正比例。

()二.看图表填空X 2 3 5 10 ……Y 4.5 7.5 12 ……(1)X与Y( ) A. 成正比例 B. 成反比例。

X 2 3 5 10 ……Y 4 2.4 12 ……(2)X与Y( ) A. 成正比例 B. 成反比例。

三.判断对错(1)路程一定,速度和时间成正比例。

()(2)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

()(3)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

()(4)平行四边形的面积不变,它的底与高成反比例。

()(5)正方体的表面积与体积成正比例。

()(6)一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。

()(7)长方体底面积一定,体积和高成正比例。

()(8)三角形的面积不变,它的底与高成反比例。

()一.选择填空,判断数量间的比例关系。

A、成正比例 B、成反比例 C、不成比例(1)比例尺一定,图上距离与实际距离____________。

(2)圆的面积一定,直径与圆周率_______________。

(3)比的前项一定,比的后项与比值_________________。

(4)时间一定,速度与路程____________。

(5)被减数一定,减数与差______________。

(6)圆锥体体积一定,底面积与高_____________。

二、下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价(2)小明的年龄和体重(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母(5)圆的面积和半径(6)长方体的体积一定,底面积和高(7)正方体的表面积和底面积(8)圆的周长一定,圆周率和直径(9)订阅《扬子晚报》,订的份数与总价(10)小麦的出粉率一定,小麦的质量与面粉的质量。

(完整)六年级正反比例练习题集

(完整)六年级正反比例练习题集

(完整)六年级正反比例练习题集六年级正反比例练题集
以下是一些六年级正反比例练题,希望能帮助同学们提高对正
反比例的理解和运用能力。

1. 问题:小明用3个小时做完了30道题目,请问他再用多长
时间能做完90道同样的题目?
答案:小明在相同速度下,需要6个小时才能完成90道题目。

2. 问题:某电影院一天卖出60张票,那么30天能卖出多少张票?
答案:按照正比例计算,电影院在30天内能卖出1800张票。

3. 问题:某奶茶店每天卖出120杯奶茶,如果数量减少了一半,那么卖出60杯奶茶需要多长时间?
答案:奶茶店在相同时间内,需要卖出30杯奶茶才能完成60杯。

4. 问题:某汽车油箱加满油后能行驶500公里,如果行驶距离
减少了三分之一,剩下的油能行驶多长距离?
答案:剩下的油能行驶333.33公里。

5. 问题:某工人每小时生产4个零件,他工作4小时后停工了,他一共生产了多少个零件?
答案:工人在停工前一共生产16个零件。

通过以上的练题,同学们可以更好地理解和运用正反比例的概念。

在解题过程中,要注意理解题意,确定比例关系,并灵活运用
正反比例的求解方法。

祝同学们在研究中取得好成绩!。

六年级正反比例应用题精选

六年级正反比例应用题精选

六年级正反比例应用题精选1、生产一批零件计划每天生产160个,需要15天完成。

实际每天超产80个,能提前几天完成?答案:每天实际生产240个,只需要7.5天就能完成。

2、电视机厂要生产一批电视机,头30天生产180台,按这个速度,要生产1320台,需要多少天?答案:每天生产180/30=6台,需要220天才能生产1320台。

5、用边长20厘米的方砖铺一块地,需要2000块。

如果改用边长为40厘米的方砖铺地,需要多少块?答案:每块40厘米的方砖面积是20厘米的方砖的4倍,所以只需要500块。

6、一堆煤用载重4吨的汽车运,需要20辆才能一次运完。

如果改用载重5吨的汽车运,需要几辆才能运完?答案:每辆车多运1吨,所以只需要16辆车就能运完。

7、学生参加搬砖劳动,6人搬砖162块,按这个速度,再增加432块,需要多少学生?答案:每个学生平均搬27块砖,所以需要16个学生才能搬完。

8、一捆铅丝重520克,剪下20米后,这捆铅丝少了130克,这捆铅丝还剩多少米?答案:每米铅丝的重量是(520-130)/20=19克,所以这捆铅丝还剩(520-130)/19=20米。

9、运来一批纸装订成练本,每本36页,可订40本。

如果每本30页,可订多少本?答案:每本练本的页数减少了6页,所以可以订的本数增加了40/6=6.67本,即可订46本。

10、比例尺是xxxxxxxx320千米的地图上,量得甲地到乙地的距离是5.6厘米,实际距离应是多少?答案:实际距离是5.6*320/=0.千米,即17.92米。

11、某工程队修一条路,12天共修780米,还剩下325米没有修。

按这个速度,修完这条公路,共需要多少天?答案:每天修65米,还需要修325米,所以需要5天才能完成。

13、食堂有一批煤,计划每天烧105千克可以烧30天。

改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?答案:每天少烧15千克,所以可以多烧30*105/15=210天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、反比例应用题
☆知识要点:
<1>解答正、反比例应用题,要以正、反比例的意义为依据.
<2>解答正反比例应用题的一般步骤:
①先确定题中三种数量关系中的定量,然后分析两个变量是比值一定,还是积一定,从而确定两个变量间是正比例关系还是反比例关系.
②设未知数x .
③根据题意列出等式,正比例列成比例式,反比例列成乘积相等的等式.
④解答并检验.
<3>解答正反比例应用题的关键是正确判断,两种相关联的量是成什么比例,判断的方法是
例1. 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?
分析:根据条件和问题,可知这道题,一批电视机是一定的,每天装的台数和完成的天数成反比例关系,所以两次每天生产的台数和完成的天数的乘积是相等的.
解:设每天应装x台.
答:每天应装75台.
例2. 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?
分析:每天生产个数×天数=零件总数(一定),已知零件总数一定,每天生产个数与生产天数成反比例.
此题可先求实际用多少天,然后再求提前几天完成.
方法<1>
解:设实际用x天完成.(间接设)
答:提前5天完成.
方法<2>
解:设可以提前x天完成.(直接设)
例3. 用4台拖拉机每天可耕地32公顷,如果用9台同样的拖拉机,每天可耕地多少公顷?
已知工作效率一定,工作总量和拖拉机台数成正比例
解:设每天耕地x公顷.
答:每天可耕地72公顷.
<4>会应用比例等知识用多种方法解答问题,提高综合运用知识能力.
在学习中,要注重知识的内在联系的沟通,这样就可以提高综合运用知识能力.
答:两袋共重216千克.
方法4. 用比例分配方法解答:
24×(4+5)=216(千克)
从以上的解答过程可以知道,同学们学习了用比例解题后,又多了一种解题思路,思路更开阔了,但要注意具体问题要具体分析,根据题目的实际情况选择最好的解题方法,指出提高我们的解题能力.
☆基础练习:
<1>一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?
<2>同样的方砖铺地,铺18平方米用砖144块,现有840块方砖可铺地多少平方米?
<3>修一条公路,5天共修4500米,照这样计算20天共可修多少米?
<4>用边长20厘米的方砖铺一块地,需要2000块,如果改用边长为40厘米的方砖铺地,需要多少块?
<5>一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?
<6>学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人?
<7>一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?
<8>运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
☆数学医院:
<1> 电视机厂要生产一批电视机,头30天生产180台,照这样计算,要生产1320台,需要多少天?(用比例解)
解:设需要x天。

相关文档
最新文档