空间向量复习精选例题(含答案解析)
(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析)一.选择题1.已知 M 、N 分别是周围体 OABC的棱 OA,BC的中点,点 P 在线 MN 上,且 MP=2PN,设向量= ,= ,= ,则=()A.+ +B.+ +C.+ +D.+ +2.已知=( 2,﹣ 1,2),=(﹣ 1, 3,﹣ 3),=(13,6,λ),若向量,,共面,则λ=()A.2B.3C. 4D.63.空间中,与向量同向共线的单位向量为()A.B.或C.D.或4.已知向量,且,则x的值为()A.12 B.10 C.﹣ 14D. 145.若 A,B,C 不共线,对于空间任意一点O 都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线6.已知平面α的法向量是( 2,3,﹣ 1),平面β的法向量是( 4,λ,﹣ 2),若α∥β,则λ的值是()A.B.﹣ 6 C.6D.7.已知,则的最小值是()第 1页(共 40页)8.有四个命题:①若 =x +y ,则与、共面;②若与、共面,则 =x +y ;③若 =x +y,则 P,M ,A,B 共面;④若 P,M, A,B 共面,则=x +y .其中真命题的个数是()A.1 B.2 C. 3 D.49.已知向量 =(2,﹣1,1), =(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D. 810.以以下图,在长方体ABCD﹣A1B1C1D1中, AD=AA1=1,AB=2,点 E 是棱 AB 的中点,则点 E 到平面 ACD1的距离为()A.B.C.D.11.正方体 ABCDA1B1C1D1中,直线 DD1与平面 A1BC1所成角的正弦值为()A.B.C.D.二.填空题(共 5 小题)12.已知向量=( k, 12,1), =(4,5,1),=(﹣ k, 10,1),且 A、 B、 C 三点共线,则 k=.13.正方体 ABCD﹣ A1B1C1D1的棱长为 1,MN 是正方体内切球的直径,P 为正方体表面上的动点,则?的最大值为.14.已知点 P 是平行四边形 ABCD所在的平面外一点,若是=( 2,﹣ 1,﹣ 4),=(4,2,0),=(﹣ 1, 2,﹣ 1).对于结论:① AP⊥AB;② AP⊥ AD;③是平面ABCD的法向量;④∥.其中正确的选项是.15.设空间任意一点 O 和不共线三点 A,B,C,且点 P 满足向量关系,若P,A,B,C 四点共面,则 x+y+z=.16.已知平面α⊥平面β,且α∩β =l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,并且 AC ⊥ l,BD⊥l, AB=6,BD=24, AC=8,则 CD=.17.如图,在四棱锥P﹣ABCD中, PA丄平面 ABCD, AB 丄 BC,∠ BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明 PC丄 AD;(Ⅱ)求二面角 A﹣PC﹣ D 的正弦值;(Ⅲ)设 E 为棱 PA上的点,满足异面直线BE与 CD所成的角为 30°,求 AE的长.18.如图,在四棱锥 P﹣ABCD中,底面 ABCD为直角梯形, AD∥BC,∠ ADC=90°,平面PAD⊥底面 ABCD, Q 为 AD 的中点, M 是棱 PC上的点, PA=PD=2,BC= AD=1,CD= .(Ⅰ)求证:平面 PQB⊥平面 PAD;(Ⅱ)若 M 为棱 PC的中点,求异面直线AP 与 BM 所成角的余弦值.19.如图,在四棱锥S﹣ABCD中, SD⊥底面 ABCD,底面 ABCD是正方形,且 SD=AD,E 是 SA 的中点.(1)求证:直线 BA⊥平面 SAD;(2)求直线 SA与平面 BED的夹角的正弦值.20.如图,四棱锥 P﹣ABCD中,底面 ABCD是直角梯形,∠ DAB=90°AD∥BC, AD⊥侧面 PAB,△ PAB是等边三角形, DA=AB=2, BC=,E是线段AB的中点.(Ⅰ)求证: PE⊥CD;(Ⅱ)求 PC与平面 PDE所成角的正弦值.21.如图,在四棱锥 P﹣ABCD中,平面 PAD⊥平面 ABCD,E 为 AD 的中点, PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.(Ⅰ)求证:平面 PAD⊥平面 PCD;(Ⅱ)求二面角 C﹣PB﹣ E 的余弦值;(Ⅲ)在线段 PE上可否存在点 M ,使得 DM∥平面 PBC?若存在,求出点M 的地址;若不存在,说明原由.22.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直. AB∥CD,AB⊥BC,AB=2CD=2BC, EA⊥EB.(Ⅰ)求证: AB⊥DE;(Ⅱ)求直线 EC与平面 ABE所成角的正弦值;(Ⅲ)线段 EA 上可否存在点 F,使 EC∥平面 FBD?若存在,求出;若不存在,说明原由.23.如图,三棱柱 ABC﹣A1B1C1中,AB=AC=CC1,平面 BAC1⊥平面 ACC1A1,∠ACC1=∠BAC1=60°, AC1∩ A1C=O.(Ⅰ)求证: BO⊥平面 AA1C1C;(Ⅱ)求二面角 A﹣BC1﹣B1的余弦值.24.如图,在四棱锥P﹣ ABCD中, PA⊥平面,四边形ABCD为正方形,点M, N 分别为线段PB,PC上的点, MN⊥PB.(Ⅰ)求证: MN⊥平面 PAB;(Ⅱ)当 PA=AB=2,二面角 C﹣AN﹣D 大小为时,求PN的长.上的点,且 CD=DE=,CE=2EB=2.(Ⅰ)证明: DE⊥平面 PCD(Ⅱ)求二面角 A﹣PD﹣ C 的余弦值.26.如图,在几何体 ABCDE中,四边形 ABCD是矩形, AB⊥平面 BEC,BE⊥ EC,AB=BE=EC=2,G, F 分别是线段 BE,DC的中点.(1)求证: GF∥平面 ADE;(2)求平面 AEF与平面 BEC所成锐二面角的余弦值.27.如图,在四棱锥P﹣ABCD中, PD⊥平面 ABCD,四边形 ABCD是菱形, AC=2,BD=2,E 是 PB 上任意一点.(Ⅰ)求证: AC⊥DE;(Ⅱ)已知二面角 A﹣PB﹣D 的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.28.如图,三棱柱 ABC﹣ A1B1C1中,侧面 BB1C1C 为菱形, AB⊥B1C.(Ⅰ)证明: AC=AB1;(Ⅱ)若 AC⊥ AB1,∠ CBB1=60°, AB=BC,求二面角 A﹣A1B1﹣ C1的余弦值.29. 已知四棱锥P— ABCD , PB⊥ AD,侧面 PAD 为边长等于 2 的正三角形,底面ABCD 为菱形,侧面PAD 与底面 ABCD 所成的二面角为120°.(1)求点 P 到平面 ABCD 的距离;(2)求面 APB 与面 CPB 所成二面角的余弦值.PCDBA30 如图,在三棱柱ABC ﹣ A 1B 1C1中, AA 1⊥底面ABC ,∠ ACB=90°,AC=BC=1 , AA 1=2,D 是棱AA 1的中点.(Ⅰ)求证:B1C 1∥平面 BCD ;(Ⅱ)求三棱锥B﹣ C1CD 的体积;(Ⅲ)在线段BD 上可否存在点Q,使得 CQ ⊥ BC 1?请说明原由.31 如图,在三棱锥A﹣ BCD中, O、 E 分别为 BD、 BC中点, CA=CB=CD=BD=4,AB=AD=2(1)求证: AO⊥面 BCD(2)求异面直线 AB 与 CD所成角的余弦值(3)求点 E 到平面 ACD的距离.32 在三棱柱ABC﹣ A1B1C1中,侧面ABB1A1为矩形, AB=2, AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明: BC⊥AB 1;(2)若 OC=OA,求直线 CD与平面 ABC所成角的正弦值.2018 年 01 月 20 日 shu****e168的高中数学组卷参照答案与试题解析一.选择题(共11 小题)1.已知 M 、N 分别是周围体 OABC的棱 OA,BC的中点,点 P 在线 MN 上,且 MP=2PN,设向量= ,= ,= ,则=()A.+ +B.+ +C.+ +D.+ +【解答】解:以以下图,= +,=(+),=,=﹣,=.∴= += +=+ (﹣)=+=×( + ) + ×=++=+ + .应选: C.2.已知=( 2,﹣ 1,2),=(﹣ 1, 3,﹣ 3),=(13,6,λ),若向量,,共面,则λ=()A.2B.3C. 4D.6【解答】解:∵=(2,﹣ 1, 2),=(﹣ 1,3,﹣ 3),=(13,6,λ),三个向量共面,∴,∴( 2,﹣ 1,2)=x(﹣ 1,3,﹣ 3)+y(13,6,λ)∴解得:应选: B.3.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【解答】解:∵,∴与同向共线的单位向量向量,第10页(共 40页)4.已知向量,且,则x的值为()A.12 B.10 C.﹣ 14D. 14【解答】解:由于向量,且,属于=﹣8﹣6+x=0,解得 x=14;应选: D.5.若 A,B,C 不共线,对于空间任意一点O 都有=++,则P,A,B,C四点()A.不共面B.共面C.共线D.不共线【解答】解: A,B,C 不共线,对于空间任意一点O 都有=x +y +z,则 P,A,B,C 四点共面的充要条件是x+y+z=1,而=++,因此P,A,B,C四点不共面.应选: A.6.已知平面α的法向量是( 2,3,﹣ 1),平面β的法向量是( 4,λ,﹣ 2),若α∥β,则λ的值是()A.B.﹣ 6 C.6D.【解答】解:∵α∥β,且平面α的法向量是 =(2,3,﹣ 1),平面β的法向量是 =( 4,λ,﹣ 2),∴即存在实数μ使得,即( 2,3,﹣ 1)=(4μ,λμ,﹣ 2μ),解得μ=,λ=6应选 C.7.已知,则的最小值是()A.B.C.D.【解答】解:=(﹣ 1﹣t, t﹣1,﹣ t),∴==≥,当且仅当t=0时取等号.∴的最小值是.应选: A.8.有四个命题:①若 =x +y ,则与、共面;②若与、共面,则=x +y;③若=x +y,则 P,M ,A,B 共面;④若 P,M, A,B 共面,则=x +y.其中真命题的个数是()A.1B.2C. 3D.4【解答】解:若=x +y ,则与,必然在同一平面内,故①对;若=x +y ,则、、三向量在同一平面内,∴ P、M、A、B 共面.故③对;若=x +y ,则与、共面,但若是,共线,就不用然能用、来表示,故②不对;同理④也不对.∴真命题的个数为 2 个.应选: B.9.已知向量=(2,﹣1,1), =(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4D. 8【解答】解:设向量,的夹角为θ,=,=,∴ cosθ===.∴ sin θ==.∴以,为邻边的平行四边形的面积S=??sin θ==,应选: B.10.以以下图,在长方体ABCD﹣A1B1C1D1中, AD=AA1=1,AB=2,点 E 是棱 AB 的中点,则点 E 到平面 ACD1的距离为()A.B.C.D.【解答】解:如图,以 D 为坐标原点,直线DA,DC, DD1分别为 x,y,z 轴建立空间直角坐标系,则D1( 0, 0,1),E(1,1,0), A( 1, 0, 0),C(0,2,0).=( 1, 1,﹣ 1), =(﹣ 1,2,0),=(﹣ 1, 0, 1),设平面 ACD1的法向量为=(a,b,c),则,取 a=2,得=( 2, 1, 2),点 E 到平面 ACD1的距离为:h===.应选: C.11.正方体 ABCDA1B1C1D1中,直线 DD1与平面 A1BC1所成角的正弦值为()A.B.C.D.【解答】解:∵△ A1BC1是等边三角形, A1B1=BB1=B1C1,∴B1在平面 A1BC1上的射影为△ A1 BC1的中心 O,设正方体棱长为 1,M 为 A1C1的中点,则 A1B= ,∴ OB= BM==,∴ OB1==,∴ sin∠B1BO==,即BB1与平面A1BC1所成角的正弦值为,∵DD1∥BB1,∴直线 DD1与平面11 所成角的正弦值为.A BC应选: A.二.填空题(共 5 小题)12.已知向量=( k, 12,1),=(4,5,1),=(﹣ k, 10,1),且 A、 B、 C 三点共线,则 k=.【解答】解:∵向量=( k, 12,1), =(4,5,1),=(﹣ k,10,1),∴=(4﹣k,﹣ 7,0), =(﹣ 2k,﹣ 2, 0).又 A、B、C 三点共线,∴存在实数λ使得,∴,解得.故答案为:﹣.13.正方体 ABCD﹣ A1B1C1D1的棱长为 1,MN 是正方体内切球的直径,P 为正方体表面上的动点,则?的最大值为.【解答】解:连接 PO,可得? ==++=﹣,当获取最大值时,?获取最大值为=.故答案为:.14.已知点 P 是平行四边形 ABCD所在的平面外一点,若是=( 2,﹣ 1,﹣ 4),=(4,2,0),=(﹣ 1, 2,﹣ 1).对于结论:① AP⊥AB;② AP⊥ AD;③是平面 ABCD的法向量;④∥.其中正确的选项是①②③ .【解答】解:由 =(2,﹣ 1,﹣ 4),=( 4, 2, 0), =(﹣ 1,2,﹣ 1),知:在①中,=﹣2﹣2+4=0,∴⊥,∴ AP⊥AB,故①正确;在②中,? =﹣4+4+0=0,∴⊥,∴ AP⊥AD,故②正确;在③中,由 AP⊥AB, AP⊥ AD,AB∩AD=A,知是平面 ABCD的法向量,故③正确;在④中,=( 2, 3, 4),假设存在λ使得 =,则,无解,∴∥.故④不正确;综上可得:①②③正确.故答案为:①②③.15.设空间任意一点 O 和不共线三点 A,B,C,且点 P 满足向量关系,若 P,A,B,C 四点共面,则 x+y+z= 1 .【解答】若空间任意一点 O 和不共线的三点 A,B,C,满足向量关系式:,则 P,A,B,C 四点共面的充要条件是: x+y+z=1,故答案为: 1.16.已知平面α⊥平面β,且α∩β =l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,并且 AC ⊥l,BD⊥l, AB=6,BD=24, AC=8,则 CD= 26 .【解答】解:∵平面α⊥平面β,且α∩β=l,在 l 上有两点 A,B,线段 AC? α,线段 BD? β,AC⊥l, BD⊥ l,AB=6,BD=24,AC=8,∴=,∴=()2==64+36+576=676,∴CD=26.故答案为: 26.三.解答题(共12 小题)17.如图,在四棱锥P﹣ABCD中, PA丄平面 ABCD, AB 丄 BC,∠ BCA=45°,PA=AD=2,AC=1,DC=(Ⅰ)证明 PC丄 AD;(Ⅱ)求二面角 A﹣PC﹣ D 的正弦值;(Ⅲ)设 E 为棱 PA上的点,满足异面直线BE与 CD所成的角为 30°,求 AE的长.【解答】(本小分 13 分)明:(Ⅰ)∵在△ ADC中, AD=2,AC=1,DC=222∴ AC +AD =CD ,∴ AD⊥ AC,⋯(1 分)如,以点 A 原点建立空直角坐系,依意得 A(0,0,0), D( 2, 0, 0),C(0,1,0),B(,,0),P(0,0,2),得=(0,1, 2), =(2,0,0),∴=0,∴ PC⊥AD.⋯(4 分)解:(Ⅱ),,平面 PCD的一个法向量=( x, y, z),,不如令 z=1,得=(1,2,1),可取平面 PAC的一个法向量=(1,0,0),于是 cos<>==,从而 sin<>=,因此二面角 A PC D 的正弦.⋯(8分)(Ⅲ)点 E 的坐( 0, 0, h),其中 h∈[ 0,2] ,由此得=(),由=(2, 1,0),故,∵ 足异面直BE与 CD所成的角 30°,∴=cos30°=,解得h=,即AE=.⋯(13分)18.如,在四棱 P ABCD中,底面 ABCD直角梯形, AD∥BC,∠ ADC=90°,平面 PAD⊥底面ABCD, Q AD 的中点, M 是棱 PC上的点, PA=PD=2,BC= AD=1,CD= .(Ⅰ)求:平面 PQB⊥平面 PAD;(Ⅱ)若 M 棱 PC的中点,求异面直AP 与 BM 所成角的余弦.【解答】解:(Ⅰ)∵ AD∥ BC,BC= AD,Q AD 的中点,∴四形 BCDQ平行四形,可得CD∥BQ.∵∠ ADC=90°,∴∠ AQB=90°即QB⊥AD.又∵平面 PAD⊥平面 ABCD,平面 PAD∩平面 ABCD=AD,∴BQ⊥平面 PAD.∵ BQ? 平面 PQB,∴平面 PQB⊥平面 PAD.(Ⅱ)∵ PA=PD,Q 为 AD 的中点,∴ PQ⊥ AD.∵平面 PAD⊥平面 ABCD,且平面 PAD∩平面 ABCD=AD,∴ PQ⊥平面 ABCD.(注:不证明 PQ⊥平面 ABCD直接建系扣 1 分)因此,以 Q 为原点、 QA、QB、QP 分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,以以下图则 Q(0,0,0), A(1,0, 0),P(0,0,),B(0,,0), C(﹣ 1,, 0)∵ M 是 PC中点,∴ M (﹣,,)∴=(﹣ 1,0,),=(﹣,﹣,)设异面直线 AP 与 BM 所成角为θ,则 cosθ=|cos<,>| ==.∴异面直线 AP 与 BM 所成角的余弦值为.19.如图,在四棱锥S﹣ABCD中, SD⊥底面 ABCD,底面 ABCD是正方形,且 SD=AD,E 是 SA 的中点.(1)求证:直线 BA⊥平面 SAD;(2)求直线 SA与平面 BED的夹角的正弦值.【解答】(本分 12 分)解:( 1)明:∵ SD⊥平面 ABCD,∴ SD⊥AB,又 AD⊥AB,AD∩SD=D,∴ AB⊥平面 SAD,⋯(6 分)(2)以 D 原点,分以 DA、DC、 DS x,y, z 建立空直角坐系,如,AB=2, A( 2, 0,0),S(0,0,2),B(1,2,0),E(1,0,0),故=(2,0, 2),=(2, 2, 0),=(1,0, 1),⋯( 8 分)平面 BED的一个法向量=(x,y,z),由得,取=(1, 1, 1),⋯(10 分)直 SA与平面 BED所成角θ,因 cos==,因此 sin θ=,即直 SA与平面 BED所成角的正弦⋯( 12 分)20.如,四棱 P ABCD中,底面 ABCD是直角梯形,∠ DAB=90°AD∥BC, AD⊥ 面 PAB,△ PAB是等三角形, DA=AB=2, BC=,E是段AB的中点.(Ⅰ)求: PE⊥CD;(Ⅱ)求 PC与平面 PDE所成角的正弦.【解答】解:(Ⅰ)∵ AD⊥ 面 PAB,PE? 平面 PAB,∴ AD⊥EP.又∵△ PAB是等三角形, E 是段 AB 的中点,∴ AB⊥EP.∵AD∩ AB=A,∴ PE⊥平面 ABCD.∵CD? 平面 ABCD,∴ PE⊥ CD.⋯( 5 分)(Ⅱ)以 E 原点, EA、EP分 y、 z ,建立如所示的空直角坐系.E(0,0,0), C( 1, 1, 0),D( 2,1,0),P(0,0,).=(2, 1, 0),=(0,0,),=(1, 1,).=(x,y,z)平面 PDE的一个法向量.由,令 x=1,可得=( 1, 2,0).⋯( 9 分)PC与平面 PDE所成的角θ,得=因此 PC与平面 PDE所成角的正弦.⋯(12分)21.如,在四棱 P ABCD中,平面 PAD⊥平面 ABCD,E AD 的中点, PA⊥AD,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1.(Ⅰ)求:平面 PAD⊥平面 PCD;(Ⅱ)求二面角 C PB E 的余弦;(Ⅲ)在段 PE上可否存在点 M ,使得 DM∥平面 PBC?若存在,求出点 M 的地址;若不存在,明原由.【解答】解:(Ⅰ)明:由已知平面 PAD⊥平面 ABCD,PA⊥ AD,且平面PAD∩平面 ABCD=AD,因此 PA⊥平面 ABCD.因此 PA⊥CD.又因BE⊥AD,BE∥CD,因此 CD⊥AD.因此 CD⊥平面 PAD.因 CD? 平面PCD,因此平面 PAD⊥平面 PCD.⋯(4 分)(Ⅱ)作 Ez⊥AD,以 E 原点,以的方向分x,y的正方向,建立如所示的空直角坐系 E xyz,点 E(0,0,0), P( 0, 2,2), A(0, 2, 0),B(2,0,0), C( 1, 2, 0),D(0,2,0).因此,,.平面 PBC的法向量=( x,y,z),因此即令 y=1,解得=( 2, 1, 3).平面 PBE的法向量=(a,b,c),因此即令 b=1,解得=( 0, 1, 1).因此 cos<>=.由可知,二面角 C PB E 的余弦.⋯(10分)(Ⅲ)“ 段 PE上存在点 M,使得 DM∥平面 PBC”等价于“”.因,,λ∈(0,1),M (0,2λ 2,2 2λ),.由(Ⅱ)知平面 PBC的法向量=( 2, 1, 3),因此.解得.因此段 PE上存在点 M ,即 PE中点,使得 DM∥平面 PBC.⋯( 14 分)22.如,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直. AB∥CD,AB⊥BC,AB=2CD=2BC, EA⊥EB.(Ⅰ)求: AB⊥DE;(Ⅱ)求直 EC与平面 ABE所成角的正弦;(Ⅲ)段 EA 上可否存在点 F,使 EC∥平面 FBD?若存在,求出;若不存在,明原由.【解答】(Ⅰ )明:取 AB 中点 O,接 EO,DO.因 EB=EA,因此 EO⊥ AB.⋯(1 分)因四形 ABCD直角梯形, AB=2CD=2BC, AB⊥ BC,因此四形 OBCD正方形,因此 AB⊥OD.⋯(2 分)因 EO∩OD=O因此 AB⊥平面 EOD.⋯(3 分)因 ED? 平面 EOD因此 AB⊥ED.⋯(4 分)(Ⅱ)解:因平面 ABE⊥平面 ABCD,且 EO⊥AB,平面 ABE∩平面 ABCD=AB因此 EO⊥平面 ABCD,因 OD? 平面 ABCD,因此 EO⊥OD.由 OB,OD,OE两两垂直,建立如所示的空直角坐系O xyz.⋯(5 分)因△ EAB等腰直角三角形,因此 OA=OB=OD=OE, OB=1,因此 O(0,0,0), A( 1,0,0),B(1,0,0), C( 1, 1, 0),D(0,1,0),E( 0, 0, 1).因此,平面 ABE的一个法向量.⋯(7 分)直 EC与平面 ABE所成的角θ,因此,即直 EC与平面 ABE所成角的正弦.⋯( 9 分)(Ⅲ)解:存在点 F,且,有 EC∥平面 FBD.⋯(10 分)明以下:由,,因此.平面 FBD的法向量=(a,b,c),有因此取 a=1,得 =( 1,1,2).⋯( 12 分)因=(1,1, 1)?(1,1,2)=0,且 EC?平面 FBD,因此 EC∥平面 FBD.即点 F 足,有 EC∥平面 FBD.⋯( 14 分)23.如,三棱柱 ABC A1B1C1中,AB=AC=CC1,平面 BAC1⊥平面 ACC1A1,∠ACC1=∠BAC1=60°,AC1∩ A1C=O.(Ⅰ)求: BO⊥平面 AA1C1C;(Ⅱ)求二面角 A BC1B1的余弦.【解答】明:(Ⅰ )依意,四形 AA1C1C 菱形,且∠ AA1C1=60°∴△ AA1C1正三角形,又∠ BAC1=60°,∴△ BAC1正三角形,又 O AC1中点,∴BO⊥ AC1,∵平面 ABC1⊥平面 AA1C1C,平面 ABC1∩平面 AA1C1C=AC1,∵BO? 平面 AA1CC1,∴ BO⊥平面 AA1C1C.⋯(4 分)解:(Ⅱ)以 O 坐原点,建空直角坐系,如,令 AB=2,,C1(,,)010∴,平面 BB1 1的一个法向量,C由得,取 z=1,得⋯(9分)又面 ABC1的一个法向量∴⋯(11 分)故所求二面角的余弦⋯( 12 分)24.如,在四棱P ABCD中, PA⊥平面,四形ABCD正方形,点M, N 分段PB,PC上的点, MN⊥PB.(Ⅰ)求: MN⊥平面 PAB;(Ⅱ)当 PA=AB=2,二面角 C AN D 大小,求PN的.【解答】(Ⅰ )明:在正方形ABCD中, AB⊥BC,∵PA⊥平面 ABCD, BC? 平面 ABCD,∴ PA⊥ BC.∵AB∩PA=A,且 AB,PA? 平面 PAB,∴BC⊥平面 PAB, BC⊥PB,∵MN⊥PB,∴ MN∥BC,则 MN⊥平面 PAB;(Ⅱ)解:∵ PA⊥平面 ABCD,AB,AD? 平面 ABCD,∴ PA⊥AB,PA⊥ AD,又 AB⊥AD,如图,以 A 为原点, AB,AD,AP 所在直线为 x,y,z 轴,建立空间直角坐标系A﹣xyz,则C(2,2,0), D( 0, 2, 0),B(2,0,0),P(0,0,2).设平面 DAN 的一个法向量为 =(x,y,z),平面 CAN的一个法向量为 =(a,b,c),设 =λ,λ∈[ 0, 1] ,∵=(2,2,﹣2),∴=(2λ,2λ,2﹣2λ),又 =(0,2,0),∴,取 z=1,得=(,0,1),∵=(0,0,2), =(2,2,0),∴,取 a=1 得,到=(1,﹣ 1,0),∵二面 C﹣ AN﹣ D 大小为,∴ | cos<,>| =cos=,∴ | cos<,>| =|| =|| =,解得λ=,∴,则 PN=.25.如题图,三棱锥 P﹣ABC中,PC⊥平面 ABC,PC=3,∠ ACB=.D,E分别为线段AB,BC 上的点,且 CD=DE=,CE=2EB=2.(Ⅰ)证明: DE⊥平面 PCD(Ⅱ)求二面角 A﹣PD﹣ C 的余弦值.【解答】(Ⅰ )证明:∵ PC⊥平面 ABC,DE? 平面 ABC,∴ PC⊥DE,∵CE=2,CD=DE= ,∴△CDE为等腰直角三角形,∴ CD⊥DE,∵ PC∩CD=C,DE垂直于平面 PCD内的两条订交直线,∴DE⊥平面 PCD(Ⅱ)由(Ⅰ)知△ CDE为等腰直角三角形,∠ DCE=,过点 D 作 DF 垂直 CE于 F,易知 DF=FC=FE=1,又由已知 EB=1,故 FB=2,由∠ ACB=得DF∥AC,,故AC= DF=,以 C 为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0), P( 0, 0, 3),A(, 0, 0),E(0,2,0), D(1, 1,0),∴ =(1,﹣ 1,0), =(﹣ 1,﹣ 1,3), =(,﹣ 1, 0),设平面 PAD的法向量=( x, y, z),由,故可取=(2, 1, 1),由(Ⅰ)知 DE⊥平面 PCD,故平面 PCD的法向量可取=(1,﹣ 1,0),∴两法向量夹角的余弦值cos<,>==∴二面角 A﹣PD﹣ C 的余弦值为.26.如图,在几何体 ABCDE中,四边形 ABCD是矩形, AB⊥平面 BEC,BE⊥ EC,AB=BE=EC=2,G, F 分别是线段 BE,DC的中点.(1)求证: GF∥平面 ADE;(2)求平面 AEF与平面 BEC所成锐二面角的余弦值.【解答】解法一:( 1)如图,取 AE 的中点 H,连接 HG,HD,∵G 是 BE的中点,∴ GH∥ AB,且 GH= AB,又∵ F 是 CD中点,四边形ABCD是矩形,∴DF∥AB,且 DF= AB,即 GH∥DF,且 GH=DF,∴四边形 HGFD是平行四边形,∴ GF∥ DH,又∵ DH? 平面 ADE,GF?平面 ADE,∴ GF∥平面 ADE.( 2)如图,在平面BEG内,过点 B 作 BQ∥ CE,∵BE⊥EC,∴ BQ⊥BE,又∵ AB⊥平面 BEC,∴ AB⊥BE,AB⊥ BQ,以 B 为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则 A(0,0,2), B( 0, 0, 0),E(2,0,0), F( 2, 2, 1)∵ AB⊥平面 BEC,∴为平面BEC的法向量,设=(x,y,z)为平面 AEF的法向量.又=(2,0,﹣ 2),=(2,2,﹣ 1)由垂直关系可得,取 z=2 可得.∴ cos<,>==∴平面 AEF与平面 BEC所成锐二面角的余弦值为.解法二:(1)如图,取 AB 中点 M ,连接 MG,MF,又G 是 BE的中点,可知 GM∥AE,且 GM= AE又AE? 平面 ADE,GM?平面 ADE,∴GM∥平面 ADE.在矩形 ABCD中,由 M, F 分别是 AB, CD的中点可得 MF∥AD.又AD? 平面 ADE,MF?平面 ADE,∴ MF∥平面ADE.又∵ GM∩MF=M,GM? 平面 GMF,MF? 平面GMF∴平面 GMF∥平面 ADE,∵GF? 平面 GMF,∴ GF∥平面 ADE( 2)同解法一.第30页(共 40页)27.如,在四棱P ABCD中, PD⊥平面 ABCD,四形 ABCD是菱形, AC=2,BD=2,E 是 PB 上任意一点.(Ⅰ)求: AC⊥DE;(Ⅱ)已知二面角 A PB D 的余弦,若 E PB的中点,求 EC与平面 PAB所成角的正弦.【解答】(I)明:∵ PD⊥平面 ABCD,AC? 平面 ABCD∴PD⊥AC又∵ ABCD是菱形,∴ BD⊥ AC,BD∩PD=D∴AC⊥平面 PBD,∵ DE? 平面 PBD∴AC⊥DE⋯(6 分)( II)解:分以OA, OB, OE 方向x, y, z 建立空直角坐系,PD=t,由( I)知:平面 PBD的法向量,令平面PAB 的法向量,根据得∴因二面角 A PB D 的余弦,,即,∴⋯(9 分)∴EC与平面 PAB所成的角θ,∵,∴⋯(12 分)28.如,三棱柱 ABC A1B1C1中,面 BB1C1C 菱形, AB⊥B1C.(Ⅰ)明: AC=AB1;(Ⅱ)若 AC⊥ AB1,∠ CBB1=60°, AB=BC,求二面角 A A1B1C1的余弦.【解答】解:(1)连接 BC1,交 B1C 于点 O,连接 AO,∵侧面 BB1 C1C 为菱形,∴BC1⊥B1C,且 O 为 BC1和 B1C 的中点,又∵ AB⊥ B1 C,∴ B1C⊥平面 ABO,∵ AO? 平面 ABO,∴ B1C⊥ AO,又B10=CO,∴ AC=AB1,(2)∵ AC⊥ AB1,且 O 为 B1C 的中点,∴ AO=CO,又∵ AB=BC,∴△ BOA≌△ BOC,∴ OA⊥OB,∴ OA, OB,OB1两两垂直,以 O 为坐标原点,的方向为x轴的正方向,|| 为单位长度,的方向为 y 轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠ CBB1°,∴△ 1 为正三角形,又,=60CBB AB=BC∴ A( 0, 0,), B( 1, 0, 0,), B (,,),(,,)00 C 001∴=(0,,),= =(1,0,),==(﹣ 1,,0),设向量=(x,y,z)是平面 AA1B1的法向量,则,可取=(1,,),同理可得平面 A1 B1C1的一个法向量=(1,﹣,),∴ cos<,>== ,∴二面角 A﹣A1B1﹣ C1的余弦值为29. 已知四棱锥P— ABCD , PB⊥ AD,侧面PAD为边长等于 2 的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.( 1)求点P 到平面ABCD的距离;( 2)求面APB与面CPB所成二面角的大小.PCDBA(传统法)解( 1):以以下图,作 PO⊥平面 ABCD ,垂足为点 O. 连接 OB、 OA、OD , OB 与 AD 交于点 E,连接 PE.PDCEO BA∵AD ⊥ PB,∴ AD⊥ OB.∵P A=PD ,∴ OA=OD .于是 OB 均分 AD ,点 E 为 AD 的中点,∴ PE ⊥AD. 由此知∠ PEB 为面 PAD 与面 ABCD 所成二面角的平面角,∴∠ PEB=120°,∠ PEO=60°. 由已知可求得 PE= 3,33,即点 P 到平面 ABCD 的距离为3 .∴PO=PE·sin60°=3×=222(2)(空间向量法)解法一:以以下图建立直角坐标系,其中O 为坐标原点, x 轴平行于 DA .zPGCDOEyBAxP( 0,0,333, 0), PB 中点 G 的坐标为( 0,33,3),连接 AG.), B( 0,2244又知 A( 1,3,0), C(- 2,3 3,0) . 22由此获取 GA =(1,-3,-3),44PB =(0,3 3,-3), BC =(-2,0,0).22于是有 GA · PB =0, BC · PB =0,∴ GA ⊥ PB , BC ⊥ PB . GA , BC 的夹角 θ 等于所求二面角的平面角.于是 cos θ=GA BC|GA || BC |=-2 7,7由于题目中的二面角为钝角,因此所求二面角的大小为-2 7 。
高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.如图,长方体中,分别为中点,(1)求证:.(2)求二面角的正切值.【答案】(1)见解析(2)【解析】(1)由长方体及E、F分别为AB、C1D1的中点知,AE平行且等于C1F,所以AEC1F是平行四边形,所以C1E∥AF,由线面平行的判定定理知,C1E∥面ACF;(2)易证FG⊥面ABCD,过F作FH⊥AC于H,连结HG,因为FG⊥面ABCD,则FG⊥AC,所以∠FHG为二面角F—AC—G的平面角,然后通过解三角形,求出FG、GH的长,即可求出∠FHG的正切值,即为二面角F-AC-G的正切值.试题解析:(1)证明:在长方体中,分别为中点,且四边形是平行四边形3分,5分(2).长方体中,分别为中点,7分过做于,又就是二面角的平面角 9分,在中, 11分直角三角形中 13分二面角的正切值为 14分考点:线面平行的判定定理;二面角的计算;逻辑推理能力2.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.【答案】(1)(2)【解析】解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),∴=(2,0,-4),=(1,-1,-4).∵cos〈,〉===,∴异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1=(x,y,z),∵=(1,1,0),=(0,2,4),∴n1·=0,n 1·=0,即x+y=0且2y+4z=0,取z=1,得x=2,y=-2,∴n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1夹角的大小为θ.由cosθ===,得sinθ=.因此,平面ADC1与平面ABA1夹角的正弦值为.3.已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为()A.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1【答案】C【解析】如图,=+=+=+ (+).4.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.5.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【答案】D【解析】设,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.【考点】空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题.6.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.7.(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1﹣CE﹣C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.【答案】(1)见解析(2)(3)【解析】(1)证明:以点A为原点建立空间直角坐标系,如图,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).则,而=0.所以B1C1⊥CE;(2)解:,设平面B1CE的法向量为,则,即,取z=1,得x=﹣3,y=﹣2.所以.由(1)知B1C1⊥CE,又CC1⊥B1C1,所以B1C1⊥平面CEC1,故为平面CEC1的一个法向量,于是=.从而==.所以二面角B1﹣CE﹣C1的正弦值为.(3)解:,设0≤λ≤1,有.取为平面ADD1A1的一个法向量,设θ为直线AM与平面ADD1A1所成的角,则==.于是.解得.所以.所以线段AM的长为.8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.【答案】(1)见解析(2)【解析】(1)因为△DAB ≌△DCB,EA=EB=AB=1,所以△ECB是等边,,(2)建立空间坐标系如图,取向观点的坐标为, 向量设平面PBC的法向量平面PDC的法向量则【考点】本题主要考查空间垂直关系的证明、平行关系的运用,考查空间角的求解方法,考查空间想象能力、推理论证能力、计算能力.9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值。
空间向量练习及答案解析

空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。
高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.如图,在四棱锥中,底面,,,,,点为棱的中点.(Ⅰ)证明:;(Ⅱ)若为棱上一点,满足,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)余弦值为.【解析】思路一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),写出各点的坐标,利用空间向量即可解决问题.思路二:几何法.(Ⅰ)如图,取中点,连接,.易得四边形为矩形,从而使问题得证.(Ⅱ)由于,那么BF在平面ABCD内的射影与AC垂直,故考虑作出BF在平面ABCD 内的射影.在中,过点作交于点.由题设可得,从而得,.在平面内,作交于点,于是.显然为二面角的平面角. 在三角形PAG中,由余弦定理可得二面角的余弦值.试题解析:解法一:坐标法.依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.(Ⅰ)向量,,故. 所以,.(Ⅱ)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则即不妨令,可得为平面的一个法向量取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.解法二:几何法.(Ⅰ)如图,取中点,连接,.由于分别为的中点,故,且,又由已知,可得且,故四边形为平行四边形,所以.因为底面,故,而,从而平面,因为平面,于是,又,所以.(Ⅱ)如图,在中,过点作交于点.因为底面,故底面,从而.又,得平面,因此.在底面内,可得,.在平面内,作交于点,于是.由于,故,所以四点共面.由,,得平面,故.所以为二面角的平面角.在中,,,,由余弦定理可得,在三角形PAG中,由余弦定理得.所以,二面角的余弦值为.【考点】1、空间直线的垂直关系;2、二面角.2.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是()A.(,-1,-1)B.(6,-2,-2)C.(4,2,2)D.(-1,1,4)【答案】D【解析】设平面α的法向量为n,则n⊥,n⊥,n⊥,所有与 (或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.4.如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则、夹角θ的余弦值为()A.0B.C.D.【答案】A【解析】设=a,=b,=c.由已知条件∠AOB=∠AOC,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|cos∠AOC-|a||b|cos∠AOB=0,∴cosθ=0.故选A.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.【答案】2【解析】c-a=(0,0,1-x),2b=(2,4,2),由(c-a)·(2b)=-2,得(0,0,1-x)·(2,4,2)=-2,即2(1-x)=-2,解得x=2.6.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.【答案】(1)(2)-(3)(4)【解析】解:设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°.=BD=c-a,=-a,=b-c,(1)·=(c-a)·(-a)=a2-a·c=;(2)·= (c-a)·(b-c)= (b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+ c.||2=a2+b2+c2-a·b+b·c-c·a=.即||=,所以EG的长为.(4)设、的夹角为θ.=b+c,=+=-b+a,cosθ==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.7.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).8.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.【答案】C【解析】以C为原点,直线CA为x轴,直线CB为y轴,直线为轴,则设CA=CB=1,则,,A(1,0,0),,故,,所以,故选C.【考点】本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.9.如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA 的中点。
(完整版)空间向量小题(答案)

第3章(考试时间90分钟,满分120分)、选择题(本大题共10小题,每小题5分,共50分•在每小题给出的四个选项中,只 有一项是符合题目要求的)1 .设 a = (x, 2y, 3) , b = (1,1,6),且 a // b ,则 x + y 等于( )1A. 2C.23解析: T a // b ,「. x = 2y = 6,3•••x +y= 4.答案: B2 .若 a = (0,1,- 1), b = (1,1,0) ,且(a +入b )丄a ,则实数入的值是(A . - 1 D.— 2解析: a + 入 b = (0,1 , — 1) + (入,入,0)=(入,1 + 入,一 1), 因为(a + 入b ) • a =(入,1+ 入,一1) • (0,1,— 1) =1 + 入 + 1 = 2 + 入=0, 所以X = — 2. 答案: D23 .若向量(1,0 , z )与向量(2,1,0)的夹角的余弦值为——,则z 等于( )A . 0B . 12 ______ 1 + z 2 •1 = . 1 + z 2,「. z = 0. 答案: A4.若 a =e 1 + e 2+ e 3, b = e 1 — e 2— e 3, c = e 1 — e 2, d = 3e 1 + 2e 2 + e 3({e 1, e 2, e 3}为空间的一■解析:由题知——2,寸1+ Z 2.^5yJ 5C.— 1D. 2 B .4 D. 2B . 0C. 1x= 21个基底),且d = xa + yb + zc ,贝U x , y , z 分别为()5 B. J ,A C = X B+B CT CC=AB+ B C- c T C,所以 x = 1,2 y = 1,3 z =— 1, 1 1所以 x = 1, y = 2 z = — 3,C -2,i 2, 1D .5,解析:d =xa + yb + zc = x (e i + e ?+ e 3)+ y (e i — e 2— e 3)+ z (e i — e 2).f5 3••• {x + y + z = 3, x — y — z = 2, x — y = 1,/• x =㊁, y = 2, z =— 1答案: A5.若直线l 的方向向量为a = (1 , — 1,2),平面a 的法向量为U = ( — 2,2 , — 4),则( ) A . l //a C. l ?aB . l 丄 a D. I 与a 斜交解析: ■/ u =— 2a ,「. u // a ,• l 丄 a ,故选B. 答案:BABC — A B' C' D 中,若 AC = x XB+ 2y B C > 3zC ^ C,贝U x + y + z 等A . 17 B.7C.6解析:如图,6 .在平行六面休答案:B成的角的余弦值为(A』10C迈.10答案:C8.已知空间四个点A(1,1,1),耳一4,0,2) , q —3, - 1,0),D( —1,0,4),则直线AD与平面ABC所成的角为()A. 60°C. 30°解析:设门=(x, y, 1)是平面ABC的一个法向量.1 3一4x - 2y—2= 0, • x = 2,y=- 2,72 1 ,贝U sin 0 == 7 = 2, - 0= 30° .故选 C.I AD I n| 7 2答案:C9•在正方体ABC—ABCD中,平面ABD与平面CBD所成二面角的余弦值为1A.—2解析:2 3• n= 2,一2, 1 .••• AB= ( - 5, - 1,1) ,AC= (—4,—2,一1),又AD= ( —2, —1,3) ,设AD与平面ABC所成的角为0 ,7 .已知正四棱柱ABC B ABCD中,AA= 2AB E为AA的中点,则异面直线BE与CD所1B.53D.—5解析:以DA DC DD所在直线为x轴, y轴,z轴建立空间直角坐标系,则B(1,1,0),曰1,0,1) ,C(0,1,0),D(0,0,2).•- Bfe= (0,- 1,1) ,CD= (0,- 1,2).• cos〈BE CD〉BL CDI B E i CD| .2x )5B. 45°D. 90°••• { —5x—y + 1 = 0,I AD •叫1B.-3—— 14,/:/A以点D 为原点,DA DC DD 为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体的棱长为1 则 AC= ( — 1,1 , - 1) , AC = ( — 1,1,1).又可以证明 AC 丄平面BCD, AG 丄平面ABD,又cos 〈AC , AC 〉=亍 结合图形可知平面31ABD 与平面CBD 所成二面角的余弦值为故选B.答案: B10.如右图所示,在棱长为 1的正方体ABC — ABCD 中,E 、F 分别 为棱AA 、BB 的中点,G 为棱AB 上的一点,且 A G= X (0 w 入w 1 ),则 点G 到平面DEF 的距离为()A. .''3B 冷解析: 因为 A 1B 1// EF, G 在 AB 上,所以G 到平面DEF 的距离即为 A 到平面DEF 的距离, 即是A 到DE 的距离,DE^V :5,答案: D二、填空题(本大题共4小题,每小题5分,共20分•请把正确答案填在题中横线上 )11•若 a = (2 , - 3,5) , b = ( — 3,1 , - 4),则 | a - 2b | = ___________ . 解析: 因为 a — 2b = (8 , — 5,13), 所以 | a — 2b | = ;82 + — 5 2 + 132= ,-'258. 答案:.'25812.设 a = (2 , — 3,1) , b = ( — 1 , — 2,5) , d = (1,2 , — 7) , c 丄 a , c 丄 b ,且 c • d =10 ,则c =解析: 设 c = (x , y , z ),D. '5 ~5由三角形面积可得所求距离为f.故选D.11X22根据题意得{2x — 3y + z = 0, x — 2y + 5z = 0, x + 2y — 7z = 10.-5 -13•直角△ ABC 勺两条直角边 BC= 3, AC= 4, P®平面ABC PC=舟,则点P 到斜边AB 的5距离是 ________解析:则 A (4,0,0) ,B (0,3,0) ,P 0,0,5 ,所以 AB= ( — 4,3,0),T 9 AP= — 4, 0, 5 ,1 1 7因此 x + y + z = 1 + ^ — 3 = 6*所以AP 在AB 上的投影长为I Ak AB I AB16~5,所以P 到AB 的距离为答案: 325625=3. 65 解得x =祛答案:65 12,15 5 15以C 为坐标原点,。
(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
空间向量练习及答案解析

空间向量练习及答案解析1.已知平面α的一个法向量为(2,-1,1),且α∥β,则平面β的一个可能的法向量是哪个?A。
(4,2,-2) B。
(2,0,4) C。
(2,-1,-5) D。
(4,-2,2)2.在如图所示的正方形ABCD中,过点A作线段EA垂直于平面AC,若EA=1,则平面ADE和平面BCE所成的二面角大小是多少?A。
120° B。
45° C。
150° D。
60°3.已知向量a=(1,2,3),向量b=(2,1,2),向量c=(1,1,2),点Q在直线OP上移动,当a·Q+b·Q取得最小值时,点Q的坐标是多少?A。
B。
C。
D.4.将正方形ABCD沿对角线BD折成直角二面角A-BD-C,以下哪个结论是错误的?A。
AC⊥BDB。
△ACD是等边三角形C。
∠ABC与平面BCD所成的角为60°D。
∠ABD与CD所成的角为60°5.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E和F分别是棱AB和BB1的中点,直线EF和BC1的夹角是多少?A。
45° B。
60° C。
90° D。
120°6.在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设∠AOM=a,∠BOM=b,∠CON=c,则a+b-c等于多少?A。
a+b-c B。
-a+b+c C。
a-b+c D。
a+b-c7.在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,AB1和D1E所成角的余弦值是多少?A。
B。
C。
- D。
-8.在正方体ABCD-A1B1C1D1中,M、N、P分别是棱CC1、BC和A1B1上的点,若∠B1MN=90°,则∠PMN的大小是多少?A。
等于90° B。
小于90° C。
(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
高中数学空间向量经典例题及解析

高中数学空间向量经典例题及解析一、引言空间向量是高中数学的一个重要知识点,它涉及到三维空间中向量的加法、数乘、数量积和向量积等运算。
这些运算在解决实际问题中有着广泛的应用,因此学好空间向量对于学生来说至关重要。
本篇文章将通过经典例题的方式,对空间向量的相关知识点进行深入解析,以期帮助学生更好地掌握这一知识点。
二、经典例题及解析【例题1】在空间四边形中,已知两个向量,,求异面直线的夹角(锐角或直角)。
【解析】本题考查空间向量的夹角问题,需要利用两个向量的夹角公式。
【解答】首先根据向量的定义,可得到向量,的坐标分别为(, )。
根据向量的加法,可得向量的坐标为(, )。
又因为两个向量垂直,所以它们的数量积为0,即,所以。
根据异面直线夹角公式,可得异面直线的夹角为。
【例题2】在长方体中,已知三个向量,,求异面直线的夹角(锐角或直角)。
【解析】本题除了需要用到向量的加法、数乘、数量积和向量积等运算,还需要用到长方体的性质。
【解答】首先根据向量的定义,可得到向量的坐标分别为(, , )。
又因为长方体中,所以可以表示为和的线性组合,即或。
设所在直线的方向向量,所在平面的法向量,则的坐标分别为(, )。
根据向量夹角公式和向量垂直的条件,可得垂直于平面,所以。
又因为两个向量垂直,所以它们的数量积为0,即,所以。
根据异面直线夹角公式,可得异面直线AB与CD的夹角为。
【例题3】已知长方体,设点,求与平面之间的距离。
【解析】本题需要利用长方体的性质和向量的数量积求解。
【解答】设平面的法向量,则所在直线的方向向量。
因为点在平面内,所以点在平面外,所以向量,即。
又因为向量与平面共线,所以向量,即。
根据向量的数量积和点到平面的距离公式,可得与平面之间的距离为。
三、总结空间向量是高中数学的一个难点也是重点,通过经典例题的解析,我们可以更好地掌握空间向量的相关知识点。
在解决实际问题时,我们需要灵活运用向量的加法、数乘、数量积和向量积等运算,同时还要注意向量的表示和坐标的确定。
空间向量基本定理(经典练习及答案详解)

1.2 空间向量基本定理课后篇巩固提升1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AC 与BD 的交点为M ,AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,则下列向量中与C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是( ) A.-12a +12b +cB.12a +12b +cC.-12a -12b -cD.-12a -12b +cC 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AC 1⃗⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )-(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ )=-12a -12b -c .2.(2020广东汕头金山中学高二上期中)已知正方体ABCD -A 1B 1C 1D 1,点E 为上底面A 1C 1的中心,若AE ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗ ,则x ,y 的值分别为( ) A.1,1B.1,12C.12,12D.12,1AE ⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AC 1⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,所以x=12,y=12.故选C .3.在空间四边形OABC 中,OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,点M 在线段AC 上,且AM=2MC ,N 是OB 的中点,则MN ⃗⃗⃗⃗⃗⃗⃗ = ( )A.23a +12b -23cB.23a -12b +23cC.-13a +12b -23cD.13a +12b -13cMA ⃗⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ =23(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ ),ON⃗⃗⃗⃗⃗⃗ =12OB ⃗⃗⃗⃗⃗ , MN ⃗⃗⃗⃗⃗⃗⃗ =MO ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ +ON⃗⃗⃗⃗⃗⃗ =23(a -c )-a +12b =-13a +12b -23c .4.在正方体ABCD -A 1B 1C 1D 1中,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,A 1C 1与B 1D 1的交点为E ,则BE⃗⃗⃗⃗⃗ = .,BE ⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1E ⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12(B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗ +12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-12a +12b +c .-12a +12b +c5.已知三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,∠BAC=90°.求证:AB ⊥AC 1.AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,则AC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ =b +c .所以AB ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =a ·(b +c )=a ·b +a ·c , 因为AA 1⊥平面ABC ,∠BAC=90°, 所以a ·b =0,a ·c =0, 得AB ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =0,故AB ⊥AC 1. 6.如图所示,在平行四边形ABCD 中,AD=4,CD=3,∠ADC=60°,PA ⊥平面ABCD ,PA=6,求线段PC 的长.ABCD 中,∠ADC=60°,所以∠BAD=120°.又PA ⊥平面ABCD , 所以PA ⊥AB ,PA ⊥AD.因为PC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ , 所以|PC ⃗⃗⃗⃗⃗ |=√(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ -AP⃗⃗⃗⃗⃗ )2= √|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+|AP ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ -2AB ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ -2AD ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗=√9+16+36+2×3×4×(-12)-0-0=7,即线段PC 的长为7.关键能力提升练7.(2020安徽淮北一中高二上期中)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且MP=2PN ,设向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,则OP ⃗⃗⃗⃗⃗ =( ) A.16a+16b+16cB.13a+13b+13cC.16a+13b+13c D.13a+16b+16cOP ⃗⃗⃗⃗⃗ =OM ⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗ =OM ⃗⃗⃗⃗⃗⃗ +23(ON ⃗⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )=23ON ⃗⃗⃗⃗⃗⃗ +13OM ⃗⃗⃗⃗⃗⃗ =23×12(OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+13×12OA ⃗⃗⃗⃗⃗ =13b +13c +16a ,故选C .8.在四面体O -ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则(x ,y ,z )为( ) A.(14,14,14) B.(34,34,34) C.(13,13,13) D.(23,23,23)如图所示,连接AG 1交BC 于点E ,则E 为BC 的中点,AE⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12(OB ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ +OC⃗⃗⃗⃗⃗ ), AG 1⃗⃗⃗⃗⃗⃗⃗ =23AE ⃗⃗⃗⃗⃗ =13(OB ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ). 因为OG ⃗⃗⃗⃗⃗ =3GG 1⃗⃗⃗⃗⃗⃗⃗ =3(OG 1⃗⃗⃗⃗⃗⃗⃗ −OG ⃗⃗⃗⃗⃗ ),所以OG ⃗⃗⃗⃗⃗ =34OG 1⃗⃗⃗⃗⃗⃗⃗ .则OG ⃗⃗⃗⃗⃗ =34OG 1⃗⃗⃗⃗⃗⃗⃗ =34(OA ⃗⃗⃗⃗⃗ +AG 1⃗⃗⃗⃗⃗⃗⃗ )=34(OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗)=14OA ⃗⃗⃗⃗⃗ +14OB ⃗⃗⃗⃗⃗ +14OC⃗⃗⃗⃗⃗ .9.(多选题)在三棱锥P-ABC 中,三条侧棱PA ,PB ,PC 两两垂直,且PA=PB=PC=3,G 是△PAB 的重心,E ,F 分别为棱BC ,PB 上的点,且BE ∶EC=PF ∶FB=1∶2,则下列说法正确的是( ) A.EG ⊥PG B.EG ⊥BC C.FG ∥BC D.FG ⊥EF,设PA ⃗⃗⃗⃗⃗ =a ,PB ⃗⃗⃗⃗⃗ =b ,PC ⃗⃗⃗⃗⃗ =c ,则{a ,b ,c }是空间的一个正交基底,则a ·b=a ·c=b ·c=0.取AB 的中点H , 则BC⃗⃗⃗⃗⃗ =c-b , PG⃗⃗⃗⃗⃗ =23PH ⃗⃗⃗⃗⃗⃗ =23×12(a+b )=13a+13b , PE ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +13(PC ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )=23b+13c ,则EG ⃗⃗⃗⃗⃗ =PG ⃗⃗⃗⃗⃗ −PE ⃗⃗⃗⃗⃗ =13a+13b-23b-13c=13a-13b-13c ,BC⃗⃗⃗⃗⃗ =c-b , FG ⃗⃗⃗⃗⃗ =PG ⃗⃗⃗⃗⃗ −PF ⃗⃗⃗⃗⃗ =13a+13b-13b=13a ,EF ⃗⃗⃗⃗⃗ =PF⃗⃗⃗⃗⃗ −PE ⃗⃗⃗⃗⃗ =13b-13c+23b =-13c-13b. EG ⃗⃗⃗⃗⃗ ·PG ⃗⃗⃗⃗⃗ =0,故A 正确;EG ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,故B 正确;FG ⃗⃗⃗⃗⃗ ≠λBC ⃗⃗⃗⃗⃗ (λ∈R ),故C 不正确;FG ⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =0,故D 正确.故选ABD .10.若a=e 1+e 2,b=e 2+e 3,c=e 1+e 3,d=e 1+2e 2+3e 3,若e 1,e 2,e 3不共面,当d =α a +β b +γ c 时,α+β+γ=.d =(α+γ)e 1+(α+β)e 2+(γ+β)e 3,所以{α+γ=1,α+β=2,γ+β=3,故有α+β+γ=3.11.(2020浙江杭州学军中学高二上期中)在棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 .AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AD ⃗⃗⃗⃗⃗ =c ,则{a ,b ,c }是空间的一个基底,|a|=|b|=|c|=a ,a ·b=a ·c=b ·c =12a 2.∴EF ⃗⃗⃗⃗⃗ =AF ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12(a+b )-12c ,∴EF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =12a 2+12a ·b-12a ·c =12a 2,|EF⃗⃗⃗⃗⃗ |=√(12a +12b -12c) 2=√22a. ∴cos <EF ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=EF ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ |EF ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗|=12a 2√22a×a =√22, ∴异面直线EF 与AB 所成的角为π4.√22a 12.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,MA ⃗⃗⃗⃗⃗⃗ =-13AC ⃗⃗⃗⃗⃗ ,ND ⃗⃗⃗⃗⃗⃗ =13A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,试用a ,b ,c 表示MN⃗⃗⃗⃗⃗⃗⃗ .AN ,则MN⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ . 由已知可得四边形ABCD 是平行四边形,从而可得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =a +b ,MA ⃗⃗⃗⃗⃗⃗ =-13AC ⃗⃗⃗⃗⃗ =-13(a +b ),又A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AA 1⃗⃗⃗⃗⃗⃗⃗ =b -c ,故AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −ND ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =b -13(b -c ),所以MN⃗⃗⃗⃗⃗⃗⃗ =MA⃗⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =-13(a +b )+b -13(b -c )=13(-a +b +c ). 13.在正方体ABCD -A 1B 1C 1D 1中,已知E ,F ,G ,H 分别是CC 1,BC ,CD 和A 1C 1的中点.证明: (1)AB 1∥GE ,AB 1⊥EH ; (2)A 1G ⊥平面EFD.设正方体棱长为1,AB ⃗⃗⃗⃗⃗ =i ,AD ⃗⃗⃗⃗⃗ =j ,AA 1⃗⃗⃗⃗⃗⃗⃗ =k ,则{i ,j ,k }构成空间的一个单位正交基底. AB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =i +k ,GE ⃗⃗⃗⃗⃗ =GC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12i +12k =12AB 1⃗⃗⃗⃗⃗⃗⃗ ,∴AB 1∥GE.EH ⃗⃗⃗⃗⃗⃗ =EC 1⃗⃗⃗⃗⃗⃗⃗ +C 1H ⃗⃗⃗⃗⃗⃗⃗ =12k +(-12)(i +j )=-12i -12j +12k , ∵AB 1⃗⃗⃗⃗⃗⃗⃗ ·EH ⃗⃗⃗⃗⃗⃗ =(i +k )·(-12i -12j +12k)=-12|i |2+12|k |2=0,∴AB 1⊥EH.(2)A 1G ⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DG ⃗⃗⃗⃗⃗ =-k +j +12i ,DF ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =i -12j ,DE ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =i +12k .∴A 1G ⃗⃗⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗ =(-k +j +12i)·(i -12j)=-12|j |2+12|i |2=0,∴A 1G ⊥DF.A 1G ⃗⃗⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(-k +j +12i)·(i +12k)=-12|k |2+12|i |2=0,∴A 1G ⊥DE.又DE ∩DF=O ,∴A 1G ⊥平面EFD.学科素养创新练14.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,有a ·b =0,a ·c =0,b ·c =0,则EF ⃗⃗⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =12(BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12(-a +b +c ),AB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =a +b .∴EF ⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =12(-a +b +c )·(a +b )=12(|b |2-|a |2)=0.∴EF ⃗⃗⃗⃗⃗ ⊥AB 1⃗⃗⃗⃗⃗⃗⃗ ,即EF ⊥AB 1.同理EF ⊥B 1C. ∵AB 1∩B 1C=B 1,∴EF ⊥平面B 1AC.。
空间向量的习题及答案

空间向量的习题及答案空间向量是线性代数中的重要概念之一,它在解决几何问题时起到了关键作用。
本文将通过一些典型的习题来探讨空间向量的性质和应用,并给出详细的答案解析。
1. 习题一:已知向量a = (1, 2, -3),向量b = (-2, 1, 4),求向量a与向量b的数量积和向量积。
解析:向量a与向量b的数量积为:a·b = 1*(-2) + 2*1 + (-3)*4 = -2 + 2 - 12 = -12。
向量a与向量b的向量积为:a×b = (2*(-3) - 1*4, 1*(-3) - (-2)*4, 1*1 - (-2)*(-3)) = (-6 - 4, -3 + 8, 1 + 6) = (-10, 5, 7)。
2. 习题二:已知向量a = (2, -1, 3),向量b = (3, 4, -2),求向量a与向量b的夹角的余弦值。
解析:向量a与向量b的夹角的余弦值为:cosθ = (a·b) / (|a| * |b|)。
其中,a·b为向量a与向量b的数量积,|a|为向量a的模,|b|为向量b的模。
计算得到:a·b = 2*3 + (-1)*4 + 3*(-2) = 6 - 4 - 6 = -4,|a| = √(2^2 + (-1)^2+ 3^2) = √(4 + 1 + 9) = √14,|b| = √(3^2 + 4^2 + (-2)^2) = √(9 + 16 + 4)= √29。
代入公式得到:cosθ = (-4) / (√14 * √29)。
3. 习题三:已知向量a = (1, 2, 3),向量b = (4, 5, 6),求向量a与向量b的和、差和模长。
解析:向量a与向量b的和为:a + b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
向量a与向量b的差为:a - b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
空间向量及其运算(习题及答案)

空间向量及其运算(习题及答案)例1:在正方体ABCD-A1B1C1D1中,E为上底面A1B1C1D1的中心,若AE=AA1+xAB+yAD,则x,y的值分别为()。
解析:由于E为上底面A1B1C1D1的中心,所以AE的长度为A1E的长度的一半,即AE=1/2A1E。
又因为A1E的方向向量为1/2(AB+AD),所以AE=1/2(AA1+AB+AD)。
将AE=AA1+xAB+yAD代入,得到x=1/2,y=1/2,故选D。
例2:在平行六面体ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB,AD,AA1两两之间的夹角都是60°,则AC1·BD1=()。
解析:由于AB,AD,AA1两两之间的夹角都是60°,所以它们构成一组正交基底。
设AB=a,AD=b,AA1=c,则AC1=AB+BC1+CA1=a+b/2+c/2,BD1=BD=AD+DC1+CB1=b+a/2+c/2.将AC1·BD1代入,得到AC1·BD1=(a+b/2+c/2)·(b+a/2+c/2)=ab+ac/2+bc/2+a^2/4+b^2/4+c^2/4+ac/4+bc/4,化简得到AC1·BD1=ab+ac+bc+1/4(a^2+b^2+c^2),代入数值计算得到AC1·BD1=5/2,故选B。
例3:在正方体ABCD-A1B1C1D1中,E,F分别是A1B1,C1D1的一个四等分点,求BE与DF所成角的余弦值。
解析:以DA,DC。
设正方体ABCD-A1B1C1D1的棱长为1,则B(1,1,0),E(1,1/2,1),D(0,0,0),F(0,1/2,1)。
由于BE的方向向量为(0,-1,1),DF的方向向量为(0,1,1),所以BE·DF=0*(-1)+(-1)*1+1*1=0,即BE与DF所成角的余弦值为0,故选A。
1.在三棱锥O-ABC中,设OA=a,OB=b,OC=c,用a,b,c表示MN,则MN=1/2√(2a^2+2b^2-2c^2)。
空间几何与向量练习题及解析

空间几何与向量练习题及解析一、选择题1. 已知向量A = 3A + 2A− A,向量A= −2A + A + 3A,求A与A的数量积A·A的值为:A. 1B. -1C. -10D. 10解析:数量积公式为:A·A = AAAA + AAAA + AAAA,其中AA、AA、AA分别表示向量A和A的A、A、A分量的乘积。
带入已知的A和A的分量进行计算:A·A = (3)(-2) + (2)(1) + (-1)(3) = -6 + 2 - 3 = -7答案:选项A. 12. 在空间直角坐标系中,已知点A(2, 1, 3)和点A(-1, 4, 2),向量A的末端与向量A的起点重合,A·A的值为:A. 3B. 17C. 11D. -9解析:点A(2, 1, 3)和点A(-1, 4, 2)可以确定唯一的向量A和A。
根据数量积A·A的定义,可以先求出A和A的分量,然后进行运算:A·A = (2)(-1) + (1)(4) + (3)(2) = -2 + 4 + 6 = 8答案:选项B. 17二、填空题1. 设向量A = 2A + 3A− A,向量A = 4A + A,若A = A + AAA,则A和A分别为______、______。
解析:根据已知条件,A的A分量为-1,而A的A分量为1。
因此A = 4,A = -1。
答案:4、-12. 已知点A(1, 2, 3)和点A(4, -1, -2),则向量AA的大小为________。
解析:向量AA可以由终点坐标减去起点坐标得到,即AA = (4-1)A + (-1-2)A + (-2-3)A = 3A - 3A - 5A。
根据向量的模的定义,可以得到:|AA| = √((3)^2 + (-3)^2 + (-5)^2) = √(9 + 9 + 25) = √43答案:√43三、计算题1. 已知向量A = 3A - 2A + 4A,向量A = A + A,求向量A与向量A 的夹角A的余弦值cos A。
空间向量典型例题

空间向量典型例题空间向量与立体几何一、非坐标系向量法1.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()。
答案:(B)2/3.2.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为1/3,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于。
答案:3/4.3.已知正四面体ABCD中,E、F分别在AB,CD上,且CF=CD,AE=AB/4,则直线DE和BF所成角的余弦值为()。
答案:(C)-13/13.4.如图,已知四棱柱ABCD-A1,CB=CD,∠C1CB=∠C1CD,证明:C1C垂直于BD;当∠C1CB的值为多少时,能使A1CB1D是菱形且A1C垂直于平面C1BD?请给出证明。
二、坐标系向量法1.如图,在直三棱柱ABCD-A1B1C1D1中,点M是AC的中点,点N是BD的中点,求异面直线AN和B1M所成角的余弦值,以及平面A1B1C1和平面ABC所成二面角的正弦值。
2.如图,在直棱柱ABCD-A1B1C1D1中,AB=BC=1,AC=BD=√2,点M是AC的中点,点N是BD的中点。
证明:(1)MN⊥平面A1B1C1D1;(2)直线MN和平面A1B1C1D1所成二面角的正弦值为1/√10.3.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。
求证:PC⊥AB;求二面角B-AP-C的大小。
4.如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。
求(1)DP与CC1所成角的大小;(2)DP与平面A1AD1所成角的大小。
5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=90°,OA⊥底面ABCD,OA=2,M为OA的中点。
求(1)异面直线AB与MD所成角的大小;(2)点B到平面OCD的距离。
高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。
空间向量典型习题含详解

1.如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.2.如图,在正三棱柱中,,点P,Q分别为,BC的中点.求异面直线BP与所成角的余弦值;求直线与平面所成角的正弦值.3.如图,四棱锥P-ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.4.如图,在三棱柱ABC-A1B1C1中,平面A1B1C⊥平面AA1C1C,∠BAC=90°.(1)证明:AC⊥CA1;(2)若△A1B1C是正三角形,AB=2AC=2,求二面角A1-AB-C的大小.5.如图,四棱锥P-ABCD中,AB∥DC,DC⊥BC,AB=2,CD=DP=1,PA=PB=BC=3,侧棱PC上点E满足PE=2EC.(1)求证PA∥平面BED;(2)求二面角A-PB-C的余弦值.6.如图,在正方体ABCD-A1B1C1D1中,E,F分别为底面A1B1C1D1和侧面B1C1CB的中心.求证:(1)EF∥A1B;(2)EF∥平面A1BD;(3)平面B1EF∥平面A1BD.7.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.答案和解析1.【答案】解:(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF,在图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF,又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.(2)解:由(1)知PF⊥平面ABED,∴PF为三棱锥P-ABE的高.设点A到平面PBE的距离为h,由等体积法得V A-PBE=V P-ABE,即∴h=,即点A到平面PBE的距离为.【解析】本题考查直线与平面垂直的证明,考查点到平面距离的求法,解题时要注意空间思维能力的培养,要注意等积法的合理运用.(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,由已知条件,利用勾股定理推导出PF⊥BF,PF⊥EF,由此能够证明PF⊥平面ABED.(2)由PF⊥平面ABED,知PF为三棱锥P-ABE的高,利用等积法能求出点A 到平面PBE的距离.2.【答案】解:如图,在正三棱柱ABC-A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{,,}为基底,建立空间直角坐标系O-xyz,∵AB=AA1=2,A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,,,∴,,,,,.|cos<,>|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q(,,)∴,,,,,,,,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,-1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos<,>|==,∴直线CC1与平面AQC1所成角的正弦值为.【解析】本题考查了向量法求空间角,属于中档题.设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O-xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC 1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.3.【答案】解:(1)因为ABCD是菱形,所以AC⊥BD.又OP⊥底面ABCD,以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系.则A(2,0,0),B(0,1,0),P(0,0,4),C(-2,0,0),M(-1,0,2).=(-2,0,4),=(01,-1,2),cos<,>===.故直线AP与BM所成角的余弦值为.(2)=(-2,1,0),=(-1,-1,2).设平面ABM的一个法向量为=(x,y,z),则,令x=2,得=(2,4,3).又平面PAC的一个法向量为=(0,1,0),∴cos<,>===.故平面ABM与平面PAC所成锐二面角的余弦值为.【解析】(1)以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AP与BM所成角的余弦值.(2)求出平面ABM的一个法向量和平面PAC的一个法向量,利用向量法能求出平面ABM与平面PAC所成锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.4.【答案】证明:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C=A1C,得B1O⊥平面AA1C1C,又AC⊂平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1⊂平面A1B1C,得AC⊥CA1.(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,).所以=(1,0,0),=(-1,2,0),==(0,-1,).设n=(x,y,z)是平面A1AB的法向量,则,即可取=(2,,1).设=(x,y,z)是平面ABC的法向量,则,即,可取=(0,,1).则cos⟨ ,>==.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为.【解析】(Ⅰ)过点B1作A1C的垂线,推导出B1O⊥平面AA1C1C,从而B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.从而AC⊥平面A1B1C.由此能证明AC⊥CA1.(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz.利用向量法能求出二面角A1-AB-C的大小.本题考查线线垂直的证明,考查二面角的求法,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.5.【答案】(12分)(1)证明:连接AC,交BD于F,连接EF,因为AB∥DC,所以,即AF=2FC,又PE=2EC,所以AP∥FE,又FE⊆平面BDE,AP⊄平面BDE,所以PA∥平面BED.(4分)(2)解:取AB中点M,连接PM,DM,过点P作PN⊥MD,垂足为N.因为PA=PB,所以PM⊥AB,又MB=DC且MB=DC,则四边形BCDM是平行四边形,所以MD∥BC,所以MD⊥AB,又PM∩MD=M,所以AB⊥平面PMD,又AB⊂平面ABCD,所以平面PMD⊥平面ABCD,又平面PMD∩平面ABCD=MD及PN⊥MD,所以PN⊥平面ABCD.由MB=1,PB=3得,则有PM2+PD2=DM2,即PM⊥PD,所以,所以,(8分)如图建立空间直角坐标系C-xyz,则D(1,0,0),,,,B(0,3,0),A (2,3,0),,,,,,,,,设平面PAB法向量,,,由得,取,可得,,.设平面PBC法向量,,,由得,取,可得,,..所以<,>=.二面角A-PB-C的余弦值为:.(12分)【解析】(1)连接AC,交BD于F,连接EF,通过AB∥DC,证明AP∥FE,即可证明PA∥平面BED.(2)取AB中点M,连接PM,DM,过点P作PN⊥MD,垂足为N.建立空间直角坐标系C-xyz,求出平面PAB法向量,平面PBC法向量,利用空间向量的数量积求解二面角A-PB-C的余弦值即可.本题考查直线与平面平行的判断定理的应用,二面角的平面角的求法,考查空间想象力以及计算能力.6.【答案】证明:以点D为原点,DA,DC,DD1分别为x轴、y轴、z轴,建立空间直角坐标系,令正方体的棱长为2,则D(0,0,0),A1(2,0,2),B(2,2,0),B1(2,2,0),E(1,1,2),F(1,2,1),(1),因为,所以,所以EF//A1B;(2)设平面A1BD的一个法向量为,则,即2y-2z=0,2x+2y=0,令x=1,则,因为,所以EF∥平面A1BD;(3)由(2),同理求出平面EFB1的一个法向量,所以平面B1EF∥平面A1BD.【解析】本题主要考查利用空间向量判断线线、线面、面面之间的平行. 建立空间直角坐标系,求出线面的方向向量与法向量,(1)由两条直线的方向向量共线,即可判断出结论;(2)由直线的方向向量与平面的法向量垂直,即可得出结论;(3)由两个平面的法向量共线,即可得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴二面角 B1-BE-F 的大小为 arccos(
2 )。 3
(4)∵ GD1 =(-1,0,2),而 GD1 n1 =-2+0+2=0,
z D1 A1 F E B1 C1
∴直线 GD1∥平面 BEFD。 (5) DD1 =(0,0,2), | n1 | 4 4 1 3 , ∴ n1 的单位向量为(
空间向量
2 2 2 0, 0 0 0, 0 设 AB a ,则 A 2 a, ,B 0,2 a, ,C 2 a, . 设 OP h ,则 P(0, 0,h) . 2 1 a , 0 , h . ∵ D 为 PC 的中点,∴ OD 4 2 2 1 PA 0, h 2 a, ,∴ OD 2 PA .
∵ PA n1 2 2 0, PA n1,又PA 平面BDE, PA // 平面BDE. (2)由(Ⅰ)知 n1 (1, 1,1) 是平面 BDE 的一个法向量, 又 n 2 DA (2,0,0) 是平面 DEC 的一个法向量. 设二面角 B—DE—C 的平面角为 ,由图可知 n1 , n 2
(2) DA =(2,0,0) ,设 DA 与面 EFG 所成的角为θ, 则 sin
∴直线 C1D 与平面 A1C1B 的所成角为 arcsin
| DA n | 4 21 4 21 = ,∴ arcsin 21 21 | DA || n |
(2)平面 A1C1B 的法向量 n =(2,1,2),平面 AA1C1C 的法向量 n ' =(2,1,0), 设二者夹角为θ ,∴ cos
∴ cos PA ,n PA ·n PA n 210 . 30
d
OC n n
(
2 2 , , 0) ( 2, 2,1) 2 2 ( 2, 2,1)
设 PA 与平面 PBC 所成的角为 , 210 ,n 则 sin cos PA . 30
210 . 30 2 2 1 2 2 1 h a, a, h (3) △PBC 的重心 G ,∴ OG , 6 a,6 a, 3 6 3 6
(3)∵ PB (2,2,2), DE (0,1,1)
假设棱 PB 上存在点 F,使 PB⊥平面 DEF,设 PF PB(0 1) , 则 PF (2 ,2 ,2 ), DF DP PF (2 ,2 ,2 2 ) ,
2 2 由 PF DF 0得4 4 2 (2 2 ) 0
DD 上的点,且 CF=2GD=2.求: (1) C 到面 EFG 的距离;
∴ PB DE 0 2 2 0, PB DE. (2)DA 与面 EFG 所成的角; (3)在直线 BB 上是否存在点 P,使得 DP//面 EFG?,若 存在,找出点 P 的位置,若不存在,试说明理由。
(3)存在点 P,在 B 点下方且 BP=3,此时 P(2,2,-3)
| n n' | 5 5 , 3 | n | | n' | 3 5
1 5 (或用二倍角公式得 arccos ) 。 9 3
DP =(2,2,-3),∴ DP n =0,∴DP//面 EFG
∴二面角 D-A1C1-B 的大小为 2arccos
2 5 2 2 2 5 ( 2) ( 2) 1
11 0
∴ PA 与平面 PBC 所成的角为 arcsin
。
OP 底面 ABC . 练 4 在三棱锥 P ABC 中,AB BC ,AB BC kPA , 点 O,D 分别是 AC,PC 的中点, (1)求证: OD ∥ 平面 PAB ; 1 (2)当 k 时,求直线 PA 与平面 PBC 所成角的大小; 2 (3)当 k 为何值时, O 在平面 PBC 内的射影恰好为 △PBC 的重心?
n1 · BE =-a+2c=0, n1 · BD =2a+2b=0,
【解析】 (1)以 D 为坐标原点,分别以 DA、DC、DP 所在直线为 x 轴、 y 轴、z 轴建立空间直角坐标系,设 PD=DC=2,则 A(2,0,0) , P(0,0,2) ,E(0,1,1) ,B(2,2,0) ,
PA (2,0,2), DE (0,1,1), DB (2,2,0)
空间向量
空间向量
例 1 在空间直角坐标系 D-xyz 中,在正方体 ABCD-A1B1C1D1 中,E、 F、G 分别是 B1C1、C1D1、AD 的中点。求: (1)异面直线 AD1 与 BE 的所成角的大小; (2)直线 AD1 与平面 BEFD 所成角的大小; (3)二面角 B1-BE-F 的大小; (4)求证:直线 GD1∥平面 BEFD; (5)求直线 GD1 与平面 BEFD 的距离。 解:设正方体的棱长为 2。则正方体各顶点的坐标分别为:A(2, 0,0),B(2,2,0),C(0,2,0),D(0,0,0),A1(2,0,2),B1(2, 2,2),C1(0,2,2),D1(0,0,2)。 ∴E(1,2,2),F(0,1,2),G(1,0,0)。 (1)直线 AD1 的一个法向量为 AD1 =(-2,0,2), 直线 BE 的一个法向量为 BE =(-1,0,2)。 设异面直线 AD1 与 BE 的所成角为θ1, ∴cosθ1= |
AD1 n1
(2) 2 0 (2) 2 1
设 n1 ( x, y, z ) 是平面 BDE 的一个法向量,
∴直线 AD1 与平面 BDFE 所成角为 arcsin
2 。 6
则由
n 1 DE 0 y z 0 得 取y 1, 得n 1 (1, 1,1). n 1 DB 0 2 x 2 y 0
(法二)∵平面 BEFD 的方程为 4 x 4 y 2 z 0 , ∴平面 BEFD 的一个法向量为 n1 =(2,-2,1)。 (下同法一) (3)∵平面 BDFE 的一个法向量为 n1 =(2,-2,1)。 平面 B1BE 的一个法向量为 n2 =(0,1,0)。 设 n1 与 n2 的夹角为φ3,∴cosφ3=
取 a=2,得 b=-2,c=1,∴平面 BDFE 的一个法向量为 n1 =(2,-2,1)。 设直线 AD1 与平面 BDFE 所成角θ2, AD1 与 n1 所成的角为φ2,则
2 sinθ2=|cosφ2|= | , | =| |= 2 2 2 2 1 6 | AD1 | | n1 | 2 0 2 2 2 1
AD1 BE | AD1 | | BE |
|=|
(2) (1) 0 0 2 2 2 02 1 02
2 2 1 2
|=
3 10 , 10
∴异面直线 AD1 与 BE 的所成角为 arccos
3 10 。 10
( 2) (法一)设平面 BDFE 的一个法向量为 n1 =(a,b,c),
∵ OG 平面 PBC ,∴OG PB . 2 1 1 0 , a , h · PB a 2 h 2 0 . 又 PB 2 ,∴ OG 6 3
∴OD ∥ PA ,∴ OD ∥平面 PAB . 1 7 (2) k ,即 PA 2a ,∴ h a, 2 2 2 7 ∴ PA 0, a 2 a, 2 1 1 , 1 , 可求得平面 PBC 的法向量 n . 7
分析:建立如图所示的直角坐标系,则 2 2 2 2 A ( , ,0) B ( , , 0) 2 2 2 2 , ,
C ( 2 2 2 2 2 2 , ,0) D ( , , 0) S (0, 0, 2) DB ( 2, 2, 0) CS ( , , 2) 2 2 2 2 2 2 , , 。 , 。
解:长方体各顶点的坐标分别为:A(1,0,0), C(0,2,0),D(0,0,0),A1(1,0,1),B1(1,2, 1),D1(0,0,1)。
D x A
EF n =0, FG n =0, x=2z,z=-2y,取 y=1,
得 n =(-4,1,-2) (1)∵ CF =(0,0,-1) , ∴C 到面 EFG 的距离为 d
∴
(0,1),此时PF PB
PF 1 3 PB,使得 PB⊥平面 DEF
1 3
1 3
即在棱 PB 上存在点 F,
练 1 在空间直角坐标系 D-xyz 中,长方体 ABCD-A1B1C1D1 中,AB=2,AD=AA1=1,求: (1)直线 C1D 与平面 A1C1B 的所成角; (2)二面角 D-A1C1-B 的大小; (3)顶点 B1 到平面 A1C1B 的距离;
z A1 1 D1 1 C1 B1 C y 2 B
解:如图,以 D 为原点建立空间直角坐标系 则 E(1,2,0),F(0,2,2) ,G(0,0,1) ∴ EF =(-1,0,2) , FG =(0,-2,-1) , 设 n =(x,y,z)为面 EFG 的法向量,则 B(1 , 2 , 0) , 1),C1(0,2,
练 3 如图,正四棱锥 S-ABCD 的高 SO=2,底边长 AB= 2 。求异面直线 BD 和 SC 之间的距离?
(3)在平面 A1C1B 上取点 B,∴ BB1 =(0,0,1), ∴点 B1 到平面 A1C1B 的距离 d
| n BB1 | |n|
=
2 。 3
练 2 如图,正四棱柱 ABCD ABCD 中,底面边长为 2,侧棱长为 3,E 为 BC 的中点,FG 分别为 CC 、
2 2 1Байду номын сангаас, , ), 3 3 3
D A x B
C
y
2 2 1 2 ∴直线 GD1 与平面 BEFD 的距离 d=(0,0,2)· ( , , )= 。▋ 3 3 3 3