北航算法设计与分析作业4
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法分析与设计作业参考答案
算法分析与设计作业参考答案《算法分析与设计》作业参考答案作业⼀⼀、名词解释:1.递归算法:直接或间接地调⽤⾃⾝的算法称为递归算法。
2.程序:程序是算法⽤某种程序设计语⾔的具体实现。
⼆、简答题:1.算法需要满⾜哪些性质?简述之。
答:算法是若⼲指令的有穷序列,满⾜性质:(1)输⼊:有零个或多个外部量作为算法的输⼊。
(2)输出:算法产⽣⾄少⼀个量作为输出。
(3)确定性:组成算法的每条指令清晰、⽆歧义。
(4)有限性:算法中每条指令的执⾏次数有限,执⾏每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩⼩到⼀定的程度就可以容易地解决;(2)该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质;(3)利⽤该问题分解出的⼦问题的解可以合并为该问题的解;(4)该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。
3.简要分析在递归算法中消除递归调⽤,将递归算法转化为⾮递归算法的⽅法。
答:将递归算法转化为⾮递归算法的⽅法主要有:(1)采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。
该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。
(2)⽤递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将⼀些递归转化为尾递归,从⽽迭代求出结果。
后两种⽅法在时空复杂度上均有较⼤改善,但其适⽤范围有限。
三、算法编写及算法应⽤分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素⽐较,冒泡排序算法的时间复杂性就是求⽐较次数与n 的关系。
(1)设⽐较⼀次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计⼀个分治算法计算⼀棵⼆叉树的⾼度。
北航201303学期算法与数据结构答案作业4
作业4单项选择题第1题假设有对角矩阵a[n][n],我们可以按行序为主将对角矩阵A的非零元素存入一个一维数组B[K]中。
给出二维数组的任一元素a[i][j]与一维数组B[K]对应的下标m的关系:()。
A、k = 2*i + jB、k = 2 * j + iC、k = 3* (i + j )D、k = i + j答案:A第2题假设有对称矩阵a[n][n],我们可以按行序为主将对称矩阵A的下三角中的元素存入一个一维数组B[K](K=n(n+1)/2)中。
给出二维数组的任一元素a[i][j]与一维数组B[K]对应的下标m的关系:()。
A、(i-1)*(j+1)=kB、(i+1)*(j+1)=kC、(i-1)*j=kD、i*(j+1)=k答案:A第3题假定M行N列的数组a是行优先存贮的,L是元素a[0][0]的存贮地址,每个元素占K个存贮单元,元素a[I][j]的地址是:()。
A、L + (I –1)* N * K +j*KB、L +( I * N +j)*KC、( I * N * K + (J –1) *KD、L +( I * M +j) * K答案:B第4题对给定的图,Prim方法与Kruskal方法都能给出最小代价生成树,针对最小代价生成树的算法,下面的说法哪一个是正确的:()。
A、Prim方法与Kruskal方法均不需要进行圈的判断B、Prim方法与Kruskal方法都需要进行圈的判断C、Prim方法需要进行圈的判断,Kruskal方法不需要进行圈的判断D、Prim方法不需要进行圈的判断,Kruskal方法需要进行圈的判断答案:D多项选择题第5题假定以单向链表方式存贮堆栈,栈顶指针变量为p,表示栈空时,下面的说法哪一个是正确的():A、p==-1B、p==0C、p==NULLD、p != NULL答案:B|C第6题下述陈述中哪一项是正确的():A、文件中能唯一标识一个记录的数据项称之为主关键字B、文件中能唯一标识一个记录的数据项组合称之为主关键字C、文件中能标识一个记录的数据项称之为主关键字D、文件中能标识一个记录的数据项组合称之为主关键字答案:A|B第7题常用的线性表存贮结构有():A、顺序存贮结构B、链表存贮结构C、队列存贮结构D、堆栈存贮结构E、顺序存贮与链表存贮混合结构答案:A|B|E第8题常用的堆栈存贮结构有():A、顺序存贮结构B、链表存贮结构C、顺序存贮与链表存贮混合结构D、指针存贮结构答案:A|B判断题第9题空串是打印后不出现任何字符的字符器。
算法设计与分析第三版第四章课后习题答案
算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。
算法思路:本题可以使用快速选择算法来解决。
快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。
具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。
2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。
3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。
4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。
5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。
6. 递归地重复上述步骤,直到找到第k小的元素。
算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。
《算法分析与设计》课后作业
《算法分析与设计》各章课后作业第一章 课后作业1. 设某算法在输入规模为n 时的计算时间为T(n)=10*2n。
若在甲台计算机上实现并完成该算法的时间为t 秒,现有一台运行速度是甲的64倍的另一台计算机乙,问在乙计算机上用同一算法在t 秒内能解决的问题的规模是多大?2.按照渐近阶从低到高的顺序排列以下表达式:4n 2,logn ,3n,20n ,2,n 2/3。
又n!应该排在哪一位?第二章 课后作业1. 用展开法求解下列递推关系:T(n)=⎩⎨⎧>+=1n )()2/(20n )1(n O n T O,写出T(n)的大O 记号表示。
2. 下面是实现在a[0]<=a[1]<=…<=a[n-1]中搜索x 的二分搜索算法,请根据二分 搜索技术在下划线处填充语句。
算法描述如下: template<class Type>public static int BinarySearch(int []a, int x, int n) { //在a[0]<=a[1]<=…<=a[n-1]中搜索 x // 找到x 时返回其在数组中的位置,否则返回-1 int left = 0; int right = n - 1; while ( ) {int middle = ;if(x == a[middle]) return ; if(x > a[middle]) left = middle + 1; else right= ; }return -1; // 未找到x}第三章课后作业1、选择题。
(1)下列算法中通常以自底向上的方式求解最优解的是()。
A、备忘录法B、动态规划法C、贪心法D、回溯法(2)备忘录方法是那种算法的变形。
()A、分治法B、动态规划法C、贪心法D、回溯法(3)矩阵连乘问题的算法可由()设计实现。
A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法2.计算题。
算法设计与分析常见习题及详解
算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。
本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。
1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。
2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。
北京大学算法设计方案与分析课期末试题
内部资料,转载请注明出处,谢谢合作。
北京大学信息科学技术学院考试试卷考试科目:算法设计与分析姓名:学号:考试时间:2009年6月9日任课教师:考场纪律1.请持学生证入场考试,并按指定座位就座;除必要的文具和教师指定的用具用书外,其他所有物品包括手机、呼机、MP3、电子词典、书籍、笔记、纸张等严禁带入座位,必须放在指定位置。
凡有试卷印制问题请向监考教师提出,不得向其他考生询问。
2.认真、诚实、独立并在规定时间内完成答卷,严禁任何形式的违纪作弊行为;否则,本答卷成绩以0分记,并根据《北京大学本科考试工作与学术规范条例》给予纪律处分。
3.提前交卷的考生不要在考场逗留,不要在门口、窗外大声喧哗。
考试结束时间到,请停止答卷,在座位等候监考教师收卷并清点完毕,方可离开考场;考题和试卷不得带出考场。
以下为试卷和答题纸,共 9 页。
一、填空题(选做5道,10分)1.用矩阵幂的方法求斐波那契数,其运行时间为()。
题号一二三四五六七八总分分数阅卷人装订线内不要答题2.对于一个可以用动态规划法求解的问题,要求问题既要满足()的特性,又要具有大量的()。
3.对于一个可以用贪心法求解的问题,不仅要求问题满足()的特性,还应证明其贪心策略的()。
4.设有n 个栈操作(PUSH 、POP 、MULTIPOP )的序列,作用于初始为空的栈S 。
不区分三种操作,则每个操作的最坏运行时间为(),平摊运行时间为()。
5.三种平摊分析的方法分别为()、()、()。
6.四后问题的搜索空间为()树;0-1背包问题的搜索空间为()树;巡回售货员问题的搜索空间为()树。
7.()法的求解目标是找出解空间树中满足约束条件的所有解,而()法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
8.回溯法一般以()优先的方式搜索解空间树,而分支限界法则一般以()优先或以最小耗费优先的方式搜索解空间树。
二、单项选择题 (10分) 1.下列关于排序算法的叙述,不正确的是?()A) 堆排序的最差情形运行时间为Θ(nlgn)B) 快速排序平均情形运行时间为Θ(nlgn) C) 任何排序算法的最差情形运行时间都不可能比Ω(nlgn)更小D) 插入排序在最好情形下的运行时间为Θ(n) 2.对于课堂讲解的线性时间内找第i 小的元素的算法,()下列叙述中不正确的是?A) 算法第一步中可以按每五个元素一组找中位数;B) 算法第一步中可以按每七个元素一组找中位数;B) 算法第一步中不能按每三个元素一组找中位数;D) 如果要求的n 个元素的中位数,则中位数一定是第一步中找到的中位数中的某一个。
算法分析与设计作业
最接近点对问题问题此问题分为一维,二维,三维的情况1. 一维: 给定直线上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这个问题比较简单,是引出二维解法的一个引子,因为一维的直线上的点,相邻点的距离肯定小于相隔的点的距离,只需要考虑相邻点即可。
2. 二维:给定平面上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这是我们这一问题的重点3. 三维:给定空间上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,此问题是二维的解法的复杂化,具体可以在飞机航线等问题上运用,但在此不多做介绍。
基本思想由于该问题的基本解法是去考察每个点和其他所有点的距离。
因此它的时间复杂度是2()O n ,这样做的效率太低,我们就要去寻找一个更高效的办法:分治法。
1. 因二维的情况太过复杂,先考虑一维的情况中,可以用分治法对其进行分部计算: 把直线分成两部分, 1s 2s ,分别求出其最接近点的距离1d 2d 。
但分割开的地方的两点距离可能小于这两个值,这三个值进行比较之后,得到最后结果。
2. 鉴于此,二维的也可以用此方法进行计算:把待计算的点s 分成两部分1s 2s ,分别求出其最接近点的距离1d 2d 。
但1d 2d 最小的未必是s 中的最小距离d ,它有可能是1s 中的一个点和2s 中的一个点组成的最接近点对。
所以还要考虑1s 中的所有点到2s 中的每一个点的距离,一一比较之后得出一个最小值,再和1d 2d 比较,这就得出了最后结果。
3. 接下来是具体算法实现的步骤:1. 把待计算的点s 分成两部分1s 2s :重要的如何去划分,这里采用在二维平面上的中线(用横坐标的最小值加上最大值的平均数)来划分。
2. 分别求出其最接近点的距离1d 2d :这可以用一个递归来完成。
3. 计算1s 中的所有点到2s 中的每一个点的距离:这个问题是此问题的关键。
北航数值分析计算实习题目一 幂法 反幂法 求矩阵特征值
《数值分析》计算实习题目第一题:1. 算法设计方案(1)1λ,501λ和s λ的值。
1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。
2)使用反幂法求λs ,其中需要解线性方程组。
因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。
(2)与140k λλμλ-5011=+k 最接近的特征值λik 。
通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。
(3)2cond(A)和det A 。
1)1=nλλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。
2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。
由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。
2.全部源程序#include <stdio.h>#include <math.h>void init_a();//初始化Adouble get_an_element(int,int);//取A 中的元素函数double powermethod(double);//原点平移的幂法double inversepowermethod(double);//原点平移的反幂法int presolve(double);//三角LU 分解int solve(double [],double []);//解方程组int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角U 数组double (*l)[502]=new double[502][502];//单位下三角L 数组double a[6][502];//矩阵Aint main(){int i,k;double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;double lambda[40];init_a();//初始化Alambdat1=powermethod(0);lambdat2=powermethod(lambdat1);lambda1=lambdat1<lambdat2?lambdat1:lambdat2;lambda501=lambdat1>lambdat2?lambdat1:lambdat2;presolve(0);lambdas=inversepowermethod(0);det=1;for(i=1;i<=501;i++)det=det*u[i][i];for (k=1;k<=39;k++){mu[k]=lambda1+k*(lambda501-lambda1)/40;presolve(mu[k]);lambda[k]=inversepowermethod(mu[k]);}printf("------------所有特征值如下------------\n");printf("λ=%1.11e λ=%1.11e\n",lambda1,lambda501);printf("λs=%1.11e\n",lambdas);printf("cond(A)=%1.11e\n",fabs(lambdat1/lambdas));printf("detA=%1.11e \n",det);for (k=1;k<=39;k++){printf("λi%d=%1.11e ",k,lambda[k]);if(k % 3==0) printf("\n");} delete []u;delete []l;//释放堆内存return 0;}void init_a()//初始化A{int i;for (i=3;i<=501;i++) a[1][i]=a[5][502-i]=-0.064;for (i=2;i<=501;i++) a[2][i]=a[4][502-i]=0.16;for (i=1;i<=501;i++) a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); }double get_an_element(int i,int j)//从A中节省存储量的提取元素方法{if (fabs(i-j)<=2) return a[i-j+3][j];else return 0;}double powermethod(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0;//设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;for (x1=1;x1<=501;x1++){u[x1]=0;for (int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(get_an_element(x1,x2)-offset):get_an_element(x1,x2))*y[x2] ;}prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}double inversepowermethod(double offset)//反幂法{int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0; //设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;solve(u,y);prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];beta=1/beta;if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);int presolve(double offset)//三角LU分解{int i,k,j,t;double sum;for (k=1;k<=501;k++)for (j=1;j<=501;j++){u[k][j]=l[k][j]=0;if (k==j) l[k][j]=1;} //初始化LU矩阵for (k=1;k<=501;k++){for (j=k;j<=min(k+2,501);j++){sum=0;for (t=max(1,max(k-2,j-2)) ; t<=(k-1) ; t++)sum=sum+l[k][t]*u[t][j];u[k][j]=((k==j)?(get_an_element(k,j)-offset):get_an_element(k,j))-sum;}if (k==501) continue;for (i=k+1;i<=min(k+2,501);i++){sum=0;for (t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(get_an_element(i,k)-offset):get_an_element(i,k))-sum)/u[k][k];}}return 0;}int solve(double x[],double b[])//解方程组{int i,t;double y[502];double sum;y[1]=b[1];for (i=2;i<=501;i++){sum=0;for (t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for (i=500;i>=1;i--){sum=0;for (t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}int max(int x,int y){return (x>y?x:y);}int min(int x,int y){return (x<y?x:y);}3.计算结果结果如下图所示:部分中间结果:给出了偏移量(offset),误差(err),迭代次数(k)4.讨论迭代初始向量的选取对计算结果的影响,并说明原因使用u[i]=1(i=1,2,...,501)作为初始向量进行迭代,可得出以上结果。
算法设计与分析大作业
算法Flowshop的主要计算时间花在对作业集的排序上。在这里,我们使用冒泡排
序法(BubbleSort),因此,在最坏情况下算法FlowJob所需要的计算时间为O(nlog n)。
所需要的空闲显然是O(n)。
.贪心算法解多机调度冋题
1、问题描述
多机调度问题要求给出一种作业调度方案, 使所给的n个作业在尽可能短的时间内由m台机 器加工处理完成。约定,每个作业均可在任何一台机器上加工处理, 但未完工前不允许中断处理。 作业不能拆分成更小的子作业。这个问题是NP完全问题,到目前为止还没有有效的解法。对于这 一类问题,用贪心选择策略有时可以设计出较好的近似算法。
{int i;
Jobtype *d = new Jobtype[ n];
for( i=0; i<n; i++)
{
d[i].key = a[i]>b[i]?b[i]:a[i];〃按Johnson法则分别取对应的b[i]或a[i]值作为关键字
d[i].job=a[i]v=b[i];〃给符合条件a[i]<b[i]的放入到N1子集标记为true
2、算法分析
贪心算法只需按顺序以数组方式提供ห้องสมุดไป่ตู้作业的加工时间和机器的台数;求出作业的个数,
若小于机器台数,就将作业逐个分配给就近的机器,所需要的加工时间,即为最长作业所需 时间。
若作业数大于机器台数,将作业按加工时间的多少降序排序,以机器数建立最小堆,先将 前m个作业分配给m个机器,最小堆顶是最小的元素(即m个作业中加工时间最少的作业), 将其移出并加上后续作业的加工时间,再插入堆,这时会改变原来的状态,升到堆顶的机器 力卩工总时间最少,它再移出加后续作业的加工时间,在插入堆,依此类推,直到全部作业结 束。堆中的最大值就是完成所有作业所需的最短时间。
算法设计与分析课后习题解答
C1*(g1+g2)<= t1(n)+t2(n) <=c2(g1+g2)—----(3)
不失一般性假设max(g1(n),g2(n))=g1(n)。
显然,g1(n)+g2(n)<2g1(n),即g1+g2〈2max(g1,g2)
又g2(n)〉0,g1(n)+g2(n)>g1(n),即g1+g2>max(g1,g2).
算法设计与分析基础课后练习答案
习题1.1
4。设计一个计算 的算法,n是任意正整数。除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求
//输入:一个正整数n 2
//输出:。
step1:a=1;
step2:若a*a<n转step 3,否则输出a;
step3:a=a+1转step 2;
5. a.用欧几里德算法求gcd(31415,14142)。
b。该算法稳定吗?
c.该算法在位吗?
解:
a。该算法对列表”60,35,81,98,14,47”排序的过程如下所示:
b.该算法不稳定.比如对列表"2,2*”排序
c.该算法不在位.额外空间for S and Count[]
4.(古老的七桥问题)
第2章
习题2。1
7。对下列断言进行证明:(如果是错误的,请举例)
Else return A[n—1]
a.该算法计算的是什么?
b.建立该算法所做的基本操作次数的递推关系并求解
解:
a.计算的给定数组的最小值
b.
9。考虑用于解决第8题问题的另一个算法,该算法递归地将数组分成两半。我们将它称为Min2(A[0..n-1])
《算法设计与分析》试卷及答案
《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。
北京航空航天大学算法设计与分析试题答案(软件)
2006-2007学年第二学期《计算机算法设计与分析》试题院系:软件学院专业:软件工程年级:2004级一.简答题(共10分)略二.计算题(35分)1. (6 分)对下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)= Q(g(n))或f(n)=8 (g(n))。
(1)f(n)=3n, g(n)=2n2(2)f(n)=log n + 5, g(n)=log n(3)f(n)=log n, g(n尸J n咨:(1)f(n) = Q(g(n)) (2 分)(2)f(n) = 9(g(n)) (2 分)(3)f(n) = O(g(n)) (2 分)2. (8分)采用动态规划策略,计算a= {5,-37-4,-5,9,-2,10,-3,2}的最大子段和, 并给出这个最大子段和的起始下标和终止下标。
[设数组a中的元素下标从1开始。
]要求给出过程。
答:b[1]=5;b[2]=max{b[1]+a[2] , a[2]}=max{2,-3}=2b[3]=max{b[2]+a[3] , a[3]}=max{9,7}=9b[4]=max{b[3]+a[4] , a[4]}=max{5,-4}=5b[5]=max{b[4]+a[5] , a[5]}=max{0,-5}=0b[6]=max{b[5]+a[6] , a[6]}=max{9,9}=9b[7]=max{b[6]+a[7] , a[7]}=max{7,-2}=7b[8]=max{b[7]+a[8] , a[8]}=max{17,10}=17b[9]=max{b[8]+a[9] , a[9]}=max{14,-3}=14b[10]=max{b[9]+a[10] , a[10]}=max{16,2}=16(上述每两行1分,共5分)最大子段和为17 (1分)(若数组下标从1开始)起始下标:6 (1分),终止下标:8 (1分)(若数组下标从0开始)起始下标:5 ( 0.5分),终止下标:7 (0.5分)3 .(11分)设有3件工作分配给3个人,将工作i分配给第j个人所花的费用为C ij,现将为每一个人都分配1件不同的工作,并使总费用达到最小。
算法设计与分析_北京航空航天大学中国大学mooc课后章节答案期末考试题库2023年
算法设计与分析_北京航空航天大学中国大学mooc课后章节答案期末考试题库2023年1.对如下所示连通无向图【图片】,其最小生成树的权重为【图片】参考答案:232.对如下所示有向图,从【图片】点开始进行深度优先搜索(DFS),搜索时按照字典序遍历某一节点的相邻节点。
在得到的深度优先搜索树中,包含如下哪些类别的边(多选)【图片】参考答案:树边_前向边_后向边_横向边3.在0-1背包问题中,若背包容量为20,5个物品的体积分别为【图片】,价格分别为【图片】。
则该背包能容纳物品的最大总价格为____参考答案:254.设计动态规划算法的一般步骤为____参考答案:问题结构分析→递推关系建立→自底向上计算→最优方案追踪5.给定两个序列分别为“algorithm”和“glorhythm”。
则以下分别为两序列的最长公共子序列和最长公共子串的选项是____参考答案:gorthm thm6.在最长公共子串问题的递推式中,【图片】表示____参考答案:和中以和结尾的最长公共子串的长度7.在支持插入、删除、替换三种操作的最小编辑距离问题中,用【图片】数组来记录编辑方案。
则【图片】数组中的"L","U","LU"分别代表哪种操作___参考答案:插入删除替换/空操作8.字符串“algorithm”到字符串“altruistic”的最小编辑距离为___参考答案:69.数组【图片】中的逆序对个数为____参考答案:510.在上题中,均不在搜索树中的边有哪些____(多选)参考答案:_11.在扇形图(Fan Graph)【图片】中,其邻接表和结构如下第一张图所示。
从顶点【图片】开始进行广度优先搜索(BFS),搜索时按照邻接表顺序遍历某一节点的相邻节点。
得到搜索树如下第二张图,该搜索树并未画全,应从虚线中选择____补全。
(多选)【图片】【图片】参考答案:①_②12.同上题,在扇形图(Fan Graph)【图片】中,其邻接表和结构如下图所示。
算法分析与设计作业
算法分析与设计作业
一、冒泡排序
1.1冒泡排序算法
冒泡排序(Bubble Sort)也称为沉底排序,算法的特点是从数组头
部到尾部进行多次遍历,当遍历到一些数时,如果比它前面的数大就交换。
比较 n 个数大小,可以进行 n-1 次交换。
冒泡排序的时间复杂度为
O(n^2),空间复杂度为O(1)。
算法步骤如下:
(1)比较相邻的元素,如果第一个比第二个大,就交换他们两个的
位置;
(2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后
一对,这样在最后循环结束时,最大的数会移动到最后;
(3)重复第一步,直到所有元素排序完成。
1.2冒泡排序算法的优化
冒泡排序的时间复杂度为O(n^2),为提高算法的速度,可以对冒泡
排序算法进行优化。
算法在每一轮排序后会判断是否有可以交换的数据,如果没有就表明
已经全部排序完成,此时可以终止排序。
相比传统的算法,优化后的算法可以大大减少不必要的循环,提高排
序的速度。
二、快速排序
2.1快速排序算法
快速排序(Quick Sort)是一种分治策略,将大问题分解为小问题,同时在排序过程中不断的拆分问题,最终完成排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn)。
算法步骤如下:。
算法设计和分析大作业答案.docx
算法设计技术与方法大作业学院________________专业______________姓名__________________________学号_______________________任课老师多项式求值的四种方法1.问题背景分别实现多项式求值的四种运算,若针对不同规模的输入值a,各算法的运行时间,问题规模n 分别取10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000 时绘制四种算法运行时间的比较图。
2.程序设计分析题意可知,该题要用四种方法实现对多项式的求值计算,每种方法取从10-100000 不同的规模。
本文采用直接代入法和递归法。
而其中递归法分三类不同思路进行递归:①只3)=只-13) +时";。
, Q = 1, Q = Qx, P = P + a t Q;②P = a③3'3)=《3)工+。
"—,。
3.程序清单具体编程如下:clc;close all;clear all;n=[10 50 100 150 200 300 400 500 10000 20000 50000 100000];x=5;for i=l:12a=rand(l,(n(i)+l));%产生多项式,最高次幕为n(i)tic;forj=l:n(i); %直接代入法s(j)=a(j)*x A(j);endpl(i)=a(n(i)+l);for j=l:n(i);pl(i)=s ①+pl ⑴;endtl(i)=toc;tic;p2(i)=0;for j=l:(n(i)+l)p2(i)=p2⑴+a(j)*xWl); % 递归法1endt2(i)=toc;tic;p3(;i)=0;q=l;for j=2:(n (i)+l)q=q*x;p3(i)=p3(i)+a(j)*q; % 递归法2endt3(i)=toc;tic;p4 ①=0;for j=l:n(i);p4(i)=x*p4(i)+a(n⑴+l-j); % 递归法3endt4(i)=toc;endfigure(l);subplot(2,2,l);h=semilogx(n,t 1);set(h,'linestyle','-'「linewidth'』,'marker','s','color','g','markersize',6); xlabel(问题规模(n ));ylabel(运行时间(s),);title(方法一);grid on;subplot(2,2,2);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color','b','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法二);grid on;subplot(2,2,3);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color',k,'markersize',6); xlabel(,问题规模(n ),);ylabel(运行时间(s),);title(方法三);grid on;subplot(2,2,4);h=semilogx(n,t2);set(h,'linestyle','-',Tinewidth', 1,'marker','s','color',、','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法四);grid on;figure(2);g=semilogx(n,tl,'g+',n,t2,'bx',n,t3,'k*',n,t4,To‘);legend(方法一7方法二7方法三,,方法四);set(g,'linestyleV-','linewidth', 1,'markersize',8);xlabel('n=10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000'); ylabel。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在什么情况下性能较好,什么情况下性能较差。
2、设计一个算法,用于在一个已排序的整数数组中查找特定元素。
要求算法的时间复杂度为 O(log n)。
3、比较贪心算法和动态规划算法的异同,并举例说明它们在实际问题中的应用。
参考答案一、冒泡排序算法的分析冒泡排序(Bubble Sort)是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
1、时间复杂度最坏情况:数组完全逆序,需要进行 n(n 1) / 2 次比较和交换操作,时间复杂度为 O(n^2)。
最好情况:数组已经有序,不需要进行交换操作,只需要进行 n 1 次比较,时间复杂度为 O(n)。
平均情况:时间复杂度也为 O(n^2)。
2、空间复杂度冒泡排序只在交换元素时使用了临时变量,空间复杂度为 O(1),是一个原地排序算法。
3、性能分析性能较好的情况:当数组规模较小且接近有序时,冒泡排序的性能相对较好。
因为在这种情况下,比较和交换的次数相对较少。
性能较差的情况:当数组规模较大且无序程度较高时,冒泡排序的性能会非常差。
因为需要进行大量的比较和交换操作,时间消耗很大。
例如,对于数组 2, 1, 3, 5, 4,冒泡排序需要经过多次比较和交换才能将其排序为 1, 2, 3, 4, 5。
而对于已经有序的数组 1, 2, 3, 4, 5,冒泡排序只需要进行较少的比较操作就能确定数组已经有序。
二、在已排序数组中查找特定元素的算法设计对于在已排序的整数数组中查找特定元素,我们可以使用二分查找(Binary Search)算法。
二分查找的基本思想是:将数组从中间分成两部分,比较目标元素与中间元素的大小,如果目标元素小于中间元素,则在左半部分继续查找;如果目标元素大于中间元素,则在右半部分继续查找;如果目标元素等于中间元素,则查找成功。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 题目1
如图表1,建立图G =(V,E )。
下半部分共18个节点,看作V a ,上半部分可以看作有点集合{V 2,V 3,V 4,…,V 18},其中Vi 表示该集合中有⌊18i ⌋节点,且表示该集合中每个节点和下半部分的V a 中的i 个点有边。
图表 1图G
由此,按照题意,V a 中顶点最大度数为17,所以首先选择V 18,然后V a 中最大顶点度数会少1,因此选择V 17,不断计算下去,最终,会选择{V 2,V 3,V 4,…,V 18}整个集合,而不是V a 。
即选取的点为
m =∑⌊18i ⌋18
i=2=9+6+4+3+3+2+2+2+9∗1=40 由图可以很容易知道图G 的最小顶点覆盖为A ,即共m ∗=18个点。
所以计算得到:
R =max (m m ∗,m ∗m )=4018
>2 因此,该贪心算法不是2-近似算法。
2.题目2
(1)
该问题的判定问题:
是否存在一个调度方案A(1),A(2),…,A(m),使得最大负载max i T i≤T。
证明其为NP-难问题:
1.证明该问题是NP问题,即多项式时间内可以验证结果。
如果我们找到了一个分配调度方案A(1),A(2),…,A(m),直接计算所有机器负载,然后与给定负载T进行比较即可,验证的时间复杂度是O(n),即在多项式时间内可以完成。
2.找到一个NPC问题Q,使得Q≤题目描述问题(最小工期分配调度问题)。
假设Q为partition problem,设其中一个实例为I={S},S表示p个数的集合,即S= {K1,K2,…,K p},给定整数d,请问将S集合中的数字分到两个集合中去,是否存在一种分配方案使得两个集合中元素的和的差值的绝对值不大于d,其中d=0。
根据题目,当最小工期分配调度问题中,及其数量m=2,作业数量n=p,作业时间t i= K i,则可以构造一个最小工期调度实例I′={m,n,t1,t2,…,t n,T}。
因为上述两个问题的解都对应一种情况,即问题I有解当且仅当问题I′有解。
综上所述,最小工期分配的调度问题是NP难问题。
(2)
贪心算法:
想法:将所有作业时间按照从大到小排序,依次将作业分配给机器,每次选择负载最小的机器进行分配,直到所有作业分配完毕。
排序的时间复杂度可以计算为O(n2),符合多项式时间贪心算法的要求。
证明该算法为2-近似算法:
1.当n≤m时,将所有的作业依次分配给机器,此时解就是最优解,即T∗=T=max(t j)
2.当n>m时,考虑最大负载的机器分配的最后一个任务为j∗
a)若j∗=1,即最大负载的机器为T=max(t j),则有T∗=T=max(t j)
b)若j∗≠1,有:
T−t j∗≤1
m
∑T k
m
k=1
=
1
m
∑t k
n−{j∗}
k
≤
1
m
∑t k
n
k
≤T∗
即
T≤T∗+t j∗因为t j∗≤T∗,所以有T≤2T∗,即
T
T∗
≤2综上所述,该贪心算法是2-近似算法。