第三章空间数据模型第3节矢量数据模型

合集下载

地理信息系统考点整理

地理信息系统考点整理

第一章绪论:1. 基本概念地理数据:各种地理特征和现象间关系的数字化表示。

(地理数据是与地理环境要素有关的物质的数量、质量、分布特征、联系和规律等的梳子、文字、图像和图形的总称。

)地理信息:有关地理实体和地理现象的性质、特征和运动状态的表征和一切有用的知识,是对表达地理特征和地理现象之间关系的地理数据的解释(特征:空间、时间、属性)地理信息系统:在计算机软、硬件系统支持下,对整个或部分地球表层(包括大气层)的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

2. GIS的定义:即地理信息系统(Geographic Information System或Geo—Information system,GIS)有时又称为“地学信息系统”或“资源与环境信息系统”。

它是一种特定的十分重要的空间信息系统。

它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

3. GIS由哪几部分组成?①硬件系统:输入设备、处理设备、存储设备和输出设备②软件系统:GIS支撑软件、GIS平台软件、GIS应用软件③网络:局域网、广域网、无线网络、Internet/Intranet/Extranet;主要作用信息传输④空间数据:是指地球表面空间位置为参照的自然、社会和人文景观数据⑤人员4. GIS的主要功能有哪些①空间数据的采集和输入②空间数据的编辑与管理③空间数据的处理与转换④空间查询与空间分析⑤空间数据的显示与输出应用功能:包括资源管理、区域规划、国土监测、辅助决策第二章1.地理空间数据的描述有哪些坐标系?相互的关系是什么?2.我国常用地图投影,各种投影的适用性1.高斯-克里格投影:横轴切圆柱等角投影(1:50万以上)2.横轴墨卡托投影(UTM,横轴割圆柱等角投影)3.兰勃特等角投影(正轴等角割圆锥投影)(1:100万以下)我国规定1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万比例尺地形图,均采用高斯投影。

第三章 矢量数据模型

第三章  矢量数据模型

路 面材 料 柏油 柏油 柏油 混凝土 混凝土 柏油
宽度 48 48 48 60 60 32
行车道数 道路名称 4 4 4 4 4 2 解放路 珞瑜路 中北路 胜利路 中山路 鲜花路
2.2 基本空间对象的矢量表示
地理实体的空间特 征抽象为点、线、 面、体 在二维图形中,矢 量数据模型用点、 线、面等几何对象 来表示简单的空间 要素,三种空间对 象的区别在于维度 与性质。
Figure 3.10 A polygon coverage, shown in a, has topological errors. Each small square symbol represents an error caused by lines that do not meet correctly. The shapefile, shown in b, is converted from the polygon coverage.
矢量数据结构(vector ) ——适合表达离散要素
108
道2
道路 河流
道 A1
218
地質

山 165 庫 水
111 89
植被
1.3.2 基于栅格模型的数据结构
栅格数据结构以一定方式把整个空间区域分成若干 规则的格网区(通常是正方形)。格网的大小是预 先设好的,每个栅格的大小代表定义的空间分辨率。 这种用格网(像元)阵列方式表达图件的每一点的 位置及其属性的数据表达方式,称为栅格结构 地理实体的位置用它们占据的栅格行、列号来定义。 栅格(网格)的大小取决于所需空间信息的精度, 栅格的值代表该位置的状态。
通过记录坐标的方式尽可能精确地表示地理实体, 即地理实体的形状和位置是由一组所在的坐标参 考系中坐标确定的。矢量数据结构是人们较为习 惯的一种表示空间数据的方法 在GIS中,地理实体的空间特征首先抽象为点、线、 面、体四种基本类型,而这些特征可以用颜色、 符号、注记来区分,并由图例、图符和描述性文 本来解释。

GIS地理信息系统空间数据结构

GIS地理信息系统空间数据结构
场模型表示了在二维或者三维空间中被看作是连续变 化的数据。
网络模型表示了特殊对象之间的交互,如水或者交通 流。
要素(对象)模型
基于要素的空间模型强调了个体现象, 该现象以独立的方式或者以与其它现象之间的 关系的方式来研究。任何现象,无论大小,都 可以被确定为一个对象(Object),假设它可 以从概念上与其邻域现象相分离。一个实体必 须符合三个条件: 可被识别; 重要(与问题相关); 可被描述(有特征)。
场模型可以表示为如下的数学公式:
z : s z ( s ) 上式中,z为可度量的函数,s表示空间中的位置,因
此该式表示了从空间域(甚至包括时间坐标)到某个 值域的映射。
空间数据模型与结构—对象模型与场模型比较
对象模型和场模型的比较
现实世界
对象模型 选择实体 它在哪里 数据
场模型 选择一个位置
指图形保持连续状态下变形,但图形关系
不变的性质。
拓扑变换
(橡皮变换)
将橡皮任意拉伸,压缩,但不能扭转或折叠。
非拓扑属性(几何) 两点间距离
拓扑属性(没发生变化的属性) 一个点在一条弧段的端点
一点指向另一点的方向 一条弧是一简单弧段(自身不相交)
弧段长度、区域周长、 一个点在一个区域的边界上
面积 等
一个点在一个区域的内部/外部
(x8,y8), (x17,y17), (x16,y16),
22 (x15,y15),(x14,y14) ,(x13,y13),
21
(x12,y12), (x11,y11),(x10,y10),(x1,y1)
6
20
C
3
5
18
19
4
(x24,y24),(x25,y25),(x26,y26), (x27,y27),(x28,y28),(x29,y29),(x30,y30)

第3章 空间数据模型

第3章 空间数据模型

*通过描述小面块的几何形态、相邻关系及面块内属性 特征的变化来建立空间数据的逻辑模型;
*小面块之间不重叠且能完整铺满整个地理空间; *根据面块的形状,镶嵌数据模型可分为 规则镶嵌数据模型 不规则镶嵌数据模型
规则镶嵌数据模型
不规则镶嵌数据模型
TIN和Voronoi多边形数据模型
Voronoi 图又称为Dirichlet ( tessellation) ,其概念由 Dirichlet 于1850 年首先提出; 1907 后俄国数学家 Voronoi 对此作了进一步阐述,并提出高次方程化简; 1911 年荷兰气候学Thiessen为提高大面积气象预报 的准确度,应用Voronoi 图对气象观测站进行了有效 区域划分。因此在二维空间中,Voronoi 图也称为泰 森多边形。
2 作为两个面域之间的一个边界。
3 作为一个面域特征,精确表达河流的堤岸、辫 状河道以及河流上的运河。
4 作为一条曲线以构成表面模型上的沟槽。根据 地表上河流的路径,可以算出其横截面、落差度、 排水流域以及在预测降雨下的洪水爆发可能性。
针对真实的世界,每一个人都在创建他 自己的主观模型。GIS的观点是为真实世 界建立一个通用的模型。
泰森(Thiessen)多边形的特点: 1 组成多边形的边总是与两相邻样点的连线垂直; 2 多边形内的任意位置总是离该多边形内样点的距 离最近,离相邻多边形内样点距离远; 3 每个多边形内包含且仅包含一个样点。
(五)面向对象数据模型
为了有效地描述复杂的事物或现象,需要 在更高层次上综合利用和管理多种数据结构 和数据模型,并用面向对象的方法进行统一 的抽象。
空间逻辑数据模型作为概念模型向 物理模型转换的桥梁,是根据概念模型 确定的空间信息内容,以计算机能理解 和处理的形式,具体地表达空间实体及 其关系。

第三章 矢量数据模型

第三章  矢量数据模型

3.3.2 拓扑矢量数据
• 拓扑数据模型定义:不仅表达几何位置和属 性,还表示空间拓扑关系的矢量数据模型。 • 拓扑关系具体可由4个关系表来表示:
– (1)结点—弧段关系 – (2)弧段—结点关系 – (3)弧段—多边形关系 – (4)多边形—弧段关系
结点-弧
1
A b a 3 2
c
B e D 6 C 5 7
线:位置: (x1,y1),(x2,y2),„,(xn,yn) 属性:符号—形状、颜色、尺寸
面:位置: (x1,y1),(x2,y2),„,(xi,yi),„,(xn,yn) 属性:符号变化 等值线

抽象的点, 有位置,无宽度和长度;
美国佛罗里达洲地震监测站2002年9月该洲可 能的500个地震位置
1)关联性
• 关联性: 不同 类要素之间关 系
– 结点与弧段 如V9与L5,L6,L3 – 多边形与弧段 如P2与L3,L5,L2
2)邻接性
• 邻接性:同类元素 之间关系
– 多边形之间、结 点之间。 – 邻接矩阵 : 重叠:-- 邻接:1 不邻接:0
P1 P2 P3 P4 P -1 1 1 P2 1 -1 0 P3 1 1 -0 P4 1 0 0 --
5 6
表中数字前负号为相反方向
7
B

空间拓扑关系表达:面与弧
1
A b a 3 2 c B
多边形-弧拓扑
e
D 7
面号
6
弧号 -1,-2,3 2,-7,5,0,-6 -3,-5,4 6
A B
C
5
4
d
a: 结点号 1: 弧段号
A: 多边形号 弧段数字化方向
C D
表中数字前负号为相反方向

3 空间数据模型

3 空间数据模型

00090770
06907777
09007770
09007770
90000000
(a)点、线、面数据
(b)栅格表示
点、线、面数据的栅格结构表示
• 栅格数据类型
– 常用的栅格数据类型包括卫星影像、数字高程 数据、数字正射影像、数字扫描地图和数字栅 格图形。
• 栅格数据编码
– 直接栅格编码、链式编码、游程长度编码、四 叉树编码
– “橡皮板几何学”:可以设想一块高质量的橡皮板, 它的表面是欧式平面,这块橡皮可以任意弯曲、拉伸 、压缩,但不能扭转和折叠,表面上有点、线、多边 形等组成的几何图形。
• 拓扑元素:
– 点:
• 孤立点、线的端点、面的首尾点、链的连接点
– 线:
• 两结点之间的有序弧段,包括链、弧段和线段
– 面:
• 若干弧段组成的多边形
➢ 特征 无拓扑关系,主要用于显示、输出及一般查询 公共边重复存储,存在数据冗余,难以保证数据独立性 和一致性 多边形分解和合并不易进行,邻域处理较复杂; 处理嵌套多边形比较麻烦
➢ 适用范围: 制图及一般查询,不适合复杂的空间分析
3.4.2.2 拓扑数据结构
• 不仅表达几何位置和属性,还表示空间关 系
– 拓扑关系:描述空间对象的邻接、关联、连通和包含 等
– 空间方位关系:描述空间对象在空间上的排列次序, 如前后、左右、东、西、南、北等。
– 空间度量关系:描述空间对象之间的距离等。
• 拓扑关系
– 拓扑(Topology)一词来自于希腊文,意思是形状的研究 。
– 拓扑学是几何学的一个分支,研究在拓扑变换下能够 保持不变的几何属性—拓扑属性。
• 属性特征
– 属性特征也称为专题特征或功能特征,通过属性数据 表达空间实体内在的性质和相关关系。

4第三章空间数据模型(第三节2矢量数据处理)

4第三章空间数据模型(第三节2矢量数据处理)

(2)定位不准确产生的数字化错误
——地物位置不准确
——个别点位置不准 确
2.常见数字化错误
1)伪节点 ——伪节点使一条完整的线变成两段。 通常原因: 未能一次录入完毕一条线。
2)悬挂节点
——只与一条线相连接的节点。 悬挂节点主要情形: 多边形不封闭
不及和过头
节点不重合
3)“碎屑”多边形 因多变形重叠边界处理不当产生的零碎多边形。
(二)图形拼接
1.必要性 当对底图进行数字化后,由于图幅比较大或采 用小型数字化仪、扫描时,难以将研究区域的 底图以整幅的形式来完成 。
2.拼接处理方法
点状 ——直接合并图层 线状 ——合并图层
——再粘连
面状 ——合并图层 ——粘连线条 ——拓扑处理
3.边缘不匹配情况的处理 二幅图进行拼接时一般会出现边缘不匹配的情况。
3)“碎屑”多边形 产生原因: ——一般由于重复录入(前后两次录入同一 条线的位置不完全一致)引起。
——用不同比例尺的地图进行数据更新。
4)不正规的多边形
——拓扑错误的多变形。
4)不正规的多边形
原因:
由于输入时点的次序倒置或者位置不准。 后果: 在进行拓扑生成时,同样会产生“碎屑”多边 形。
5)线段锯齿状
3.边缘不匹配情况的处理 第一种方法 ——修改空间数据库中点和矢量的坐标,以维 护数据库的连续性; 第二种方法
——先对准两幅图的一条边缘线,然后再调 整其它线段使其取得连续。
拼接
(三)坐标变换
1.必要性
(1)输入的底图是照片底图,而输出则要按一 定比例的矢量方式 (2) 输入的地图是一种投影,而要求输出的 地图产物是另一种投影
——线实体之间的连接关系

GIS复习题汇总

GIS复习题汇总

地理信息系统掌握要点集锦第一章绪论:1.基本概念:地理数据:各种地理特征和现象间关系的数字化表示地理信息:有关地理实体和地理现象的性质、特征和运动状态的表征和一切有用的知识,是对表达地理特征和地理现象之间关系的地理数据的解释。

地理信息系统(Geographical Information System,简称GIS):在计算机软、硬件系统支持下,对整个或部分地球表层(包括大气层)的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

2.GIS的定义:同上3.如何理解GIS?1) GIS的物理外壳是计算机化的技术系统2)GIS的操作对象是空间数据3)GIS的技术优势在于它的空间分析能力4)GIS与地理学、测绘学联系紧密System(GIS)5)Geographical Information Science(GISci)4.GIS在信息系统中的地位与分类5.GIS由哪几部分组成系统软件、系统硬件、空间数据、用户(系统开发、管理和使用人员)6.GIS的主要功能有哪些?空间数据采集、空间数据处理与编辑、空间数据存储与管理、空间查询与分析、空间信息输出7. GIS 与相关学科之间的关系GIS 具有多学科交叉的特征,它既要吸取诸多相关学科的精华和营养,并逐步形成独立的边缘学科,又将被多个相关学科所运用,并推动他们的发展。

与之联系最为紧密的是地理学、制图学、计算机、测绘与遥感。

第二章 地学基础:1、基本概念:(1)地球椭球:假想的与平均海水面重合并向陆地衍生包围整个地球的椭球体。

(2)大地体:由大地水准面所包围的地球形体,称为大地体(3)地图投影:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。

即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。

(4)高斯—克吕格投影:简称高斯投影,亦称等角横切椭圆柱投影。

(5)横轴墨卡托投影(UTM ):是一种横轴圆柱等角投影。

北师大地理信息系统课件03空间数据模型

北师大地理信息系统课件03空间数据模型

因此,最好的通用数据模型是不存在的,数据模型优劣取决于 你的需要,使用数据的方式和目的才是决定数据模型优劣的标 准。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子:
河流作为组成网络的一系列要素。每条线段都拥有流量、容量和其他属性 。这时可以使用线性网络模型(几何网络)来分析水文流量或者船务运输 等。
空间事物或现象 选择、综合、简化和抽象
概念世界
数据世界 (计算机)
概念模型 Conceptial Model
最高层
编码、表达、建立空间关系
逻辑数据模型 Logical Data Model
中间层
数据结构对数据进行组织
物理数据模型 Physical Data Model
最底层
信息
11 地理空间数学基础
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子: 即使在同一数据模型中,每种空间数据也有不同的表达方式。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据概念模型类型
现有GIS中常用的空间数据概念模型主要有三个: 场(Field)模型:强调空间要素的连续性
地图使用者的认识模型
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
维度世界:度 量语言
地理空间世 界:GIS 语言
概念世界:自 然语言
现实世界:基 本语言
地理空间数学基础
对现实世界的抽象
项目世界: 信息团体
点世界:坐标 几何
几何世界:WKT
OpenGIS的九层模 型
要素世界:要 素

第三章 空间数据模型

第三章 空间数据模型

分类 空间关系 非空间关系 时间关系 非空间属性 地理空间 空间要素
子类 超类 子部分 超部分
几何坐标
对象模型对空间要素的描述
场模型 • 也称域(field)模型,是把地理空间中的现象看作连续 也称域( )模型,是把地理空间中的现象看作连续 的变量或体,如大气污染程度、地表温度、土壤湿度、 变量或体 如大气污染程度、地表温度、土壤湿度、 地形高度以及大面积空气和水域的流速和方向等。 地形高度以及大面积空气和水域的流速和方向等。 • 场可分为二维或三维。二维场是在二维空间 2中任意给 在二维空间R 场可分 二维或三维。 场是在二维空间 定的一个空间位置上,都有一个表现某现象的属性值, 定的一个空间位置上,都有一个表现某现象的属性值, 场是在三维空间R 即A=f(x,y)。三维场是在三维空间 3中任意给定一个 = , 。三维场是在三维空间 空间位置上,都对应一个属性值, 空间位置上,都对应一个属性值,即A=f(x,y,z)。 = , , 。
• 由于地理空间事物和现象的复杂性和人们 认识地理空间在观念和方法上的不同, 认识地理空间在观念和方法上的不同,墓 地里信息系统对空间实体的抽象方式也存 在一定的差别,或者说不同的学科或部门 在一定的差别, 可能对地理空间按照各自的认识和思维方 式来构造不同的模型。 式来构造不同的模型。
地理空间认知概念模式( 地理空间认知概念模式(国际标准化组织地理信息 标准化委员会) 标准化委员会)
机器世界
用数据模型描述现实世界中的事物及其联系。 用数据模型描述现实世界中的事物及其联系。
1) 字段(field)或数据项(data item): 字段( )或数据项( ): 标记实体属性的命名单位,是数据库中的最小信息单位。 标记实体属性的命名单位,是数据库中的最小信息单位。 2) 记录(record):字段值的有序集合。 记录( ):字段值的有序集合 ):字段值的有序集合。 3) 记录型 : 字段名的有序集合。 字段名的有序集合。 4) 文件 : 同类记录的集合。对应于实体集。 同类记录的集合。对应于实体集。

第3章 空间数据模型

第3章 空间数据模型
– 现实世界许多地理事物和现象可以构成网络,如公路、 铁路、通讯线路、管道、自然界中的物质流、物量流 和信息流等
空间数据概念模型
• 网络是由一系列节点和环链组成的,与对象模型 没有本质的区别 • 网络模型可以看成对象模型的一个特例,它是由 点对象和线对象之间的拓扑空间关系构成的 • 空间数据概念模型归结为对象模型(或称要素模 型)和场模型(或称域模型)两类
空间数据概念模型
• 不规则多边形区。将平面区域划分为简单连通的多边形区 域,每个多边形区域的边界由一组点所定义;每个多边形 区域对应一个属性常量值,而忽略区域内部属性的细节变 化 • 不规则三角形区。将平面区域划分为简单连通三角形区域, 三角形的顶点由样点定义,且每个顶点对应一个属性值; 三角形区域内部任意位置的属性值通过线性内插函数得到 • 等值线。用一组等值线C1,C2,…,Cn,将平面区域划 分成若干个区域。每条等值线对应一个属性值,两条等值 线中间区域任意位置的属性是这两条等值线的连续插值
(a) 规则分布的点
( b ) 不规则分布的 点
(c)规则矩形区
(d) 不规则多边形区
(e) 不规则三角形区
(f) 等值线
空间数据概念模型
• 网络模型
– 网络模型与对象模型类似,都是描述不连续的地理现 象,不同之处在于它需要考虑通过路径相互连接多个 地理现象之间的连通情况 – 网络是由欧式空间R2中的若干点及它们之间相互连接 的线(段)构成
地理空间与空间实体
• 属性特征
– 也称为非空间特征或专题特征,是与空间实体相联系 的、表征空间实体本身性质的数据或数量,如实体的 类型语义定义、量值等 – 类型
• 定性属性,如名称、类型、特性等 • 定量属性,如数量、等级等

第三空间数据模型【实用资料】

第三空间数据模型【实用资料】
• 一个点在一个区域的边界上 方向关系又称为方位关系、延伸关系,它定义了地物对象之间的方位,如“河北省在河南省北部”就描述了方向关系。
栅格数据模型是基于连续铺盖的,它是将连续空间离散化,即用二维铺盖或划分覆盖整个连续空间;
• 一个点在一个区域的内部 一个点的位置可以二维或者三维中的坐标的单一集合来描述
2.2栅格数据模型
• 栅格数据模型是基于连续铺盖的,它是将
连续空间离散化,即用二维铺盖或划分覆 盖整个连续空间;铺盖可以分为规则的和 不规则的
• 基于栅格的空间模型把空间看作像元(
Pixel)的划分(Tessellation),每个像元 都与分类或者标识所包含的现象的一个记 录有关
3.要素模型 3.1要素模型的基本概念
3.2矢量数据ห้องสมุดไป่ตู้型
• 矢量方法强调了离散现象的存在,由边界
线(点、线、面)来确定边界,因此可以 看成是基于要素的。
• 矢量数据模型将现象看作原形实体的集合
,且组成空间实体。在二维模型内,原型 实体是点、线和面;而在三维中,原型也 包括表面和体
• 矢量模型的表达源于原型空间实体本身,
通常以坐标来定义。一个点的位置可以二 维或者三维中的坐标的单一集合来描述
4.1.2拓扑空间关系描述——9交 模型
• 设有现实世界中的两个简单实体A、B,
B(A)、B(B)表示A、B的边界,I(A)、I(B)表 示A、B的内部,E(A)、E(B)表示A、B余。 Egenhofer[1993]构造出一个由边界、内部 、余的点集组成的9-交空间关系模型(9Intersection Model,9-IM)如下:
• 一个面的连续性(给定面上任意两点,从一点可以 重要(与问题相关);
拓扑一词来自于希腊文,意思是“形状的研究”。

三维GIS空间数据模型

三维GIS空间数据模型
① 复杂实体有可能由不同延展度和类型的空间单元组合而 成;
② 某一类型的空间单元组合形成一个新的类型或一个复合 实例;
③ 某一类型的空间实体可以转换为另一类型;
④ 某些空间实体具有二重性,也就是说,由不同的维数组 合而成。
实体类型组合图例
三、空间实体在地理信息系统中的表示
1、单一实体 2、多种特征的实体 3、带有属性的空间实体的表示 4、多层属性信息的表示
第三章 空间数据模型
空间数据模型:指利用特定的数据 结构来表达空间对象的空间位置、 空间关系和属性信息;是对空间对 象的数据描述。
内容
第一节 空间实体的描述和分类和数据组织 第二节 矢量数据模型 第三节 栅格数据模型 第四节 三角网数据模型(TIN) 第五节 属性信息 第八节 面向对象的空间数据模型
左多边形
P2 P1 P1 Ø P2 P3
右多边形
P1 P4 Ø P2 P4 P2
二、空间实体的几何分类
根据(1)实体本身的特征、(2)所用地图的比例尺
(3)项目中使用这类实体空间数据的目的,将地理
形象抽象为:
1. 点(Point) 2. 线(Line)
空间现象 • 离散
3. 面(Area) 4. 体(Volume)
4、பைடு நூலகம்类信息的表示
空间数据的分类,是指根据系统功能及国家规范和标准,将具有不同属性 或特征的要素区别开来的过程,以便从逻辑上将空间数据组织为不同的信 息层(见下图);
用于表示地理实体的数据模型
GIS的数据模型分为两大类:矢量数据模型和栅格数据模型。
.
Spatial data model
第二节 矢量数据模型
① 长度:从起点到终点的总长;

第三章-空间数据模型

第三章-空间数据模型
多 边 形 与 弧 段 : P2 与 L3,L5,L2
2)邻接性: (同类元素之 间)
多边形之间、结点之间。
邻接矩阵
重叠:-- 邻接:1 不邻接: 0
P1 P2 P3 P4 P1 -- 1 1 1 P2 1 -- 1 0 P3 1 1 -- 0 P4 1 0 0 --
3)连通性:与邻接性相类似,指对弧段连接的判别,如用于网络 分析中确定路径、街道是否相通。
连通矩阵: 重叠:-- 连通:1 不连通:0
V1 V2 V3 …
V1 -- 1 0 V2 1 -- 1 V3 0 1 --
4)拓扑包含:指面状实体包含了哪些线、点或面状实体。
主要的拓扑关系:拓扑邻接、拓扑关联、拓扑包含。
P2
P1
P2
P3 P2
P1 P1
P2
拓扑关系的表达 拓扑关系具体可由4个关系表来表示: (1) 面--链关系: 面 构成面的弧段 (2) 链--结点关系: 链 链两端的结点 (3) 结点--链关系: 结点 通过该结点的链 (4) 链—面关系: 链 左面 右面
2 杨树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
3 松树 x1, y1;x2, y2;…; 林 xn, yn; x1, y1
空间对象的矢量数据模型
3.4 空间逻辑数据模型
二、栅格数据模型
在栅格数据模型中,点实体是一 个栅格单元(cell)或像元,线实体 由一串彼此相连的像元构成,面实 体则由一系列相邻的像元构成,像 元的大小是一致的。
象)
分类
子类/超类 等效
空间关系 非空间关系 时间关系
地理空间 空间要素
几何坐标
子部分 超部分
非空间属性

GIS 重点总结

GIS 重点总结

第一节地理信息系统基本概念一、数据和信息1、数据(Data):通过数字化或直接记录下来的可以被鉴别的符号。

不仅数字是数据,而且文字、声音和图像也是数据。

2、信息(Information):用数据来表示事件、事物、现象等的内容、数量或特征,以便向人们(或系统)提供关于现实世界新的事实的知识,作为生产、管理、经营、分析和决策依据。

3.信息与数据的关系(1)信息来源于数据,是数据的内容和解释。

(2)信息与数据是不可分离的;数据是记录下来的某种可以识别的符号,具有多种多样的形式,也可以加以转换,但其中包含的信息内容不会改变。

(3)不同知识、经验的人,对于同一数据的理解,可得到不同信息。

4.信息的特征:客观性、适用性、可传输性、共享性二、地理数据与地理信息1.地理数据:表示地理系统诸要素的数量、质量、分布特征,相互联系和变化规律的图、文、声、像等的总称。

2.地理信息:与研究对象的地理分布有关的信息,是地理数据所有蕴含和表达的地理含义。

3.地理信息的特征地理信息除了具有信息的一般特性,还具有以下独特特性:空间特征:是地理信息区别于其它类型信息的最显著标志。

位置、形状、空间关系、空间分布数据量大:地理信息既有空间数据,也有属性数据、时间数据。

数据的分析、处理对系统带来很大压力。

多维属性特征:属性数据有时又称非空间数据,是属于一定地物、描述其特征的定性或定量指标指在同一位置上可有多种专题的信息结构时序特征:时空的动态变化引起地理信息的属性数据或空间数据的变化。

因此,一实时的GIS系统要求能及时采集和更新地理信息,使得地理信息具有现势性。

三、信息系统1、信息系统:具有采集、处理、管理和分析数据能力的系统,它能为单一的或有组织的决策过程提供各种有用信息。

2.分类从系统结构及处理方法看,信息系统主要分为:管理信息系统、决策支持系统、智能决策支持系统、空间信息系统四.地理信息系统1..地理信息系统:是对空间数据进行采集、编辑、分析和输出的计算机信息系统。

地理信息系统 第三章地理空间数据模型概要

地理信息系统 第三章地理空间数据模型概要

代码的功能
鉴别——代码代表对象的名称,是鉴别对象的 唯一标识。 分类——当按对象的属性分类,并分别赋予不 同的类别代码时,代码又可作为区分分类对象 类别的标识。 排序——当按对象产生的时间、所占的空间或 其它方面的顺序关系排列,并分别赋予不同的 代码时,代码又可作为区别对象排序的标识。
编码的基本原则
字母型代码

数字、字母混合型代码

编码方法举例
行政区划代码(GB—2260—91)

这是一种识别码,用6位数字代码按层次分别表示 省(自治区、直辖市)、地区(市、州、盟)、县(区、 市、旗)的名称。其第一、二位表示省(自治区、直 辖市);第三、四位表示省直辖市(地区、州、盟), 其中01~20,51~70表示省直辖市,21~50表示 地区、州、盟;第五、六位表示县(市辖市、地辖市、 县级市、旗),其中01~18表示市辖区或地辖市, 21~80表示县、旗,81~99表示县级市。
第二部分
第三章 地理空间数据模型
概念 基本特征和描述 分类和分层 空间数据索引 空间数据模型
3.1 地理空间数据模型概念
空间数据组织 栅格 无拓扑关系 矢量 有拓扑关系 规则格网 高级数据 区域 动态分段 DEM TIN
简单数据
3.2 基本特征和描述
空间位置特征:对地理实体或现象的分 布位置、几何特征和空间关系的定义。 空间属性特征:对地理实体或现象的属 性定义和说明信息。 时间特征:地理实体或现象的时间尺度, 随时间变化的特征。
线分类法:(层次分类法)
土地利用类型 7
耕地 71
园地 72
林地 73
牧草地 居民点及公矿用地交通用地 74 75 75
水域 76
未利用地 77
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(xn,yn) (x(1x,ny,1y)n) (x1,y1)
(a) (xn,yn)
(b)
(xn,yn)
A
KI
H
J
BC
G
FE
D
(c)
第三章空间数据模型第3节矢量数据模型
一维矢量具有方向、长度
方向:即有起始结点和终止结点
长度:可以用以下方式表达:
引入欧氏空间的距离概念:
n
长度 [(xi xi1)2 ( yi yi1)2 ]1/2 i2
一.基本概念 二.关系数据模型和关系表 三.矢量数据模型( Spaghetti Model ) 四.矢量数据模型(拓扑数据模型)
第三章空间数据模型第3节矢量数据模型
一、基本概念
• 现实世界和矢量表达 • 位置和边界被清楚地记录 • 对象可以被识别 • 属性值与对象相联系 • 空间关系可以清晰表达
第三章空间数据模型第3节矢量数据模型
(1) 地理要素被当成单个对象对待
空间边界可以被清晰的编码
(2)对象之间没有关系
要素间的空间拓扑不被记录
第三章空间数据模型第3节矢量数据模型
矢量表达法
• 不同的空间特征具有不同的矢量维数
– 0维矢量-点:即空间中的一个点,没有大小、 方向,二维和三维欧氏空间中为:(x,y),(x,y,z)
– 一维矢量-线:空间中的线划要素或空间对象间 的边界,也称为弧段、链
用的概念,是三维空间中曲面法向矢量的 另外一种描述方法
第三章空间数据模型第3节矢量数据模型
空间曲面
• 矢量实现方法多样 • 常用等值线法、剖面法
第三章空间数据模型第3节矢量数据模型
三维矢量-体
• 指三维空间中的实体
• 由一组或多组闭合曲面所包围的空间对象
• 2维

• 2.5维 表面(surface)
– 行(row )被称为记录(record),代表一个对象及其 相关的属性值
– 列(column)也称为字段(field)或项(item)代表一 个属性
• 例子:学生信息表
第三章空间数据模型第3节矢量数据模型
2、数据结构
• 多少字段,应该是什么 • 字段名: Field Name (Item Name): • 字段类型: Field Type (Item Type):
第三章空间数据模型第3节矢量数据模型
二、关系数据模型和关系表
1. 定义 2. 数据结构 3. 关系表的基本操作 4. GIS 中关系表的应用
第三章空间数据模型第3节矢量数据模型
1、定义
• 在关系数据模型中,数据是以简单的记录形 式集中表达的,
• 每一条记录代表一个事实(永久相关的值) • 记录的集合组成一个二维表
一维矢量线
• 一维矢量可以闭合,但不能与自身相交 • 闭合时,首位相接, (x1,y1)=(xn,yn) 或(x1,y1,z1)=(xn,yn,zn) • 如果相交,则应以交点为界,将其分成几个一维矢量
(a)
(b)
(c)
(d)
第三章空间数据模型第3节矢量数据模型
一维矢量自身的可能空间关系
(x1,y1) (x1,y1)
在三维空间中一维矢量的距离有两种概念一为沿路程距离,表示为
n
长度 [(xi xi1)2 ( yi yi1)2 (zi zi1)2 ]1/ 2 i2
另一种为平面投影距离,二维平面的定义相同:
n
长度 [(xi xi1)2 ( yi yi1)2 ]1/2 i2
平面投影距离为地图学研究广泛采用。 第三章空间数据模型第3节矢量数据模型
– 字符型 (Character) – 整型( Integer) – 实型 (Real) – 日期型 (Date)
• 字段宽度: Field width (size): • ArcView示例
第三章空间数据模型第3节矢量数据模型
第三章空间数据模型第3节矢量数据模型
3、关系表的基本操作
• 搜索 (Search)
– 二维欧氏空间(x1,y1),(x2,y2),…(xn,yn) – 三维欧氏空间(x1,y1,z1),(x2,y2 , z2),…(xn,yn , zn) – 起点和终点称为结点(node),其它点称拐点
(vertex)
第三章空间数据模型第3节矢量数据模型
矢量模型(vector model)
第三章空间数据模型第3节矢量数据模型
第三章空间数据模型第3节矢量数据模型
三、矢量数据模型( Spaghetti Model)
1) 实体与实体模型 (Spaghetti Model)
(a)定义
点、线、面要素的表达
(b)解释
(1) 简单列表表达(Simple lists) (2) 点目录(Point directory)
(c) Spaghetti models的比较 (d) 总结(Summary):
二维矢量-面
• 表示空间的一个面状要素 • 由一组闭合弧段所包围的空间区域 • 又称多边形
第三章空间数据模型第3节矢量数据模型
描述二维矢量的特征参数
• 面积:
– 二维面积: – 三维面积:表面积(计算复杂)和投影面积
(常用)
• 凹凸性:形态描述 • 单调性: • 走向、倾角和倾向:地形、地层描述中常
• 3维 体
第三章空间数据模型第3节矢量数据模型
第三章空间数据模型第3节矢量数据模型
Locate Misco
第三章空间数据模型第3节矢量数据模型
Locate Misco
第三章空间数据模型第3节矢量数据模型
Join
第三章空间数据模型第3节矢量数据模型
4、GIS 中关系表的应用
属性表和图形的连接
第三章空间数据模型第3ቤተ መጻሕፍቲ ባይዱ矢量数据模型
关系数据库中GIS属性表的存储
第三章 空间数据模型
第三章空间数据模型第3节矢量数据模型
主要内容
第一节 关系数据模型 第二节 栅格数据模型 第三节 矢量数据模型 第四节 矢量数据模型TIN 第五节 空间数据模型比较 第六节 属性数据与空间数据的连接 第七节 数据模型发展趋势
第三章空间数据模型第3节矢量数据模型
第三节 矢量数据模型
– 穷尽搜索 Exhaustive Search (学生姓名列表未排序) – 二进制搜索 Binary Search (学生姓名列表未排序)
• 选择 (Select)
– 选择条件用如下格式表达:
• Field_name = Value
– 多个条件时用 “and”/ “or”连接
• 相关 (Relate)和 联接 (Join)
相关文档
最新文档