实验五编码、译码、显示电路

合集下载

译码器与编码器的设计与仿真实验报告

译码器与编码器的设计与仿真实验报告

译码器与编码器的设计与仿真实验报告实验五译码器与编码器的设计与仿真班级:通信工程三班学号:20210820314 姓名:龙凤婷一、实验内容:1. 参照芯片74LS138的电路结构,用逻辑图和VHDL语言设计3_8译码器;2. 参照芯片74LS138的电路结构,用逻辑图和VHDL语言设计8_3优先编码器;二、电路功能介绍: 1. 74138:3_8译码器用途:用一组二进制代码来产生各种独立的输出信号,这种输出信号可以用来执行不同的工作。

显示器中的像素点受到译码器的输出控制。

译码信号输出端低电平有效。

2. 74148:8_3优先编码器用途:将各种输入信号转换成一组二进制代码,使得计算机可以识别这一信号的作用。

键盘里就有大家天天打交道的编码器,当我们敲击按键时,被敲击的案件被键盘里的编码器编码成计算机能够识别的ASCII码。

信号输入端:低电平有效使能输入端:低有效编码输出端:低电平有效使能输出端:低有效组选输出端:低有效三、实验过程及实验结果: 1. 74138:3_8译码器逻辑电路图:代码输入端:A、B、C 使能输入端:G1、G2A、G2B译码信号输出端:Y0、Y1、Y2、Y3、Y4、Y5、Y6、Y7仿真波形图:VHDL语言程序:2. 74148:8_3优先编码器逻辑电路图:信号输入端:IN0、IN1、IN2、IN3、IN4、IN5、IN6、IN7 使能输入端:Enable_in编码输出端:A0_out、A1_out、A2_out 使能输出端:Enable_out 选组输出端:Group_Select_out仿真波形图:VHDL语言程序:四、实验心得:这次数字设计的实验内容是译码器与编码器的设计与仿真,分别用逻辑电路图和VHDL 语言编写程序运行,用仿真波形图来验证其正确性。

译码器与编码器的功能恰好相反。

编码器是将二进制代码转换成输出信号,译码器是将输入信号转换成一组二进制代码。

通过这次上机实验,我对编码器及译码器有了更深一步的了解,对他们的设计实现过程有了一定的了解。

译码显示电路实验报告

译码显示电路实验报告

一、实验目的1. 熟悉译码显示电路的基本原理和组成;2. 掌握译码器和显示器的功能及使用方法;3. 通过实验,验证译码显示电路的工作性能;4. 培养动手实践能力和团队协作精神。

二、实验原理译码显示电路是一种将数字信号转换为可直观显示的图形或字符的电路。

它主要由译码器和显示器两部分组成。

译码器将输入的数字信号转换为对应的控制信号,显示器则根据这些控制信号显示相应的图形或字符。

1. 译码器:译码器是一种多输入、多输出的组合逻辑电路,其作用是将输入的二进制代码转换为输出的一组控制信号。

常见的译码器有二进制译码器、十进制译码器等。

2. 显示器:显示器用于显示译码器输出的控制信号。

常见的显示器有七段显示器、液晶显示器等。

本实验采用七段显示器,它由七个独立的段组成,通过控制每个段的亮与灭,可以显示0-9的数字以及其他符号。

三、实验仪器与器材1. 实验箱;2. 译码器(例如:74LS47);3. 显示器(例如:七段显示器);4. 连接线;5. 示波器(可选);6. 电源。

四、实验步骤1. 熟悉实验箱和实验器材,了解译码器和显示器的功能及使用方法。

2. 按照实验原理图连接译码器和显示器,确保连接正确无误。

3. 在译码器输入端输入二进制代码,观察显示器是否按照预期显示相应的数字或符号。

4. 调整译码器的输入代码,验证译码器的工作性能。

5. (可选)使用示波器观察译码器和显示器的信号波形,进一步分析电路工作原理。

6. 记录实验数据,撰写实验报告。

五、实验结果与分析1. 当译码器输入端输入二进制代码时,显示器按照预期显示相应的数字或符号。

2. 调整译码器的输入代码,显示器能够正确显示相应的数字或符号。

3. 通过实验,验证了译码显示电路的基本原理和组成,掌握了译码器和显示器的功能及使用方法。

4. 在实验过程中,注意观察译码器和显示器的信号波形,有助于理解电路工作原理。

六、实验总结1. 本实验成功实现了译码显示电路的基本功能,验证了译码器和显示器的工作性能。

实验五-7段数码显示译码器设计

实验五-7段数码显示译码器设计

实验五7段数码显示译码器设计实验报告一、实验要求1、GW48实验箱2、写出7段数码显示译码器程序3、总结实验步骤和实验结果二、实验内容1、说明例中各语句的含义,以及该例的整体功能。

在max+plus2或quartus2上对以下该例进行编辑、编译、综合、适配仿真,给出其所有信号的时序仿真波形。

module zdw(in,out);output [6:0]out;input [3:0]in;reg[6:0]out;always@(in)begincase(in)4'd0: out=7'b1111110;4'd1: out=7'b0110000;4'd2: out=7'b1101101;4'd3: out=7'b1111001;4'd4: out=7'b0110011;4'd5: out=7'b1011011;4'd6: out=7'b1011111;4'd7: out=7'b1110000;4'd8: out=7'b1111111;4'd9: out=7'b1111011;4'd10: out=7'b1110111;4'd11: out=7'b0011111;4'd12: out=7'b1001110;4'd13: out=7'b0111101;4'd14: out=7'b1001111;4'd15: out=7'b1000111;default: out=7'bx;endcaseendendmodule2、引脚锁定以及硬件下载测试。

建议选实验电路模式6,用数码8显示译码输出(PIO46—PIO40)。

键8,键7,键6,键5四位控制输入,硬件验证译码器的工作性能。

实验五 CMI编译码原理及CMI码光纤传输系统

实验五 CMI编译码原理及CMI码光纤传输系统

实验五CMI编译码原理及CMI码光纤传输系统学号:XXX 姓名:XXX一、实验目的1.了解线路码型的用途2.掌握 CMI 编译码的方法二、实验内容1.CMI 码的光纤传输三、实验仪器1.光纤实验系统 1 台2.光纤跳线 1 根3.示波器1台四、实验原理1.线路码型数字光纤通信与数字电缆通信一样,在其传输信道中,通常不直接传送终端机(例如 PCM 终端机)输出的数字信号,而需要经过码型变换,使之变换成为适合于传输信道传输的码型,称之为线路码型. 在数字电缆通信中, 电缆中传输的线路码型通常为三电平的三阶高密度双极性码 , 即 HDB3 码,它是一种传号以正负极性交替发送的码型。

在数字光纤通信中由于光源不可能发射负的光脉冲,因而不能采用 HDB3 码,只能采用0 1 二电平码。

但简单的二电平码的直流基线会随着信息流中0 1 的不同的组合情况而随机起伏,而直流基线的起伏对接收端判决不利,因此需要进行线路编码以适应光纤线路传输的要求。

线路编码还有另外两个作用:其一是消除随机数字码流中的长连0 和长连 1 码,以便于接收端时钟的提取。

其二是按一定规则进行编码后,也便于在运行中进行误码监测,以及在中继器上进行误码遥测。

2.CMI 码CMI(Coded Mark Inversion)码是典型的字母型平衡码之一。

CMI 在 ITU-T G.703 建议中被规定为 139 264 kbit/s(PDH 的四次群)和 155 520 kbit/s(SDH 的 STM-1)的物理/电气接口的码型。

其变换规则如下表所示:CMI 由于结构均匀,传输性能好,可以用游动数字和的方法监测误码,因此误码监测性能好。

由于它是一种电接口码型,因此有不少139 264 kbit/s 的光纤数字传输系统采用CMI 码作为光线路码型。

除了上述优点外,它不需要重新变换,就可以直接用四次群复接设备送来的CMI 码的电信号去调制光源器件,在接收端把再生还原的CMI 码的电信号直接送给四次群复用设备,而无须电接口和线路码型变换/反变换电路。

实验五 译码器和数据选择器的使用

实验五 译码器和数据选择器的使用

实验五:译码器和数据选择器的使用1.实验目的1) 熟悉数据分配器和译码器的工作原理与逻辑功能。

2) 掌握数据分配器和译码器的使用2.理论准备1) 具有译码功能的逻辑电路称为译码器。

译码即编码的逆过程,将具有特定意义的二进制码进行辨别,并转换成控制信号。

按用途来分,译码器大体上有以下3类:(1)变量译码器;(2)码制变换译码器;(3)显示译码器。

2) 数据选择器又称多路开关,它是以“与或非”门或以“与或”门为主体的组合电路。

它在选择控制信号的作用下,能从多个输入数据中选择某一个数据作为输出。

常见的数据选择器有以下5种:(4)4位2通道选1数据选择器;(5)4通道选1数据选择器;(6)无“使能”端双4通道选1数据选择器;(7)具有“使能”端的互补输出地单8选1数据选择器。

3.实验内容1) 3线-8线译码器(74138)的功能测试2) 用3-8译码器设计一位全减器3) 用双4选1数据选择器(74153)设计一位全减器提示说明:①用译码器设计组合逻辑电路设计原理;②利用译码器产生输入变量的所有最小项,再利用输出端附加门实现最小项之和;③双4选1数据选择器:在控制信号的作用下,从多通道数据输入端中选择某一通道的数据输出Y=[D0(A1’A0’)+D1(A1’A0)+D2(A1A0’)+D3(A1A0)].S。

4.设计过程1)用3-8译码器设计一位全减器。

(1)分析设计要求,列出真值表。

如表一。

表一3-8译码器设计一位全减器真值表(2)根据真值表,写出逻辑函数表达式。

Y0’=(C’B’A’)’ Y4’=(CB’A’)’Y1’=(C’B’A)’ Y5’=(CB’A)’Y2’=(C’BA’)’ Y6’=(CBA’)’Y3’=(C’BA)’Y7’=(CBA)’表二3-8译码器设计一位全减器逻辑抽象真值表(4)根据真值表得到逻辑表达式。

r=a’b’c+a’bc’+ab’c’+abcs=a’b’c+a’bc’+a’bc+abc(5)根据38线译码器的逻辑表达式和4式所得结果进行分析,最后确定实现电路。

实验五 计数、译码和显示综合实验

实验五   计数、译码和显示综合实验
(2)在实验台上找到芯片74LS161,接通电源UCC=+5V和地线。将EP、ET、D0~D3. LD’和RD’分别接到电平开关上,以便输入高低电平。将CLK接到脉动开关上,Q0~Q3 和C接到发光二极管上,然后按以下测试步骤分别加入各种输入信号,观察发光二极管 的变化情况,并将结果填入自制的功能表中。
四、实验仪器与器材
1.仪器:数字实验台、三用表
2.器材:74LS20(二-4输入与非门)、74LS04(反相器)、7447译码驱动器2 片和七段数码管2片等。
五、实验原理
1. 4位同步二进制加法计数器74LS161的逻辑功能的验证。
74LS161的逻辑电路图见教材P282图6.3.13, 引脚图和逻辑符号如下图(a)、(b)所示。
•保持功能测试:RD’=1.LD’=1,EP=0、ET=1或EP=1.ET=0 然后加时钟或不加时钟,以及 改变D0~D3的输入数据,看其输出变化情况,并将结果填入自制的功能表中。
•计数功能测试:RD’=1.LD’=1.EP=1.ET=1,并加入时钟信号,即用手CLK脉动开关,看 其输出变化情况,并将结果填入自制的功能表中。
161(1)
DCBA
QB QCAr’
S1 S0
1
1 CP
图5-3-13 “12翻1”小时计数、译码和显示电路
3、用与非门和74LS161设计一个60进制计数器。
要求写出60进制计数器地详细设计过程,逻辑图在60进制计数器的基础上加进译码显示电 路,并通过实验验证。
三、实验报告要求
1、根据各题的题意,列出相应功能表或真值表,对于功能验证的部分要写出测试条件和 测试步骤;对于设计部分,要写出详细地设计过程。
2、将各测试结果填入自画的表格中。 3、写出实验总结,主要是电路调试及故障排除方面的经验和教训。

数电实验 编码与译码显示电路

数电实验 编码与译码显示电路

实验二:编码与译码显示电路
一:实验目的
1.掌握中规模集成编码器及译码器的逻辑功能测试方法。

2.掌握编码器译码器的使用方法,
3.熟悉仿真工具的使用。

二:实验设备与器件
直流稳压电源,数字多用表,数字电路实验箱,三位二进制优先编码器,七段译码器,二输入与非门,双四输入与非门,六反相器。

四:实验内容
1.测试电路:
通信工程2014117308 周童桐
2.多位显示电路,要求具有灭零功能。

3.依据题目设计电路并仿真。

题目:若将八路服务信号按轻重缓急安排优先级别后,作为医院病房的八个呼叫信号,在护士值班室放置数码管显示电路,这样,当病号按下呼叫按钮发出呼叫信号时,护士值班室显示相应呼叫号码,并产生提示声音,在护士的按下处理按钮后,电路又回到等待呼叫状态,等待新的呼叫,设计上述控制电路及声音提醒电路并测试结果并用报警电路报警。

真值表:
K0 Y2 Y1 Y0 A3 A2 A1 A0 I0 K1 1 1 1 0 0 0 1 I1 K2 1 1 0 0 0 1 0 I2 K3 1 0 1 0 0 1 1 I3 K4 1 0 0 0 1 0 0 I4 K5 0 1 1 0 1 0 1 I5 K6 0 1 0 0 1 1 0 I6 K7 0 0 1 0 1 1 1 I7 K8 0 0 0 1 0 0 0 依据真值表列式并计算
化简后得:
A0=Y0
A1=Y0Y1’+Y0’Y1
A2=Y0’Y1’Y2+Y0Y1’Y2’+Y1Y2’
A3=Y0’Y1’Y2’
依据化简后,设计电路。

依据电路图进行仿真:
应用74LS148编码部分:
优先显示电路部分:蜂鸣器电路:
全部电路:。

实验五 PCM编译码

实验五  PCM编译码

实验五 PCM编译码一、实验目的1. 掌握PCM编译码原理。

2. 掌握PCM基带信号的形成过程及分接过程。

3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。

二、实验内容1. 用示波器观察两路音频信号的编码结果,观察PCM基群信号。

2. 改变音频信号的幅度,观察和测试译码器输出信号的信噪比变化情况。

3. 改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。

三、基本原理1. 点到点PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。

当信道噪声比较小时一般用PCM,否则一般用ΔM。

目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A解和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。

而ΔM在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。

点到点PCM多路电话通信原理可用图5-1表示。

对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。

对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。

图5-1 点到点PCM多路电话通信原理框图本实验模块可以传输两路话音信号。

采用TP3057编译器,它包括了图5-1中的收、发低通滤波器及PCM编译码器。

编码器输入信号可以是本实验模块内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。

本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。

2. PCM编译码模块原理本模块的原理方框图图5-2所示,模块内部使用+5V和-5V电压,其中-5V电压由-12V 电源经7905变换得到。

图5-2 PCM编译码原理方框图该模块上有以下测试点和输入点:∙ BS PCM基群时钟信号(位同步信号)测试点∙ SL0 PCM基群第0个时隙同步信号∙ SLA 信号A的抽样信号及时隙同步信号测试点∙ SLB 信号B的抽样信号及时隙同步信号测试点∙ SRB 信号B译码输出信号测试点∙ STA 输入到编码器A的信号测试点∙ SRA 信号A译码输出信号测试点∙ STB 输入到编码器B的信号测试点∙ PCM PCM基群信号测试点∙ PCM-A 信号A编码结果测试点∙ PCM-B 信号B编码结果测试点∙ STA-IN 外部音频信号A输入点∙ STB-IN 外部音频信号B输入点本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于右边(STA-S、STB-S)时选择模块内部音频正弦信号。

实验五 PCM编译码

实验五 PCM编译码

实验步骤
非集群实验接线方法: 非集群实验接线方法: 接线方法
左模拟信号源的输出-正弦波 编译码单元的A_IN 左模拟信号源的输出 正弦波 ——PCM编译码单元的 编译码单元的 右模拟信号源的输出-正弦波 编译码单元的B_IN 右模拟信号源的输出 正弦波 ——PCM编译码单元的 编译码单元的 PCM编译码单元 编译码单元A_TXD——PCM编译码单元 编译码单元B_RXD 编译码单元 编译码单元 PCM编译码单元 编译码单元A_RXD——PCM编译码单元 编译码单元B_TXD 编译码单元 编译码单元
集群通信实验接线方法 集群通信实验接线方法
编译码单元的A_IN 左模拟信号源的正弦波 ——PCM编译码单元的 编译码单元的 ——PCM编译码单元的 编译码单元的B_IN 右模拟信号源的输出 ——PCM编译码单元的B_IN PCM编译码单元 编译码单元A_TXD——PCM编译码单元 编译码单元TXD_A 编译码单元 编译码单元 PCM编译码单元 编译码单元A_RXD——PCM编译码单元 编译码单元RXD_A 编译码单元 编译码单元 PCM编译码单元 编译码单元B_TXD——PCM编译码单元 编译码单元TXD_B 编译码单元 编译码单元 PCM编译码单元 编译码单元B_RXD——PCM编译码单元 编译码单元RXD_B 编译码单元 编译码单元 PCM编译码单元 编译码单元PCM_OUT—PCM编译码单元 编译码单元PCM_IN 编译码单元 编译码单元
该模块上有以下测试点和输入点: 该模块上有以下测试点和输入点: A_IN :输入到编码器 的信号测试点 输入到编码器A的信号测试点 A_OUT : 信号 译码输出信号测试点 信号A译码输出信号测试点 A_TXD :信号 的PCM编码输出 测试点 信号A的 编码输出/测试点 编码输出 TXD_A : PCM集群 通道输入点 集群A通道输入点 集群 A_RXD : 信号 的PCM译码输入 测试点 信号A的 译码输入/测试点 译码输入 RXD_A : PCM集群分接 通道输出点 集群分接A通道输出点 集群分接 PCM-OUT:PCM集群信号复接端输出 测试 集群信号复接端输出/测试 集群信号复接端输出 点 • PCM_IN:PCM集群信号分接端输入 测试点 集群信号分接端输入/测试点 集群信号分接端输入 • • • • • • •

译码显示电路实验报告

译码显示电路实验报告

译码显示电路实验报告译码显示电路实验报告引言:译码显示电路是现代电子设备中常见的一种电路结构,它能够将数字信号转换为可见的字符或数字形式,广泛应用于计算机、电视、手机等设备中。

本实验旨在通过搭建一个简单的译码显示电路,了解其工作原理并验证其功能。

实验材料:1. 译码器:74LS472. 七段数码管:共阳极或共阴极型3. 可调电源4. 连接线5. 电阻:220欧姆实验步骤:1. 连接电路:将译码器和七段数码管连接起来。

根据译码器和数码管的引脚连接图,将它们正确地连接在一起。

2. 连接电源:将可调电源连接到电路中,确保电源的电压和电流适合译码器和数码管的工作要求。

3. 输入信号:通过拨动开关或其他输入设备,输入一个4位二进制数作为译码器的输入信号。

4. 观察显示:观察七段数码管的显示情况,确认其是否正确显示输入的数字。

实验结果:在实验过程中,我们使用了一个共阳极的七段数码管和一个74LS47译码器。

通过连接电路,我们成功地将译码器和数码管连接在一起,并连接了适当的电源。

在输入一个4位二进制数作为译码器的输入信号后,我们观察到七段数码管正确地显示了对应的数字。

讨论:译码显示电路的核心是译码器,它根据输入信号的不同,将其转换为对应的输出信号,以控制七段数码管的显示。

在本实验中,我们使用的74LS47是一种常见的BCD译码器,它能够将4位二进制数转换为七段数码管的控制信号。

在连接电路时,我们需要根据译码器和数码管的引脚连接图来正确连接它们。

特别要注意译码器的极性,确保其正常工作。

此外,电源的电压和电流也需要根据译码器和数码管的工作要求来调整,以避免损坏电路元件。

在实验中,我们可以通过输入不同的二进制数来观察七段数码管的显示情况。

通过对比输入和输出的对应关系,我们可以验证译码显示电路的功能是否正常。

如果出现显示错误或其他异常情况,我们可以检查电路连接是否正确,以及电源是否正常工作。

译码显示电路不仅仅应用于七段数码管,还可以应用于其他类型的显示设备,如液晶显示屏、LED显示屏等。

实验五 编码译码器

实验五 编码译码器

实验五译码器(编码译码显示电路)一、实验目的1、掌握中规模集成译码器的逻辑功能和使用方法。

2、掌握数码管的原理和使用。

二、实验原理译码器是一个多输入、多输出的组合逻辑电路。

它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。

不同的功能可选用不同的译码器。

译码器可分为通用译码器和显示译码器两大类。

前者又分为变量译码器和代码变换译码器。

1、变量译码器(又称2进制译码器),用以表示输入变量的状态,如2线一4线、3线一8线和4线一16线译码器。

若有n个输入变量,则有2n个不同的组合状态,就有2n个输出端供其使用。

而每一个输出所代表的函数对应于n个输入变量的最小项。

以3线一8线译码器74LS138为例进行分析,图1中的(a)、(b)分别为其逻辑图及引脚排列,其中A0、A1、A2为地址输入端,Y0~Y7为译码输出端,S1、S2、S3为使能端。

表1为74LS138功能表:123信号(全为1)输出。

当S1=0,S2+S3=X时(X为任意,0、1均可),或S1=X,S2+S3=l时,译码器被禁止,所有输出同时为1。

二进制译码器实际上也是负脉冲输出的脉冲分配器。

若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称多路分配器),如图2所示。

若在S1输入端输入数据信息,S2=S3=0,地址码所对应的输出是S1数据信息的反码;若从S2端输入数据信息,令S1=1、S3=0,地址码所对应的输出就是S2端数据信息的原码。

若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。

根据输入地址的不同组合译出唯一地址,故可用作地址译码器。

接成多路分配器,可将一个信号源的数据信息传输到不同的地点。

二进制译码器还能方便地实现逻辑函数,如图3所示,实现的逻辑函数是:Z=CB+ABCA+A CBA+CB利用使能端能方便地将两个3/8译码器组合成一个4/16译码器,如图4所示:2、数码显示译码器a、七段发光二极管(LED)数码管LED数码管是目前最常用的数字显示器,图5的(a)、(b)分别为共阴管和共阳数码管的电路,右侧图为共阴共阳两种不同形式的引出脚功能图。

南昌大学通信专业实验五 PCM编码、译码原理实训

南昌大学通信专业实验五 PCM编码、译码原理实训

实验五PCM 编码、译码原理实训—、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。

二、实验电路工作原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。

脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。

所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。

抽样速率的下限是由抽样定理确定的。

在该实验中,抽样速率采用8Kbit/s。

所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。

所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。

然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。

PCM 编译码电路主要由芯片U401 及外围电路构成。

每个TP3067 芯片U401含有一路PCM 编码器和一路PCM 译码器。

模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码; PCM 码被接收到译码电路后经过译码、低通滤波、放大,最后输出模拟信号,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A/D 及D/A 变换。

三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。

四、实验步骤及注意事项1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,建议输入同步正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。

光纤通信实验五 CMI编译码原理及CMI码光纤传输系统

光纤通信实验五 CMI编译码原理及CMI码光纤传输系统

实验五CMI编译码原理及CMI码光纤传输系统一、实验目的1.了解线路码型的用途2.掌握CMI 编译码的方法二、实验内容1.CMI 码的光纤传输三、实验仪器1.光纤实验系统1 台2.光纤跳线1 根3.示波器1台四、实验原理1.线路码型数字光纤通信与数字电缆通信一样,在其传输信道中,通常不直接传送终端机(例如PCM 终端机)输出的数字信号,而需要经过码型变换,使之变换成为适合于传输信道传输的码型,称之为线路码型. 在数字电缆通信中, 电缆中传输的线路码型通常为三电平的三阶高密度双极性码, 即HDB3 码,它是一种传号以正负极性交替发送的码型。

在数字光纤通信中由于光源不可能发射负的光脉冲,因而不能采用HDB3 码,只能采用0 1 二电平码。

但简单的二电平码的直流基线会随着信息流中0 1 的不同的组合情况而随机起伏,而直流基线的起伏对接收端判决不利,因此需要进行线路编码以适应光纤线路传输的要求。

线路编码还有另外两个作用:其一是消除随机数字码流中的长连0 和长连 1 码,以便于接收端时钟的提取。

其二是按一定规则进行编码后,也便于在运行中进行误码监测,以及在中继器上进行误码遥测。

2.CMI 码CMI(Coded Mark Inversion)码是典型的字母型平衡码之一。

CMI 在ITU-T G.703 建议中被规定为139 264 kbit/s(PDH 的四次群)和155 520 kbit/s(SDH 的STM-1)的物理/电气接口的码型。

其变换规则如下表所示:CMI 由于结构均匀,传输性能好,可以用游动数字和的方法监测误码,因此误码监测性能好。

由于它是一种电接口码型,因此有不少139 264 kbit/s 的光纤数字传输系统采用CMI 码作为光线路码型。

除了上述优点外,它不需要重新变换,就可以直接用四次群复接设备送来的CMI 码的电信号去调制光源器件,在接收端把再生还原的CMI 码的电信号直接送给四次群复用设备,而无须电接口和线路码型变换/反变换电路。

译码显示电路实验报告

译码显示电路实验报告

译码显示电路实验报告目录一、实验人二、实验目的三、实验仪器及器件四、实验电路图五、实验原理分析1、数码显示译码器(1)七段发光二极管(LED)数码器(2)四联数码管显示器2、 BCD码七段译码驱动器3、四节拍发生器4、异步计数器74LS1975、伪码识别电路六、模拟实验结果七、模拟实验心得一、实验人学院:软件学院专业:计应学号:09388094 姓名:廖心如二、实验目的1、掌握中规模集成译码器的逻辑功能和使用方法2、熟悉数码管的使用三、实验仪器及器件1、数字电路实验箱、数字万用表、示波器。

2、器件:74LS48X1,74LS194X1,74LS73X1,74LS00X2、7SEG-MPX4-CC四、实验电路图实验总电路图如图1所示。

五、实验原理分析1、数码显示译码器(1)七段发光二极管(LED)数码器分析:LED数码管是目前最常用的数字显示器,有共阴和共阳管两种类型的电路。

LED数码管可用来显示0~9十进制和一个小数点。

小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常为2~2.5V,每个发光二极管的点亮电流在5~10mA。

LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器(BCD码七段译码器驱动器),该译码器不但要完成译码功能,还要有相当的驱动能力。

(1)四联数码管显示器实验器件如图2所示。

图2分析:ABCDEFG引脚为七段译码电路输入端,7个输入端电位的不同,可显示0~9的数字信号。

1234引脚为显示器选择端,当任何一个为低电平时,即显示相对应的二极管。

1对应最左边,4对应最左边,2、3分别对应中间的两个。

如输入端1为低电平时,ABCDEFG的电位信号是由数字1转变而来的,则最左边的显示管显示的数字就是“1”。

(2)B CD码七段译码驱动器电路图如图3所示。

图3分析:ABCD引脚为BCD码输入端,QA、QB、QC、QD、QE、QF、QG为译码输出端,输出“1”有效,可用于驱动四个公阴二极管显示器。

实验五用MSI组合逻辑电路设计光电专用

实验五用MSI组合逻辑电路设计光电专用

实验五用MSI组合逻辑电路设计光电专用实验五MSI组合逻辑电路设计一、实验目的1、熟悉编码器、译码器、数字显示器等集成电路的性能及使用方法。

2、学会用数据选择器构成组合逻辑电路的方法。

二、仪器设备与器件(1)数电实验箱;(2)74148、7404、CD4511(或74LS48)、74151、7420、BS201共阴七段数码管各1片。

三、实验概述(1)编码编码是指赋予选定的一系列二进制代码以固定的含义。

74LS148(8-3编码器)为8-3线优先编码器,8个输入端为D0-D7,8种状态,与之对应的输出为A0、A1、A2,共三位二进制数。

(2)译码译码是编码的逆过程,即将某二进制翻译成电路的某种状态。

在数字电路中译码器是一种应用广泛的多输入、多输出的组合逻辑电路。

它是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

通常译码器可分为通用译码器和显示译码器两大类。

前者又分为变量译码器和代码变换译码器。

(3)数码显示译码器LED数码管是目前最常用的数字显示器,下图为共阴管和共阳管的电路及两种不同出现形式的引出脚功能图。

共阴数码管连接电路共阳数码管连接电路三、实验内容:1、如下图(P140图5.18.4)电路组装编码、译码、显示电路,接通开关S0~S7,观察电路的编码、译码、显示过程。

2、试用数据选择器74LS151设计一个监控交通信号灯工作状态的逻辑电路。

其条件是:信号灯由红(R)、黄(Y)、绿(G)三种颜色灯组成,正常工作时,任何时刻只能是红、黄、绿当中一种灯亮,当出现其它五种灯亮的状态时,电路发生故障,要求逻辑电路发出故障信号。

四、预习要求1、P136-P145,实验十八2、查清74148、7404、CD4511、74151、7420、BS201引脚和功能3、根据实验要求,画出电路原理图。

(集成电路应用设计实验报告)计数、译码、显示电路实验

(集成电路应用设计实验报告)计数、译码、显示电路实验

计数、译码、显示电路实验一、实验器材(设备、元器件):1,数字、模拟实验装置(1台);2,数字电路实验板(1块);3,74LS90、74LS00芯片(各一片);4,函数信号发生器(1台)。

二、实验内容及目的:1,熟悉和测试74LS90的逻辑功能;2,运用中规模集成电路组成计数、译码、显示电路。

三、实验步骤:1、利用数字电路实验装置测试74LS90芯片的逻辑功能异步计数器74LS90为中规模TTL集成计数器,可实现二分频、五分频、十分频等功能,它由一个二进制计数器和一个五进制计数器构成,其外引脚图和功能表如下图所示:异步:同步:满足1)2()1(00=∙R R ,1)2()1(=∙Sq Sq 时:①1CP =CP ,2CP =0时:二进制计数; ②1CP =0,2CP =CP 时:五进制计数;③1CP =CP ,2CP =A Q 时:8421码二进制计数; ④1CP =D Q ,2CP =CP 时:5421码十进制计数。

插好74LS90芯片,连好电源和接地端,计数脉冲由函数信号发生器提供,)1(0R 、)2(0R 、)1(9S 、)2(9S 分别接逻辑开关,四个输出端接电平显示或数码管,按功能表拨动开关验证其结果。

2,设计一个显示星期的计数器,使之重复0——6的显示(用74LS90与74LS00实现)利用反馈归零法可以使74LS90实现十以内的N 进制计数器,即从0记到要设计的进制时使清零端)1(0R 、)2(0R 有效(同时为高电平),进而反馈清零。

此实验实现0——6显示,即设计七进制数,当计数器计到111时,用反馈清零法使之为000,故先将)1(9S 、)2(9S 接地,1CP 接计数脉冲CP ,2CP 接A Q ,构成十进制数,再由于此只为七进制,故只用到A Q 、B Q 、C Q ,又用74LS00,故可使C Q 接B Q 、A Q 与非后再和“1”与非后接)2(0R ,使得当计数器计到111时,)1(0R 、)2(0R 实现清零。

实验五 PCM编译码

实验五 PCM编译码

实验五 PCM编译码实验一、实验目的1.理解PCM编译码原理及PCM编译码性能;2.熟悉PCM编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。

二、实验仪器1.RZ9681实验平台2.实验模块:∙主控模块∙信源编码与时分复用模块-A33.100M四通道示波器4.信号连接线三、实验原理3.1抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。

模拟信号的量化分为均匀量化和非均匀量化两种。

把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。

qmqmqmqmqmq图3.1.2.1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。

因此,当信号()m t较小时,则信号量化噪声功率比也很小。

这样,对于弱信号时的量化信噪比就难以达到给定的要求。

通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。

为了克服这个缺点,实际中往往采用非均匀量化的方法。

非均匀量化是根据信号的不同区间来确定量化间隔的。

对于信号取值小的区间,其量化间隔v D 也小;反之,量化间隔就大。

非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。

非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。

现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用A 压缩律。

本实验中PCM 编码方式也是采用A 压缩律。

A 律压扩特性是连续曲线,实际中往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。

厦门大学 实验五 编码及译码显示实验报告

厦门大学 实验五 编码及译码显示实验报告

实验五 编码译码显示一 实验目的1了解编码,译码及数码显示器的工作原理; 2掌握组合逻辑电路的实验分析方法。

二 实验原理编码,译码电路是数字系统常用的逻辑器件,将文字,数字,符号,状态,指令等编制成对应的二进制编码;用来完成边编码工作的数字电路称为编码器。

编码器常用2^n ~n 线编码器;译码,编码的逆过程,将多位二进制代码翻译出来的过程称为译码。

对于n 位二进制代码,可翻译出2^n 个状态,译码器常用n~2^n 线译码器。

三 实验仪器1. 多功能电路实验箱1台;2. 数字万用表1台。

四 实验内容1编码功能检验: 按图1搭接电路,令K7~K0分别作为I7~I0,Y2~Y0接逻辑显示器L2~L0;根据表1检验编码器功能。

2译码器功能检验:按图16搭接电路,令K2~K0分别作为A2~A0,Y7’~Y0’接逻辑显示器L7~L0;根据表2检I1'I2'I3'I4'I5'I6'I7'图1 编码器逻辑电路验74LS138译码器功能;3. 译码显示器功能检验:按图7搭接电路,令K3~K0分别作为A3~A0,根据表3检验译码显示器功能。

图7 显示译码器及显示器件检验 4.联锁器电路分析:所谓联锁器即为电子锁,电路如图2所示,其输入为S1,S2,S3开关,报警和解锁输出分别为F1,F1.其中S1,S2,S3为单刀双掷开关,根据拨动可分别置”1” 或”0”.当F1=”1”,表示不报警,否则报警。

当F2=”1”,表示解锁,否则闭锁。

现要求:(1) 当连联锁器处于初始状态(S1=S2=S3=1), 则F1=1,F2=0,即闭锁不报警; (2) 试用所学的知识分析电路,找出解锁并不报警的开关顺序。

U1L7L6L5L4L3L2L1L0由分析可知,拨动开关的顺序为: S1 S2 S3 F1 F2 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0五 实验总结1. 明确实验目的非常重要;2. 注意输入与输出的对应关系,否则会得不到预期的实验结果的!S1'S3'S1图2 联锁器电路。

计数、译码、显示电路实验报告

计数、译码、显示电路实验报告

计数、译码、显示电路实验报告实验目的1.掌握集成十进制计数器、显示译码驱动器及数码管的功能与使用方法。

2.学习译码器和共阳极七段显示器的使用方法。

3.进一步熟悉用示波器测试计数器输出波形的方法。

一、实验原理生活中常需要将计数脉冲值直观的显示出来,它的实现一般经过了下面几个步骤,如图,输出的脉冲信号通过显示器显示出相应的数字。

图3.7.1计数、译码、显示框图1.计数器输入的脉冲数通过计数器计数,并将结果用8421 BCD 码表示出来,本实验中采用了一种十进制计数器74LS160。

以74160为例,通过对集成计数器功能和应用的介绍,帮助读者提高借助产品手册上给出的功能表,正确而灵活地运用集成计数器的能力。

(1)74LS160的功能介绍74LS160为十进制可预置同步计数器,其逻辑符号如图,功能表见表表3.7.l74LS160的功能表输入输出CT P CT T CP D0 D1D 3 D4Q 0 Q1 Q2 Q3计数器译码器显示器脉冲信号CR LDL ××××××××L L L L H L ××↑ d 0 d 1 d 2 d 3d 0 d 1 d2d3H H H H↑××××计数 H H L ××××××保持 H H× L×××××保持注意:3210Q Q Q Q CT COT 计数器有下列输入端:异步清零端CR (低电平有效),时钟脉冲输入端CP ,同步并行置数控制LD (低电平有效),计数控制端 CT T 和 CTp ,并行数据输入端D 0~D 3。

它有下列输出端:四个触发器的输出端Q 0~Q 3,进位输出CO。

根据功能表3.7.l ,可看出74160具有下列功能:①异步清零功能:若CR 输入低电平,则不管其他输入端(包括CP 端)如何,实现四个触发器全部清零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 编码、译码、显示电路
一、实验目的
1. 学习编码器原理及基本电路。

2. 熟悉七段译码器的逻辑功能和使用。

3. 掌握七段显示器的使用方法。

4. 进一步学习组合电路的应用。

二、实验用元器件
编码器74LS148×2 全加器74LS283×1 显示译码器4511×2 四2输入与非门74LS00×2
编码、译码、显示电路是由编码、译码器和显示器三部分电路组成的逻辑电路。

下面分别加以介绍。

1. 编码器
实验中选用被广泛使用的74LS148集成8-3优先编码器。

常用于优先中断系统、键盘编码等,引脚图如图2-1。

共有9个输入引脚,一个使能端和8个编码输入,均为低电平有效,即输入“0”表示有输入,0~7输入的优先级
由低到高排列,优先级高的
输入有效时,优先级低的输入不起作用。

输出为反码,如输入0号端有效时,如输出原码为“000”,实际输出“111”。

功能见表2-1。

可以将多片编码器扩展成更多二进制码,通过高位使能输出去控制低位编码器的使能输入,实现芯片之间的优先级,再将输出作相应处理,CS 是工作状态标志,如图2-2所示。

图2-1 74LS148的引脚图
表2-1 74LS148优先编码器的功能表
图2-2 优先编码器的扩展
2.全加器
实验中建议使用74LS283全加器,它将A0A1A2A3和B0B1B2B3相加,和由S0S1S2S3输出,C-1为进位输入,Co为进位输出。

引脚图见图2-3。

图 2-3 74LS283全加器引脚图 图2-4 4511译码器 3. 译码器
这里所说的译码器是将二进制码译
成十进制数字符的器件。

实验中选用的CD4511是一个BCD 码七段译码器,并兼有驱动功能,内部没有限流电阻,与数码管相连接时,需要在每段输出接上限流电阻,引脚排列见图2-4。

表2—2是CD4511功能表,
CD4511只能对0~9的数字译码,超出范围将无显示。

表3-2 CD4511功能表
4. LED 数码显示器
数码显示器采用八段发光二极管显示器,它可直接显示出译码器输出的十进制数。

七段发光显示器有共阴接法和共阳接法两种:共阴接法就是把发光二极管的阴极都接在一个公共点 (接地),其引脚排列和内部原理如图2-5(a )所示, 配套的译码器为CD4511,
74LS48等;共阳公共点接法相反,它是把发光二极管的阳极接在一起(接Vcc),配套的译码器为74LS46,74LS47等,其引脚排列和内部原理如图2-5(b) 所示。

图2-5 LED数码显示器
三、预习和设计要求
1.学习基本编码器、译玛器、显示器及加法器的基本功能。

2.熟悉实验中用到的集成块的工作原理和使用方法。

3.分别设计8输入、10输入、16输入的编码、译码、显示电路原理图。

4.分析3种电路的相同和不同处,如何在实验中通过改动和增加部分接线,可以由简
到繁实现不同电路,考虑多个功能相对独立的电路组成一个复杂电路时,如何逐步接线并验证,如果遇到问题,如何将出问题的范围缩小或分离,以方便排除故障。

四、实验内容
1.测试译码显示电路,按图2-6接线控制端和数据输入接电平开关。

LE=0,LT=1,BI=1时在输入数据0000~1001,观测数码管显示的字型。

如输入数据超出范围,会有什么现象?
分别测试三个控制端的作用,一次只让一个
控制端的输入有效。

思考如何测试才能体现译码器的锁定功能。

2. 测试优先编码器:输入的8个开关通过74LS148优
先编码器编码成二进制码,经过非门转化成原码,再经过显示译码,由数码管显示,要求没有开关接低电平时无显示。

3. 将第2题的输入开关改为10个,需要两片74LS148
构成16-4编码器,但显示仍只需1个,设计电路图,通过实验验证。

4. 将第2题的输入开关改为16,需要两片74LS148构成
16-4编码器,同时显示输出需要两位,用2位十进制数显示。

输入开关编号小于10时,个位显示数字与编码输出一致,十位显示0;当你拨下大于9的开关后,编码器输出需要转化为2位十进制码,低位7段显示器显示个位数字,十位显示1。

若同时拨下几个按键,优先级别的顺序是15到0。

提示:编码器的输出大于9时,显示电路的十位数显示1,而个位数的显示值为编码器
的输出值加6。

Y=A3•A2+A3•A1=1 时 A3A2A1A0的值大于9。

五、实验报告内容
1. 实验目的。

2. 实验步骤,画出实验电路图,简述原理。

3. 用自己的体会描述实验结果,说明如何体现输入优先级。

4. 分析对复杂电路图如何逐步接线验证,遇到问题如何查找和排除。

图 2-6 译码显示电路。

相关文档
最新文档