高中数列经典习题(含答案)讲解学习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数列经典习题(含

答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,

(1)70≤n ≤200;(2)n 能被7整除.

2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.

3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.

4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .

5、已知数列{n a }的前n 项和3

1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.

6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设

2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;

(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1

1+n m ,…也成等差数列.

7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,

当a 1=2时,试求c 100的值.

8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.

10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

11、设{a n }为等差数列,{b n }为等比数列,且a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3分别求出{a n }及{b n }的前10项的和S 10及T 10.

12、已知等差数列{a n }的前项和为S n ,且S 13>S 6>S 14,a 2=24.

(1)求公差d 的取值范围;(2)问数列{S n }是否成存在最大项,若存在求,出最大时的n ,若不存在,请说明理由.

13、设首项为正数的等比数列,它的前n 项和为80,前2n 项的为6560,且前n 项中数值最大的项为54,求此数列的首项和公比.

14、设正项数列{a n }的前n 项和为S n ,且存在正数t ,使得对所有正整数n ,t 与a n 的等差中项和t 与S n 的等比中项相等,求证数列{n S }为等差数列,并求{a n }通项公式及前n 项和.

15、已知数列{}n a 是公差不为零的等差数列,数列{}n b a 是公比为q 的等比数

列,且.17,5,1321===b b b

①求q 的值;

②求数列{}n b 前n 项和.

16、 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.

答案:

1、 解: a 1=-250, d=2, a n =-250+2(n -1)=2n -252

同时满足70≤n ≤200, n 能被7整除的a n 构成一个新的等差数列{b n }.

b 1=a 70=-112, b 2=a 77=-98,…, b n ′=a 196=140

其公差d ′=-98-(-112)=14. 由140=-112+(n ′-1)14, 解得n ′=19

∴{b n }的前19项之和266142

1819)112(19=⨯⨯+

-⨯=S . 2、解: (Ⅰ)依题意,有 02)112(1212112>•-⨯+=d a S 02)113(1313113<•-⨯+=d a S ,即⎩⎨⎧<+>+)2(06)1(01121

1

d a d a 由a 3=12,得 a 1=12-2d (3)

将(3)式分别代入(1),(2)式,得 ⎩⎨⎧<+>+0

30724d d ,∴3724-<<-d . (Ⅱ)由d <0可知 a 1>a 2>a 3>…>a 12>a 13.

因此,若在1≤n ≤12中存在自然数n,使得a n >0,a n+1<0,则S n 就是S 1,S 2,…,S 12中的最大值. 由于 S 12=6(a 6+a 7)>0, S 13=13a 7<0,即 a 6+a 7>0, a 7<0.

由此得 a 6>-a 7>0.因为a 6>0, a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.

3、 (1)由a 6=23+5d >0和a 7=23+6d <0,得公差d=-4.(2)由a 6>0,a 7<0,∴S 6最大, S 6=8.(3)由a 1=23,d=-4,则n S =2

1n(50-4n),设n S >0,得n <12.5,整数n 的最大值为12. 4、∵a 1=3, ∴S 1=a 1=3.在S n+1+S n =2a n+1中,设n=1,有S 2+S 1=2a 2.而S 2=a 1+a 2.即a 1+a 2+a 1=2a 2.∴a 2=6. 由S n+1+S n =2a n+1,......(1) S n+2+S n+1=2a n+2, (2)

(2)-(1),得S n+2-S n+1=2a n+2-2a n+1,∴a n+1+a n+2=2a n+2-2a n+1

即 a n+2=3a n+1

此数列从第2项开始成等比数列,公比q=3.a n 的通项公式a n =⎩⎨⎧≥⨯=-.2,32,

1,31时当时当n n n

此数列的前n 项和为S n =3+2×3+2×32+…+2×3n – 1=3+1

3)13(321--⨯-n =3n . 5、n a =n S -1-n S =31n(n +1)(n +2)-31(n -1)n(n +1)=n(n +1).当n=1时,a 1=2,S 1=31×1×(1+1)×(2+1)=2,∴a 1= S 1.则n a =n(n +1)是此数列的通项公式。∴

)111()3121()211()1(143132*********+-++-+-=+++⨯+⨯+⨯=++n n n n a a a n ΛΛΛ=1-11+n =1

+n n .

相关文档
最新文档