高中物理选修3-2知识点总结
人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流
![人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流](https://img.taocdn.com/s3/m/0ccb155bf5335a8103d22024.png)
人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。
2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。
3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。
4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。
【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。
要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。
(2)互感现象可以把能量从一个电路传到另一个电路。
变压器就是利用互感现象制成的。
(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。
要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。
再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。
如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。
断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。
图甲实验叫通电自感。
在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。
图乙实验叫断电自感。
断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。
虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。
高中物理选修3-2:自感现象知识点总结

高中物理选修3-2:自感现象知识点总结理物高中考点/易错点1自感现象1、自感:由于线圈本身的电流发生变化而产生的电磁感应现象.2、自感电动势:由于自感现象而产生的电动势.3、自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.4、实验与探究考点/易错点2自感系数1、物理意义:描述线圈本身特性的物理量,简称自感或电感.2、影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.3、单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.考点/易错点3日光灯1、主要组成:灯管、镇流器和启动器.2、灯管(1)工作原理:管中气体导电时发出紫外线,荧光粉受其照射时发出可见光.可见光的颜色由荧光粉的种类决定.(2)气体导电的特点:灯管两端的电压达到一定值时,气体才能导电;而要在灯管中维持一定大小的电流,所需的电压却低得多.3、镇流器的作用日光灯启动时:提供瞬时高压;日光灯启动后:降压限流.4、启动器(1)启动器的作用:自动开关.(2)启动器内电容器的作用:减小动、静触片断开时产生的火花,避免烧坏触点.考点/易错点4自感现象的理解1、对自感电动势的进一步理解(1)自感电动势产生的原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在原线圈中产生感应电动势.(2)自感电动势的作用阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.(3)自感电动势的方向当原电流增大时,自感电动势方向与原电流方向相反,电流减小时,自感电动势方向与原电流方向相同.2、自感现象的分析思路(1)明确通过自感线圈的电流怎样变化(是增大还是减小).(2)判断自感电动势方向.电流增强时(如通电),自感电动势方向与原电流方向相反;电流减小时(如断电),自感电动势方向与原电流方向相同.(3)分析电流变化情况,电流增强时(如通电),自感电动势方向与原电流方向相反,阻碍增加,电流逐渐增大.电流减小时(如断电),由于自感电动势方向与原电流方向相同,阻碍减小,线圈中电流方向不变,电流逐渐减小.特别提醒自感电动势阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长.考点/易错点5自感现象中灯泡亮度变化在处理通断电灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗.要具体问题具体分析,关键要搞清楚电路连接情况.自感现象的分析技巧在求解有关自感现象的问题时,必须弄清自感线圈的工作原理和特点,这样才能把握好切入点和分析顺序,从而得到正确答案.1.自感现象的原理当通过导体线圈中的电流变化时,其产生的磁场也随之发生变化.由法拉第电磁感应定律可知,导体自身会产生阻碍自身电流变化的自感电动势.2.自感现象的特点(1)自感电动势只是阻碍自身电流变化,但不能阻止.(2)自感电动势的大小跟自身电流变化的快慢有关.电流变化越快,自感电动势越大.(3)自感电动势阻碍自身电流变化的结果,会给其他电路元件的电流产生影响.①电流增大时,产生反电动势,阻碍电流增大,此时线圈相当于一个阻值很大的电阻;②电流减小时,产生与原电流同向的电动势,阻碍电流减小,此时线圈相当于电源.3.通电自感与断电自感自感现象中主要有两种情况:即通电自感与断电自感.在分析过程中,要注意:(1)通过自感线圈的电流不能发生突变,即通电过程中,电流是逐渐变大;断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.特别提醒线圈对变化电流的阻碍作用与对稳定电流的阻碍作用是不同的.对变化电流的阻碍作用是由自感现象引起的,它决定了要达到稳定值所需的时间;对稳定电流的阻碍作用是由绕制线圈的导线的电阻引起的,决定了电流所能达到的稳定值.考点/易错点6日光灯的工作原理1、构造日光灯的电路如图所示,由日光灯管、镇流器、开关等组成.2、日光灯的启动当开关闭合时,电源把电压加在启动器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U 形动触片膨胀伸长,从而接通电路,于是镇流器的线圈和灯管的灯丝中就有电流通过,电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开,通过镇流器的电流迅速减小,会产生很高的自感电动势,方向与原来电压方向相同,形成瞬间高压加在灯管两端,使灯管中的气体开始导电,于是日光灯管就成了通路开始导电发光.3、日光灯正常工作时镇流器的作用由于日光灯使用的是交流电源,电流的大小和方向做周期性变化,当交流电的大小增大时,镇流器上的自感电动势阻碍原电流增大,自感电动势与原电压反向,当交流电减小时,镇流器上的自感电动势阻碍原电流的减小,自感电动势与原电压同向,可见镇流器的自感电动势总是阻碍电流的变化,镇流器起降压、限流的作用.四、课程小结1、自感现象●自感:由于线圈本身的电流发生变化而产生的电磁感应现象.●自感电动势:由于自感现象而产生的电动势.●自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.2、自感系数●物理意义:描述线圈本身特性的物理量,简称自感或电感.●影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.●单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.1H=103mH1H=106μH一、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。
高中物理选修3-2复习提纲

选修3-2知识点复习提纲一、电磁感应现象利用磁场产生电流的现象叫电磁感应,是1831年______________发现的。
1、产生感应电流的条件:(1)___________________ (2)______________________ 2、感应电动势:(1)概念:在电磁感应现象里产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源。
(2)规律:在电磁感应现象中,既然闭合回路中有电流,这个电路就一定有电动势,电路断开时,虽然没有感应电流,但电动势依然存在。
(3)感应电动势E 的大小决定于穿过电路的磁通量的变化率的大小,而与线圈的大小、磁感应强度的大小没有必然联系,与电路的电阻无关;感应电流的大小与E 和回路总电阻R 有关。
(4)磁通量的变化率 ,是Φ-t 图象上某点切线的______________。
(5)磁通量发生变化的三种方式一是磁感应强度B 不变,垂直与磁场的回路面积发生变化,此时E=_____________ 二是垂直于磁场的回路面积S 不变,磁感应强度发生变化,此时E=_______________ 三是磁感应强度和线圈面积均不变,而是线圈绕平面内的某一轴转动即θ发生变化。
3、法拉第电磁感应定律(1)内容:_______________________________________________________________。
(2)公式:①______________②______________ 注意:①式普遍适用于求______感应电动势。
2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
严格区别磁通量Φ, 磁通量的变化量ΔΦ, 磁通量的变化率 , 磁通量φ=B S ·, 表示__________________________________ 磁通量的变化量∆φφφ=-21, 表示__________________________________ 磁通量的变化率 表示__________________________________②式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。
人教版高中物理选修3-2(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习电磁感应基础知识【学习目标】1.能够熟练地进行一些简单的磁通量、磁通量的变化的计算。
2.经历探究过程,理解电磁感应现象的产生条件。
3.重视了解电磁感应相关知识对社会、人类产生的巨大作用。
【要点梳理】要点一、电流的磁效应1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应。
要点诠释:(1)为了避免地磁场影响实验结果,实验时通电直导线应南北放置。
(2)电流磁效应的发现证实了电和磁存在必然的联系,受其影响,法国物理学家安培提出了著名的右手螺旋定则和“分子电流”假说,英国物理学家法拉第在“磁生电”思想的指导下,经过十年坚持不懈的努力终于找到了“磁生电”的条件。
要点二、电磁感应现象1831年,英国物理学家法拉第发现了电磁感应现象,即“磁生电”的条件,产生的电流叫感应电流。
要点诠释:(1)法拉第将引起感应电流的原因概括为五类:①变化的电流;②变化的磁场;③运动的恒定电流;④运动的磁场;⑤在磁场中运动的导体。
(2)电流的磁效应是由电生磁,是通过电流获得磁场的现象;电磁感应现象是磁生电现象,两个过程是相反的。
要点三、产生感应电流的条件感应电流的产生条件是穿过闭合电路的磁通量发生变化。
也就是:一是电路必须闭合,二是穿过闭合电路的磁通量发生变化。
即一闭合二变磁。
要点诠释:判断有无感应电流产生,关键是抓住两个条件:(1)电路是闭合电路;(2)穿过电路本身的磁通量发生变化。
其主要内涵体现在“变化”二字上,电路中有没有磁通量不是产生感应电流的条件,如果穿过电路的磁通量很大但不变化,那么无论有多大,也不会产生感应电流。
只有“变磁”才会产生感应电动势,如果电路再闭合,就会产生感应电流。
要点四、电流的磁效应与电磁感应现象的区别与联系1.区别:“动电生磁”和“动磁生电”是两个不同的过程,要抓住过程的本质,动电生磁是指运动电荷周围产生磁场;动磁生电是指线圈内的磁通量发生变化而在闭合线圈内产生了感应电流。
(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。
这种现象叫互感。
9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。
另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。
10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。
高中物理选修3-2知识点汇总

高中物理选修3-2知识点汇总高中物理选修3-2知识点汇总高中物理选修3-2主要涵盖了电磁学的内容,以电磁感应为核心,探究了电磁场的产生和作用。
本文将对选修3-2的内容进行汇总,重点介绍电磁感应、电磁波等重要知识点。
1. 电磁感应:电磁感应是指当导体中的磁通量发生变化时,导体中会产生感应电动势,导致产生感应电流。
电磁感应的重要性在于它是发电原理的基础,也是变压器和电动机等电器的工作原理。
- 导体中感应电动势的大小与导体中的磁通量变化率成正比,即U = -dΦ/dt,其中U为电动势,Φ为磁通量,t为时间。
- 感应电动势的方向由三个规律确定:法拉第电磁感应定律、楞次定律和楞次-菲阻抗定律。
2. 法拉第电磁感应定律:法拉第电磁感应定律规定了感应电动势的大小和方向。
- 当导体中的磁通量Φ发生变化时,电动势U将引起感应电流流动。
- 感应电动势的大小与磁通量的变化率成正比,方向由右手螺旋法确定。
3. 楞次定律:楞次定律是电磁感应的基本规律,主要包括两个方面的内容:- 感应电动势的方向总是使产生它的磁通量发生变化的原因趋于减弱。
- 通过改变线圈中的磁场大小或方向,可以实现电磁感应。
4. 楞次-菲阻抗定律:楞次-菲阻抗定律描述了感应电动势由于电流的存在而受到的阻碍。
- 线圈中的感应电动势会导致感应电流的产生,在电路中形成闭合回路。
- 感应电流会产生磁场,使感应电动势遭到阻碍,即电阻的作用。
5. 电感、自感和互感:电感是指通过导体形成的闭合线圈中,由于电流产生的磁场而导致的自感作用。
- 自感可以通过比例系数L来表示,L=dΦi/di,其中Φi为线圈的磁通量,i为线圈的电流。
- 互感是指两个线圈之间由于彼此磁场的相互作用而产生的感应。
6. 电磁场和电磁波:电磁场是由电荷或电流产生的磁场和电场相互作用而形成的。
- 磁场是由电流形成的,符号为B,单位为特斯拉(T);电场是由电荷形成的,符号为E,单位为牛顿/库仑(C/N)。
高中物理必刷题系列物理狂K重点——高二物理选修选修3-2 知识讲解(共44页)

3、使闭合回路面积有扩大或缩小的趋势一一“增缩减扩”.如图 所示,P、Q 是光滑固定导轨,a、b 是可动金属棒,当磁铁下移时,a、 b 将靠近.
4、阻碍原电流的变化“增反减同”.如图所示,开关 S 闭合时,B 灯先亮, A 灯后亮,即原电流增大时,感应电流的方向与原电流的方向 相反;开关 S 断开时,灯逐渐熄灭,A 灯中电流方向向右,B 灯中电流方向向左,线圈中电流方向不变,即原电流减小时,
◀非接触式 IC 卡内部有线 圈,在靠近刷卡机的过程中 磁通量发生变化,产生感应 电流,最终实现信息交换
◀注意磁通量的正负. 设向下为正方向,如图所示, 此时穿过线圈 abcd 的磁通 量为 BS ,若将线圈 abcd 翻 转 180°,则穿过线圈 abcd 的磁通量为 BS .
第 1 页 共 44 页
第一学习单元 电磁感应
印象笔记
1.划时代的发现探究感应电流的产生条件
k 知识深层理解 1、奧斯特梦圆“电生磁”,法拉第心系“磁生电” (1)丹麦物理学家奥斯特发现载流导体能使小磁针转动,这种作用称为电 流的磁效应,揭示了电现象与磁现象之间存在密切联系. (2)英国物理学家法拉第发现了电磁感应现象,即“磁生电”现象,他把 这种现象命名为电磁感应,产生的电流叫做感应电流. 2、磁通量 (1)定义:闭合回路的面积与垂直穿过它的磁感应强度的乘积叫做磁通量. (2)公式: BS ,其中 S 为平面在垂直于磁场方向上的投影面积. (3)磁通量大小与线圈的匝数无关.磁通量的变化量 2 1 . 3、磁通量发生变化的三种常见情况 (1)磁场强弱不变,回路面积改变. (2)回路面积不变,磁场强弱改变. (3)回路面积和磁场强弱均不变,但二者的相对位置发生改变. 4、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路 中就会产生感应电流. 理解 1 如何理解磁通量 在磁感应强度为 B 的匀强磁场中,垂直于磁感线放置一 面积为 S 的平面,则穿过该平面的磁通量为 BS . 1、如果磁感线与平面不垂直,如图甲所示,公式中的 S 应理解为该平面在垂直磁场方向上的投影面积,如果该平面 与垂直磁场方向间的夹角为 ,则投影面积应为 Scos ,穿 过该平面的磁通量为 BS cos . 2、S 指闭合回路中包含磁场的那部分有效面积,如图乙所示,闭合回路 abcd 和闭合回路 abcd 虽然面积不同,但穿过它们的磁通量却相同, BS2 . 3、某闭合回路内有不同方向的磁场时,应分别计算 不同方向的磁场的磁通量,然后规定某个方向的磁通量为 正,反方向的磁通量为负,求其代数和. 4、磁通量与线圈的匝数无关,只要 n 匝线圈的面积相 同,放置情况也相同,穿过 n 匝线圈与穿过单匝线圈的磁 通量就相同.
人教版高中物理选修3-2知识框图

第四章电磁感应【本章知识框架】
【重点概念和方法梳理】
2.电磁感应中的电路问题
受力情况、运动情况的动态分析:导体受力运动产生感应电动势→感应电流→通电导体受安培力作用→合外力变化→加速度变化→速度变化→感应电动势变化→···周而复始地循环,最终结果是加速度等于0,导体达到稳定运动状态。
处理此类问题要画好受力示意图,抓住加速度a=0时,速度v达到最值的特点。
4.电磁感应中的能量问题
电磁感应中涉及的功能关系,有:①克服安培力做功是将其他形式的能量转化为电能,且克服安培力做多少功,就有多少其他形式的能量转化为电能;②感应电流通过电阻或者安培力做功,又可使电能转化为电阻的内能或机械能,且做多少功就转化多少能量。
主要解题方法有:①运用功的定义求解;②运用功能关系求解;③运用能的转化及守恒定律求解。
第五章交变电流
【本章知识框架】
【重点概念和方法梳理】
第六章传感器【本章知识框架】
【重点概念和方法梳理】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修3-2知识点总结
第四章 电磁感应
1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁
2.感应电流的产生条件:a.闭合电路
b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源
③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则
(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)
④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
B 、表达式:t
n
E ∆∆=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式
①求平均值:t
n E ∆∆=φ
②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22
1BL E = 5.感应电流的计算: 瞬时电流:总
总R BLv
R E I =
=
(瞬时切割) 6.安培力的计算:
瞬时值:r
R v
L B BIL F +==22
7.通过截面的电荷量:r
R n t I q +∆=
∆=φ
注意:求电荷量只能用平均值,而不能用瞬时值 8.自感:
(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。
另外,有铁芯的线圈自感系数比没有铁芯时大得多。
(3)类型:通电自感和断电自感
(4)单位:亨利(H )、毫亨(mH)、微亨(H μ)
(5)涡流及其应用
①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。
一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿
接通电源的瞬间,灯泡A 1较慢地亮起来。
断开开关的瞬间,灯
泡A 逐渐变暗。
第五章 交变电流
一、交变电流的产生 1、原理:电磁感应
2、两个特殊位置的比较:
中性面:线圈平面与磁感线垂直的平面。
①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=∆∆t
φ
,e=0,i=0,感应电流方向改变。
②线圈平面平行与磁感线时(S ∥B ):φ=0,
t
∆∆φ
最大,e 最大,i 最大,电流方向不变。
3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面:
磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin ==
路端电压:t r R RE t U u m m ωωsin sin +== 电流:t r
R E
t I i m m ωωsin sin +== 角速度、周期、频率、转速关系:n f
πππ
ω222===
三、电感和电容对交变电流的作用
电感
电容
对电流的作用 只对交变电流有阻碍作用
直流电不能通过电容器,交流电能通过但有阻碍作用
影响因素
自感系数越大,交流电频率越大,阻碍作用越大,即感抗越大 电容越大,交流电频率越大,阻碍作用越小,即容抗越小
应用
低频扼流圈:通直流、阻交流 高频扼流圈:通低频、阻高频
隔直电容:通交流、隔直流 旁路电容:通高频、阻低频
四.变压器:
1、原、副线圈中的磁通量的变化率相等。
2
1
21n n U U =,1221n n I I =,入出P P =,即2211I U I U =
2、变压器只变换交流,不变换直流,更不变频。
五、电能输送的中途损失:
(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3
(2)输电导线损失的电压:U 损=U 2-U 3=I 线R 线
(3)输电导线损耗的电功率:线线线线损损(R U P R I I U P P P 2
2
22
32)=
==-= 六、变压器工作时的制约关系
(1)电压制约:当变压器原、副线圈的匝数比(n 1/n 2)一定时,输出电压U 2由输入电压决定,即U 2=n 2U 1/n 1,可简述为“原制约副”.
(2)电流制约:当变压器原、副线圈的匝数比(n 1/n 2)一定,且输入电压U 1确定时,原线圈中的电流I 1由副线圈中的输出电流I 2决定,即I 1=n 2I 2/n 1,可简述为“副制约原”. (3)负载制约:①变压器副线圈中的功率P 2由用户负载决定,P 2=P 负1+P 负2+…;②变压器副线圈中的电流I 2由用户负载及电压U 2确定,I 2=P 2/U 2;③总功率P 总=P 线+P 2. 动态分析问题的思路程序可表示为:
22
2221211I R U I U n n U U U 决定
负载决定−−−−−→−=−−−−→−=1
1111221121)(P U I P I U I U I P P 决定决定−−−−→−=−−−−−−−−→−==
第六章 传感器
光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。
光照越强,光敏电阻阻值越小。
金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
1.光敏电阻
2.热敏电阻和金属热电阻 3.电容式位移传感器
4.力传感器————将力信号转化为电流信号的元件。
5.霍尔元件
霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。
外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压d
IB
k
U U H H ,.(d 为薄片的厚度,k 为霍尔系数) 1.传感器应用的一般模式 2.传感器应用:
力传感器的应用——电子秤
温度传感器的应用——电熨斗、电饭锅、测温仪 光传感器的应用——鼠标器、火灾报警器。