《结构力学》_第2章
结构力学第二章几何组成分析.李廉锟

geometrically stable system
结构
Under the action of any loads, the system still maintain its shape and remains its location if the deformations of the members are neglected.
F
E
2 rigid bodies, connected by 3 links, which are nonparallel and nonconcurrent cross the hinge, form an internally stable system with no redundant restraints. 。
Degrees of freedom of a system are the numbers of independent movements or coordinates which are required to locate the system fully.
for a point in plane n=2
C
structure formed by Attaching of binary systems 减二元体简化分析
W=3 ×10-(2×14+3)=-1<0 W=2 ×6-13=-1<0
计算自由度 = 体系真实 的自由度 ?
W=2 ×6-12=0 W=3 ×9-(2×12+3)=0
缺少联系 几何可变
W=2 ×6-11=1 W=3 ×8-(2×10+3)=1
summary
W>0, 缺少足够联系,体系几何可变 Restraints are not enough, unstable。 W=0, 具备成为几何不变体系所要求的最少 联系数目has the minimum necessary numbers of restraints for stable system。
《结构力学第2章》课件

结构力学是研究物体在外力作用下产生的应力和应变的学科。在建筑设计和 工程中,弹性力学有着广泛应用,本课件将带您深入了解弹性力学的基本理 论和应用。
弹性力学的基本概念
线弹性力学和平面弹性力学
介绍弹性力学研究的两个主要领域,涵盖了结 构力学的基础知识。
应力和应变的概念
引入应力和应变的概念,介绍了它们在弹性力 学中的重要性和计算方法。
应变-应力关系
介绍了弹性体中应变和应力之间的基本方 程,揭示了它们之间的关联。
平面弹性力学的基本理论
平面应力和平面应变 的基本方程
解释了平面弹性力学中应力和 应变的基本方程,为进一步的 研究提供基础。
平面问题的求解方法
介绍了平面问题的求解方法, 如解析法和数值计算方法,为 工程实践提供指导。
平面问题的应用
总结了弹性力学的核心概念和研究领域,强调 了它在物体力学研究中的重要性。
弹性力学在建筑设计和工程中有着广 泛应用
强调了弹性力学在建筑设计和工程实践中的重 要性,以及其对结构稳定性和变形控制的影响。
探讨了平面弹性力学在工程中 的应用,如桥梁设计和建筑物 承重分析。
建筑物中的弹性力学问题
弹性力学在建筑设计中的应用
探索了弹性力学在建筑物设计中的重要性,如结构 稳定性和变形控制。
建筑物的弹性问题和偏心受力
分析了建筑物中的弹性问题,以及由偏心受力引起 的应力分布和变形。
结论
弹性力学是研究物体在外力作用下ቤተ መጻሕፍቲ ባይዱ 生的应力和应变的学科
弹性行为的特征
深入探讨物体在受力作用下的弹性变形,解释 了弹性体的特点和规律。
本构关系的定义和表示
讲解了本构关系的概念,以及在弹性力学中如 何表示不同物体的本构关系。
结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4
Ⅰ
1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律
结构力学第2章平面几何组成分析

几何组成作业题
2-3, 2-5 2-7, 2-8 2-10, 2-12 2-16, 2-21 交作业时间:周 3
§2. 几何组成分析
补充作业:(不做) 2-1 (b)试计算图示体系的计算自由度
解:
或:
W 8 3 11 2 3 1 W 1 3 5 2 2 2 10 1
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片.
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 方法3: 将只有两个铰与其它 部分相连的刚片看成链杆. 书上例题2-1、2-3同。
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
计算自由度大于零一定可变; 若等于零则一定不变吗? 五. 计算自由度 六. 多余约束 必要约束 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束
§2.1 基本概念
§2-1 基本概念 一. 几何不变体系 几何可变体系 二. 刚片 三. 自由度 四. 约束(联系) 链杆 单铰 复铰 虚铰 实铰 五. 计算自由度 六. 多余约束 必要约束
练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析
无多余约束的几何不变体系。
三杆不平行不变 平行且等长常变 平行不等长瞬变
§1. 几何组成分析
结构力学第2章 杆系结构的组成分析

(c)
图2-14
退出
解: 图2-14a所示体系可视为在图2-14b所示静定结 构的基础上逐次增加两个杆按规则3构成,如 图2-14c所示。也可如图按相反次序依次撤除两 杆,使体系简化后再分析。两种方法分析结果 该体系都是无多余约束的几何不变体系,可作 为静定(构架)结构。
退出
[例题2-2] 试对图2-15所示体系进行几何组成分析。
这些约束的约束数s及相当的单铰、(单)链杆和 单刚结点个数是多少呢?
复铰
复刚结
(d)一铰连接多根杆 (e)一杆连接多根杆 (f)多杆刚结
退出
图2-2 约束
由图2-2可以归纳得到, 连接n个刚片的复铰 相当于(n-1)个单数,相当 于2(n-1)个约束;n个刚 片 之 间 复 刚 结 点 相 当 于 ( n-1) 个 单 刚 结 点 , 相 当 于 3(n-1)个约束。联结三点的链杆,将原来结点的六 个自由度减少为整体的三个自由度,因而相当于三 个约束,即相当于三根简单链杆。一般说来,联结 n个点的的复杂链杆相当于(2n-3)根简单链杆。
利用加二元体规则,可在一个按上述规则构成 的静定结构基础上,通过增加二元体组成新的静定 结构,如此组成的结构称为主从结构,基础部分称 为主结构或基本部分,后增加的二元体部分称为从 结构或附属部分。图2-13所示之结构均为主从结构。
退出
附属部分
C DF E
A
B
(a)
附属部分
基本部分
(b)
附属部分
基本部分
结构 (几何不变)
静定结构(梁、刚架、拱、桁架、组合结 构) 无多余约束
超静定结构(梁、刚架、拱、桁架、组合 结构) 有多余约束
退出
不同静力特征的结构其分析计算方法是不同的。 因此,要正确分析必须首先准确无误地判断体系的 可变性以及静定和超静定性质。
结构力学第2章 杆系结构的组成汇总

第二章杆系结构的组成分析由若干杆件用各种结点连接而成的杆件体系,当能承受一定范围内任意荷载时,称为杆件结构。
不能承受任意荷载的体系称为机构。
土木等工程应用的都是结构,但结构的组成方式不同将影响其力学性能和分析方法。
因此,分析结构受力、变形之前,必须首先了解结构的组成。
实际结构中的构件在外界因素作用下都是可变形的,但在小变形的情形下,分析结构组成时,其变形可以忽略不计,因而所有构件均将视为刚体。
第一节基本概念一、自由度自由度是指确定体系空间位置所需的独立坐标数,或体系运动时可以独立改变的几何参数的数目,自由度记作n。
根据上述自由度定义,图2-1所示之平面的一自由点A 以及一自由平面刚体AB(也称刚片,其形状任意)的自由度分别为n=2, n=3, (a) n =2 ox 1 y Ax y 1自由点与自由刚体的自由度图2-1 x B y A x A y(b) n =3A二、约束能减少体系自由度的装置称为约束(有时也称联系),能减少s个自由度的装置称为s个约束。
常见的约束有:单铰 仅连接两个刚片的铰称为单铰,如图2-2a (b) 单铰杆12 s=12 x y A x A y Aϕ1 ϕ2 ϕ3 1o x y A x A y α ϕ1 o ϕ2 A (a) 单铰A s=2链杆 仅用于将两个刚片连接在一起的两端铰 结的杆件称为链杆。
图2-2b 中之12杆即为链杆。
单刚结点仅连接两杆的刚结点,图2-2c所示之B处即为单刚结点。
Axy Ayx ABo(c) 单刚结B s=3(d)一铰连接多根杆 复铰 复刚结 (f)多杆刚结 (e)一杆连接多根杆 同时连接多个刚片的铰、链杆和刚结点分别称为复铰、复链杆、复刚结点。
分别如图2-2d 、e 、f 所示:这些约束的约束数s 及相当的单铰、(单)链杆和单刚结点个数是多少呢?由图2-2可以归纳得到,连接n个刚片的复铰相当于(n-1)个单数,相当于2(n-1)个约束;n个刚片之间复刚结点相当于(n-1)个单刚结点,相当于3(n-1)个约束。
05结构力学第二章

例8:对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
规律2 规律
II I
III
2. 两个刚片之间的组成方式 规律1 规律 两个刚片之间用一个铰和一根链杆相连, 且 两个刚片之间用一个铰和一根链杆相连 三铰不在一直线上,则组成无多余约束的几何 三铰不在一直线上 则组成无多余约束的几何 体系。 或 两个刚片之间用三根链杆相 不变 体系 且三根链杆不交于一点,则组成无多余约束 连,且三根链杆不交于一点 则组成无多余约束 且三根链杆不交于一点 的几何不变体系。 的几何不变体系。
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 该体系为瞬变体系. 方法3: 方法3: 将只有两个铰与其它部分相连的 刚片看成链杆. 刚片看成链杆.
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
二元体( 二元体(片)规则 二元体: 二元体:在一个体系上用两个不共线的链杆连 接一个新结点的装置。 接一个新结点的装置。
在一个体系上加减二元体不影响原体系的几何组成
结构力学第二章 结构的几何构造分析

刚片2
例2:
刚片3 没有多余约束的几何不变体系
没有多余约束 的几何不变体系
§2-3 几何构造分析方法
2)分析已组成的体系 例1:
上部作为 刚片1 地基作为刚片2
结论:没有多余 约束的几何不 变体系。
例2:
1 2
二元体
结论:内部没有 多余约束的几何 不变体系。
§2-3 几何构造分析方法
例3:
o
虚铰
难点:
单铰、复铰、实铰、虚铰、瞬铰、无穷铰、的区别。 如何准确计算平面杆系结构的计算自由度,计算自 由度和实际自由度的关系。 如何正确分析平面杆系结构的几何属性。
§2-1 几何构造分析的几个概念
结构是由若干根杆件通过结点间的联接及与支座 联接组成的。结构是用来承受荷载的,因此必须保证 结构的几何构造是不可变的。例如:
例2:
两组 平行
4
2 3 1 5 6 一组 平行
§2-5 几何构造分析举例
例3:
3 1 Ⅱ
2
结论: 杆1、杆2、杆3不交与 一点,因此该体系是无 多余约束的不变体系。
Ⅰ
例4:
1 Ⅰ 3 Ⅱ 2
结论: 杆1、杆2、杆3不交于 一点,该体系是无多余 约束的几何不变体系。
§2-5 几何构造分析举例
例5:
①
②
②
B
D
D
应注意形成虚铰 的两链杆必须连 接相同的两个刚 片
Ⅰ Ⅰ 实铰 1 2 3
Ⅱ
Ⅲ
Ⅱ O 虚铰
虚铰-瞬铰
O .
.
O’
A
C
B
D
无穷铰
实铰 单铰 虚铰(瞬铰) 无穷铰
§2-2 几何不变体系的组成规律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。
二、平面体系的计算自由度 W
1、平面刚片体系公式 —— 将体系中刚片为被约束对象,铰、刚结和链杆 为约束。则计算自由度公式为:
W 3m (3g 2h b)
m — 刚片数; g — 简单刚结数(固定支座);
h — 简单铰数; b — 简单链杆数 在求解时,地基的自由度为零,不计入刚片数。 2、平面杆件体系公式 —— 将体系中结点为被约束对象,链杆为约束。则 计算自由度公式为:
W 2 j b
j—结点数; b—简单链杆数。 3. 混合公式 —— 将体系中刚片和结点为被约束对象,铰、刚结和链杆为 约束,则计算自由度公式为:
4 6
5
5
4
5 (1,2) 6
(2,3)
(2,3)
.
几何瞬变体系
分析 2AB NhomakorabeaC E F
D
A
1,3
A 2,3 2,3
B
1,2
C E F
D
1,3 B
1,2
D C
F E
几何不变体系
几何瞬变体系
分析 3
F G H F (1,2) G H
A
C
B D
E
A J
C B K D
(2,3) E
(1,3)
F
G
H
F
G
(2,3) A J B C K D E A
A
A
A
A CC
2m
C
C
C
A
(7) (7) (7) (8)
(8) (8) 2m
C
C
E E
A EA
E
A
A
F E
B
JA
E
EF
J
E
2m
3m 2m
A
E E
A
J J
F J G E
H F HG
D H D
C
C GH
D
D
D HD
H C
G EG
C C J
E
2m C 2m 2m 2m 2m 2m 2m 2m
J
J
G G
G C C
规律3 三个刚片用三个铰两两相连,且三个铰不在一直线上,则组成几何不 变的整体,且没有多余约束。 C 被约束对象:刚片 I,II,III C II II 提供的约束:铰A、B、C III III 刚片I, II——用铰A连接 A A 刚片I, III——用铰B连接 刚片II,III——用铰C连接 规律3 铰可以是实铰也可以是瞬铰。 I B I B
提供的约束:铰A及链杆1
I
2、两个刚片之间的连接方式
两根链杆的约束作用相当于一个瞬铰(两链杆延 长线的交点)的约束作用。 规律4 两个刚片用三根链杆相连,且三链杆不交于同 一点,则组成几何不变的整体,且没有多余约束。 1
A
I 2 3 II
被约束对象:刚片 I,II 提供的约束:链杆1,2,3
3、三个刚片之间的连接方式
4
D
5
C 9
7
E 10
例2-3-4 求图示体系的计算自由度。
A
1 2 3
B
4 I
C 5 6
D
7 8
E 9
10
解: 用混合公式计算。
m 1
j 5 g 2 b 10
W (3 1 2 5) (3 2 10) 13 16 3
四、注意点 1、复铰的概念:联结n个刚片的复铰相当于(n-1)个 简单铰,减少(n-1)×2个约束。。
2FNAC sin FP 0
C’
α
FNBC
FP 2 sin
0, FNAC
A
C
B
D
§2-2 平面几何不变体系的组成规律
讨论没有多余约束的几何不变体系的组成规律。
1、一个点与一个刚片之间的连接方式
规律1 一个刚片与一个点用两根链杆相连,且三 个铰不在一直线上,则组成几何不变的整体,且 没有多余约束。
1,3
例5
.
.1,2
2,3
.
.
无多余约束的几何不变体系 例6
1,2
几何瞬变体系
. .
1,3 2,3
. 2,3
几何瞬变体系
1,2 1,3
分析 1
1 2
3
(1,2) 1
(2,3) 2
3
(1,2) 1
2
3
4 6
5
4 6
5
(2,3) 4 6
5
(1,2) 1
2
3
1
2 (2,3) 4 6
3
(1,2)
1
2
3
(1,3)
A
C
B
由不共线的两根链杆联结一个新结点的装置,称为二元体。 (二元体规则)在一个体系上增加或撤去一个二元体,则体系的几何性质 不会改变。
2、两个刚片之间的连接方式
规律2 两个刚片用一个铰和一根链杆相连,且三 个铰不在一直线上,则组成几何不变的整体,且 没有多余约束。 II 1 A
被约束对象:刚片 I,II
B
1
2
3
4
5
例2-3.5:求图示体系的计算自由度。
A
C
4 I 5 6
D
E 9 8 10
解: 用混合公式计算。
1
2
W (3m 2 j ) (3g 2h b)
3
7
m 1 j 5 g 2 b 10 W (3 1 2 5) (3 2 10) 13 16 3
第2章
结构的几何构造分析
§2-1 几何构造分析的几个概念
几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者 如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。
几何不变体系和几何可变体系
几何可变体系:
不考虑材料应变条件下,体系的位置和形状可以改变的体系。
几何不变体系:
不考虑材料应变条件下,体系的位置和形状保持不变的体系。
一、自由度
自由度: 描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的 自由度等于2。 y y 二、刚片 平面体系作几何组成分 B x A 析时,不考虑材料应变,所 x A 以认为构件没有变形。可以 y 把一根杆、巳知是几何不变 y 的某个部分、地基等看作一 x x 0 0 个平面刚体,简称刚片。 平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定, 所以一个刚片在平面内的自由度等于3。
2、若体系不能直接视为两个或三个刚片时,可先把其中已分析出 的几何不变部分视为一个刚片或撤去“二元体”,使原体系简化。`
三、举例 例题1
结论:
无多余约束几何不变体系
几何组成分析 例题2
结论:无多余约束几何不变体系
例题3 例题4
结论:有2个多余约束的几何可变体系
结论:有3个多余约束的几何不变体系
例4
§2-3 平面杆件体系的计算自由度
一、体系的自由度
体系是由部件(刚片或结点)加上约束组成的。 刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余 约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。
复铰:连接两个以上刚片的铰结点。 连接n个刚片的铰相当于(n-1)个单铰
3 6-2×(1)= 4 9-2×(2)= 5
(3)
(4) (4) (4)
(4) (4) (4)
(4)
(5)
(4)
(5) (5) (5) D (5) B (5) B B B B DD D B D B B
A
(5) (5)
(6) F
(6) (6) (6)
F
(6)
(6)
BF
D
D
D FF
F
F
F
(6) (6) B
BB
D
E
E
F
E
B
A
F F B
F
B
H
HD
A
A
W (3m 2 j ) (3g 2h b)
m、j、g、h、b 意义同前。
三、自由度与几何体系构造特点
W 0 W 0 W 0
体系几何可变; 体系几何不变时,无多余约束。 体系有多余约束。
一个体系若求得 W > 0,一定是几何可变体系;若W ≤0,则可能是几何不 变体系,也可能是几何可变体系,取决于具体的几何组成。 所以W ≤0 是体系 几何不变的必要条件,而非充分条件。 例2-3.1: 例2-3.2:
例2-3.6:试求图示体系的计算自由度,并进行几何构造分析。
A B C D E F L
解:1、按平面刚片体系计算自由度
W 3m (3g 2h b)
m= 9 h=12 b=0
I G H
J
K
W 3 9 2 12 3
2、进行几何构造分析
A B C
D E
F L
A
B
C
D E
F
. (1,2)
I G H
J K
I G (1,3) H
J (2,3) K
L
练习2-3.2:试求图示体系的计算自由度,并进行几何构造分析。 Ⅰ
Ⅱ
Ⅲ
(Ⅱ,Ⅲ )
(Ⅰ,Ⅲ ) 解:1、用混合公式计算计算自由度
(Ⅰ,Ⅱ)
W (3m 2 j ) (3g 2h b)
m 1
j 4 h 0 b 11