结构力学
结构力学(全套课件131P) ppt课件

的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径
结构力学知识点超全总结

结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。
以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。
2.支座反力:为了平衡结构受力,在支座处产生的力。
3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。
这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。
4.杆件的拉力和压力:杆件受力状态分为拉力和压力。
拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。
5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。
梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。
6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。
简支梁是两端都有支座的梁结构。
7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。
梁的渐进程度是指梁的挠度随着距离变化的情况。
8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。
平面受力分析是一种在平面框架结构上进行受力分析的方法。
9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。
斜拉索的受力分析包括张力和弯矩的计算。
10.刚度:刚度是指物体在受力作用下抵抗变形的能力。
刚度越大,物体的变形越小。
刚度可以通过杆件的弹性模量和几何尺寸进行计算。
11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。
弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。
12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。
失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。
13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。
矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。
结构力学的名词解释

结构力学的名词解释结构力学是一门研究物体在受力作用下变形、应力分布和破坏形态的学科。
它应用于工程学、建筑学以及材料科学等领域,为设计和分析各种结构提供基础理论与方法。
在本文中,将对结构力学的一些重要概念进行解释。
1. 受力分析受力分析是结构力学的起点,它通过确定受力体系来研究物体在受力作用下的力学行为。
受力分析通常包括力的方向、大小和作用点等方面的确定,以及力的平衡和不平衡情况的分析。
受力分析可以通过数学模型、实验测试和计算机仿真等方法进行。
2. 变形与应变当物体受到外力作用时,会发生变形,即物体的形状、大小或位置发生改变。
变形可以分为弹性变形和塑性变形两种类型。
弹性变形是指物体在外力作用下,发生变形后能恢复到原始形态的现象;而塑性变形则是指物体在外力作用下,发生变形后无法完全恢复的现象。
应变则是衡量变形程度的物理量,表示单位长度或单位体积的变化量。
3. 应力与应力分析应力是指物体内部受到的力的效果,具体来说,是单位面积上的力的大小。
应力通常包括拉应力、压应力和剪应力三种类型。
拉应力是物体在被拉伸时的应力,压应力是物体在被压缩时的应力,而剪应力则是物体在受到切变力时的应力。
应力分析的目的是确定物体内部的应力状态,以便评估结构的稳定性和安全性。
4. 强度与刚度强度是指物体抵抗外力破坏的能力,可以分为压缩强度、拉伸强度和剪切强度等。
刚度则是衡量物体抵抗变形的性质,即物体对外力作用下的变形程度的抵抗能力。
强度和刚度是结构设计的重要考虑因素,旨在确保结构的安全性和稳定性。
5. 破坏形态破坏形态是指物体在受到过大的外力作用时,发生的结构破坏的现象。
根据物体材料和加载条件的不同,破坏形态可以分为拉断、压碎、断裂和屈服等。
破坏形态的分析有助于理解物体在极限条件下的行为,以及设计和改进结构的可靠性。
6. 力学模型与分析方法为了更好地研究和分析结构的力学行为,结构力学使用了多种力学模型和分析方法。
其中,有限元方法是一种常用的数值计算方法,通过将结构离散成许多小单元,利用数值计算的方式模拟和分析结构的应力和变形。
结构力学复习范文

结构力学复习范文结构力学是研究物体在外力作用下的静力学和动力学特性的学科。
它是工程学的基础科学之一,对于工程师来说是非常重要的。
在这篇文章中,我们将复习一些关键的结构力学概念和公式。
1.静力平衡:静力平衡是结构力学的基础,它通过分析受力结构体的各个部分,使得结构体整体处于平衡状态。
静力平衡的条件是力的合力为零,力的合力矩为零。
力的合力是所有外力和内力与零点连接线的代数和,力的合力矩是所有外力和内力与零点连接线的代数和与零点的距离的乘积。
2.梁的静力学:梁是一种常见的结构物,用来承载和传递载荷。
梁的静力学分析是确定梁在给定外力作用下的内力、弯矩和剪力。
常见的梁的静力学方程有弯矩方程和剪力方程。
在梁的静力学分析中,我们通常假设梁是细长的,并且在小段上是直线的。
3.杆的静力学:杆是一种常见的结构元素,用来承受拉压载荷。
杆的静力学分析是确定杆在给定外力作用下的应力和变形。
在杆的静力学分析中,我们通常假设杆是细长的,并且在大多数情况下是均匀的。
4.桁架的静力学:桁架是由杆件和连接节点构成的结构体系,用于支撑和分散荷载。
桁架的静力学分析通常涉及到力的平衡和节点的变形。
常见的桁架的静力学方程有平衡方程和位移方程。
5.刚体平衡:刚体是一个不会变形的物体,在静力学中,我们假设结构体是刚体。
刚体平衡是指刚体在外力作用下保持平衡的条件。
刚体平衡的条件是力的合力为零,力的合力矩为零。
6.动力学:动力学是研究物体运动的学科。
在结构力学中,我们主要关注结构体在外力作用下的振动特性。
常见的动力学方程有加速度方程和位移方程。
动力学分析可以用来确定结构体的共振频率和模态形状。
这些是结构力学的一些关键概念和公式。
希望本次复习可以帮助你加深对结构力学的理解和应用。
结构力学 structural mechanics

结构力学 structural mechanics
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
结构力学的任务
研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
结构力学的学科体系
一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。
结构力学的研究方法
结构力学的研究方法主要有工程结构的使用分析、实验研究、理论分析和计算三种。
在结构设计和研究中,这三方面往往是交替进行并且是相辅相成的进行的。
结构力学是一门古老的学科,又是一门迅速发展的学科。
新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。
计算机的发展,为结构力学提供了有力的计算工具。
另一方面,结构力学对数学及其他学科的发展也起了推动作用。
有限元法这一数学方法的出现和发展就与结构力学的研究有密切关系。
结构力学主要知识点归纳

结构力学主要知识点归纳Organized at 3pm on January 25, 2023Only by working hard can we be better结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构;通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点;C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构;B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定;②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定;二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系;B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置;常具体划分为常变体系和瞬变体系;2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目;3、联系:限制运动的装置成为联系或约束体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系;②一个单铰为两个联系;4、计算自由度:)W+-=,m为刚片数,h为单铰束,r为链杆数;h2(3rmA、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,是否为几何不变仍不确定;5、几何不变体系的基本组成规则:A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系;B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系;C、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系;6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰;虚铰在无穷远处的体系分析可见结构力学P20,自行了解;7、静定结构的几何构造为特征为几何不变且无多余联系;三、静定梁与静定钢架1、内力图绘制:A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示内力的数值而绘出的;B 、弯矩图习惯绘在杆件受拉的一侧,而图上可不注明正负号;梁的剪力图和轴力图将正值的竖标绘在基线的上方,同时注明正负号;刚架的剪力图和轴力图将正值的竖标绘在杆件的任意一侧,但必须注明正负号;C 、轴力以拉为正,剪力以绕隔离体顺时针方向转动为正;弯矩以使梁的下侧纤维受拉为正;D 、一般先求出支反力再求内力;2、计算躲跨静定梁的顺序应该是先附属部分,后基本部分;3、静定结构的特征:A 、静力解答唯一性B 、在静定结构中,除荷载外,其他任何原因如温度改变、支座位移、材料收缩、制造误差等均不引起内力;C 、平衡力系的影响:当由平衡力系组成的荷载作用于静定结构的某一本身为几何不变的部分上时,则只有则只有此部分受力,其余部分的反力和内力为零;D 、荷载等效变换的影响:合力相同的各种荷载称为静力等效的荷载;当作用在静定结构的某一本身几何不变部分上的荷载在该部分范围内作等效变换时,则只有该部分的内力发生变化,而其余部分的内力保持不变;四、静定桁架1、桁架结构的特点:只受轴力2、桁架内力分析方法:A 、节点法:所取隔离体只包含一个节点;①L 形节点:当节点上无荷载时,两杆内力皆为0;②T 形节点:当节点无荷载时,第三杆又称单杆必为零,共线两杆内力相等且符号相同; ③X 形节点:当节点无荷载时,共线两杆内力相等且符号相同;④K 形荷载:当节点无荷载时,共线两杆内力相等且符号相同;B 、截面法:所取隔离体不只包括一个节点;①力矩法②投影法五、结构位移计算1、虚功原理:变形体系处于平衡的必要和充分条件是,对于任何虚位移,外力所作虚功总和等于各微段上的内力在其变形上所作的虚功总和,或者简单的说,外力虚功等于变形虚功;2、变形虚功方程:∑⎰∑⎰∑⎰++=ds F Md du F W s N v γϕ外力虚功:∑+∆=c F F W R K K3、单位荷载外力虚功∑+∆•=c F W R K _1单位荷载内力虚功∑⎰∑⎰∑⎰++=ds F d M du F W s N v γϕ______∑⎰∑⎰+=EI ds M M EA ds F F P NP N ____常不考虑剪切影响4、图乘法:一个弯矩图的面积w A 乘以其形心处所对应的另一个直线弯矩图上的竖标c y ,再除以EI;A 、使用条件:①杆件为直线;②EI=常数;③__M 和p M 两个弯矩图中至少有一个是直线图形;B 、注意点:①竖标取自直线图形②w A 和c y 在杆件的同侧乘积取正号,异侧则取负号;5、温度变化,静定结构位移计算tds du t α=,t 为杆件轴心温度变化值tds d t ∆=αϕ,t ∆为杆件两侧温度变化之差; 六、超静定结构计算——力法1、力法:解除超静定结构的多余联系而得到静定的基本结构,以多余未知力作为基本未知量,根据基本体系应与原结构变形相同而建立的位移条件,首先求出其多余未知力,然后由平衡条件即可计算其余反力、内力;2、超静定问题求解思路:A 、超静定问题需综合考虑以下三个方面:①平衡条件;②几何条件;③物理条件;B 、确定超静定次数;C 、确定基本结构及基本体系;3、力法的典型方程以三阶方程组为例方程意义:基本结构在全部多余未知力和荷载共同作用下,在去掉各多余联系处沿各多余未知力方向的位移,应与原结构相应的位移相等;4、力法解题步骤:①确定基本体系;②写出位移条件,力法方程;③作单位弯矩图,荷载弯矩图;④求出系数和自由项;⑤解力法方程;⑥叠加法作弯矩图;5、力法注意事项:A 、对于刚架通常可略去轴力和剪力的影响而只考虑弯矩一项;B 、在荷载作用下,超静定结构的内力只与各杆的刚度相对值有关,而与其刚度绝对值无关;C 、基本结构必须是几何不变的,而不能是几何可变或瞬变的,否则将无法求解;D 、对称性的利用:①对称结构在对称荷载作用下,轴力图和弯矩图是对称的,剪力图是反对称的;②对称结构在反对称荷载作用下,轴力图和弯矩图是反对称的,剪力图是对称的;七、位移法1、位移法以节点位移作为基本未知量,通常不考虑杆件轴向变形;每一根杆件可以看成一根单跨超静定梁;2、为计算方便,杆端弯矩是以对杆端顺时针方向为正对节点说支座则以反时针方向位移,转角以顺时针方向为正,位移以使杆件顺时针转动为正;八、影响线及其应用1、影响线:当一个指向不变的单位集中荷载通常是竖直向下的沿结构位移时,表示某一指定量值变化规律的图形,称为该量值的影响线;绘制影响线时,通常规定正值的竖标绘在基线的上方;2、绘制影响线有两种基本方法:静力法和机动法;静力法就是将荷载F=1放在任意位置,并选定一坐标系,以横坐标x 表示荷载作用点的位置,然后根据平衡条件求出所求量值与荷载位置x 之间的函数关系式,这种关系式称为影响线方程,再根据方程作出影响线图形;机动法作影响线的依据是理论力学的虚位移原理,即刚体体系在力系作用下处于平衡的必要和充分条件是:在任何微小的虚位移中,力系所作的虚功总和为零;欲作某一量值影响线,只需将与该量值相应的联系去掉,并使所得体系沿量值正方向发生单位位移,则由此得到的荷载作用点的竖向位移图即代表该量值的影响线;3、最不利荷载位置使量值S 成为极大的条件是:荷载自该位置无论向左或向右移动微小距离,S 均减小; 荷载左移,0tan >∑i Ri F α荷载右移,0tan <∑i Ri F α使量值S 成为极小的条件是:荷载自该位置无论向左或向右移动微小距离,S 均增大; 荷载左移,0tan <∑i Ri F α荷载右移,0tan >∑i Ri F α注:只有当某个集中荷载恰好作用在影响线的某一个顶点处时才可能出现极值;为减少试算次数,宜事先大致估计最不利荷载位置;为此,应将行列荷载中数值较大且较为密集的部分置于影响线的最大竖标附近,同时注意位于同符号影响线范围内的荷载应尽可能的多;4、简支梁的绝对最大弯矩A 、在移动荷载作用下,可以求出简支梁任一指定截面的最大弯矩;所有截面的最大弯矩中的最大的,称为绝对最大弯矩;B 、求解步骤:①确定使梁中点截面发生最大弯矩的临界荷载Fk 此时可顺便求出此截面的最大弯矩; ②移动荷载组使Fk 和FR 对称于梁的中点,此时应注意检查对梁上荷载是否与求合力时相符,如不符,则应重新计算合力,再行安排直至相符;③最后计算Fk 作用点截面的弯矩,通常即为绝对最大弯矩;。
结构力学名词解释

结构力学名词解释结构力学是力学的一个分支,主要研究刚体和物体的运动、变形、应力和应变等力学问题。
1. 刚体:刚体是指物体所有点之间的相对位置在运动或作用力下不发生改变的物体。
刚体不会发生形变,其运动可以用平动和转动两种方式描述。
2. 运动学:运动学研究物体的运动状态,主要研究物体的位移、速度和加速度等。
运动学分为平动运动和转动运动两大类。
3. 平动运动:物体的所有点在同一时间内沿着相同方向移动,并且移动的距离相等。
平动运动可以用质心的位置、速度和加速度来描述。
4. 转动运动:物体的某一点围绕某个轴进行旋转运动。
转动运动可以用角度、角速度和角加速度来描述。
5. 力:力是促使物体发生运动或变形的物理量,用矢量表示。
力的单位是牛顿(N),它等于1千克质量在1秒钟内获得的加速度。
6. 应力:应力是物体内部受到的单位面积力的大小,用矢量表示。
常用的应力有压应力和剪应力。
7. 压应力:压应力是垂直于物体表面的作用力对单位面积的大小。
压应力可以导致物体的压缩变形。
8. 剪应力:剪应力是平行于物体表面的作用力对单位面积的大小。
剪应力可以导致物体的剪切变形。
9. 应变:应变是物体在受到外力作用下发生形变的程度,用无量纲的比例表示。
常用的应变有线性应变和切变应变。
10. 线性应变:线性应变是物体的长度与原始长度之差与原始长度的比值。
线性应变可以用来描述物体的拉伸或压缩变形。
11. 切变应变:切变应变是物体内部某一点沿切面上的平均切线方向的位移与该点到切面的距离的比值。
切变应变可以用来描述物体的剪切变形。
12. 应力-应变关系:应力-应变关系描述了物体在外力作用下产生应变的规律。
材料的应力-应变关系可以通过实验得到,常用的应力-应变关系包括线弹性、非线弹性和塑性等。
以上是结构力学中的一些重要名称和概念的解释,结构力学在实际工程中具有重要的应用价值,能够帮助工程师分析和设计各种结构的力学性能。
《结构力学》知识点归纳梳理

《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)B截面处的最大弯矩MB和最大竖向位移ΔBV。(6分)
图5图6
2.图6结构质量忽略不计,EI=常数。列出其振动频率方程(15分)。
3.图7排架,横梁EI=∞,质量m集中在横梁上。设柱顶产生初始侧移y0=8mm,此时突然释放,排架自由振动。测得2个周期后柱顶的侧移为y2=4mm。求:
一、Translation(中文译成英文,英文译成中文)(2分×5=10分)
1.整体刚度矩阵2.柔度法3.强迫振动
4. coordinate transformation 5. harmonic load
二、简答题(25分)
1.判断图1结构动力自由度的个数,忽略杆件的轴向变形,除特殊注明外忽略分布质量。(6分)
(1)排架的阻尼比;(6分)
(2)振幅衰减到y0的5%以下至少所需要的时间(以整周期计)。(5分)
(3)求简谐荷载作用下,发生共振时的动力系数和最大动力系数。(4分)
图7图8
4.矩阵位ቤተ መጻሕፍቲ ባይዱ法计算图8刚架结构,考虑轴向变形。
(1)结构整体刚度矩阵有几阶?(3分)
(2)写出单元①的单元定位向量 ;(3分)
图1
2.定性画出图2结构的主振型形状。(8分)
图2
3.写出图3单元在整体坐标系下的单元刚度矩阵,忽略杆件的轴向变形。(6分)
图3
4.定性分析图4(a)和(b)结构的自振频率ω之间的关系,EI1=常数,忽略杆件的轴向变形。(5分)
图4
三、计算题(65分)
1.图5结构受到简谐荷载 ,其中 。EI=常数,忽略杆件的轴向变形。求:(1)结构的自振频率;(7分);
(3)说明在单元②的 中的元素k62集合到整体刚度矩阵 后所在的位置;(3分)
(4)写出③单元的坐标转换矩阵;(4分)
(5)写出等效节点荷载向量 。(4分)
(6)说明整体刚度矩阵 中的元素 的物理意义。(3分)