怎样由三视图确定正方体个数教学内容

合集下载

由三视图确定小正方体的个数的方法

由三视图确定小正方体的个数的方法

由三视图确定小正方体的个数的方法
通过三视图确定小正方体的个数是一种简单而有效的方法,可以用来解决许多复杂的几何问题。

三视图法是一种几何技术,它使用三个平面图来表示一个物体的形状,其中包括正视图、左视图和俯视图。

这三个视图是从不同的角度来看待物体的,可以清楚地显示出物体的三维形状。

例如,如果要确定小正方体的个数,可以使用三视图法。

首先,先找出三个视图,即正视图,左视图和俯视图,仔细观察每个视图中小正方体的位置,数数它们的个数。

然后,根据三个视图中小正方体的位置和数量,计算出小正方体的总数。

根据三视图法,可以通过观察三个视图来确定小正方体的总数,而不需要真正地计算它们的体积。

这一步骤非常实用,可以节省大量的时间和精力。

当然,在使用三视图法之前,需要先熟悉三视图的概念,然后根据实际情况,灵活地运用这一技术来解决实际问题。

只有掌握了这种几何方法,才能解决复杂的几何问题。

总之,三视图法是一种有效的几何方法,可以用来快速确定小正方体的个数。

它可以节省大量的时间和精力,因此被广泛应用于复杂的几何问题的解决中。

第3期利用三视图确定正方体的个数

第3期利用三视图确定正方体的个数

第3期利用三视图确定正方体的个数三规则:主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

应用如图表示某个由小正方体搭成的几何体的俯视图,俯视图无法表示该几何体的高度,用3代表右上角这个位置有3个立方体。

用2表示左上角这个位置有2个立方体,1表示右下角这个位置有1个立方体,此时,我们不但可以轻易地画出该几何体的其它两个视图,也可以得知该物体一共由1 2 3=6个小正方体组成.借助俯视图的这个功能,我们在确定一个几何体由多少个小正方体组成的时候,可以先画出俯视图,再根据主视图与左视图,确定俯视图各位置上的立方体的个数,从而快速找出正方体的个数.例1 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_______个解析第一步:从俯视图入手,结合主视图,从正面看过去,也就是从如下图的箭头方向看过去,可以确定的是俯视图最右侧只有一层,标上数字1,左边这列最高有两层,具体数目还不能确定第二步:结合左视图,从箭头方向看过去,右侧有两个一层的,所以马上可以确定如图两个位置的数量.由于左视图的最左侧最高有2个,所以,沿箭头方向看过去最左侧最高有2个,所以,俯视图的空白处应填2,如图,所以,一共有2 1 1 1=5个正方体.点拨:此立体图形的三视图都已知,所以俯视图结合主视图和左视图,容易明确个位置上的正方体的个数.例2 一个几何体由若干个大小相等的小立方体组成,下面分别是此几何体的主视图,和俯视图,该几何体至少是用错少个小立方块搭成的.解析此题已经存在俯视图,还是从俯视图出发考虑,因为主视图已经确定,如蓝色所示,右侧两个位置最高只有一个,所以填写数字1.而最左侧最高有两个,因为是最少是多少个,所以左侧三个位置,只要有一个位置是2个,其余都是1个即可,如图,有下面三种可能总数都为2 2 2=6个.此时顺便还可以求出最多有多少个.如图,只需要左侧最高都是2个即可,所以,最多有2 2 2 1 1=8个.点拨:此题已知主视图与俯视图,可利用主视图在俯视图的基础上填写添加数字,但由于左视图不确定,所以,可能有多种情况.例3 如图,一个几何体是由若干个小正方体堆积而成的,主视、左视图如下,要摆成这样的图形,至少需要多少块小正方形,最多需要多少块小正方体.解析此题没有俯视图,不妨尝试去画出俯视图,主视图和俯视图的长要相等左视图和俯视图的宽要相等.已知俯视图的长和和宽也不一定能完全确定俯视图的形状,但是可以确定俯视图最大可能是什么由题意,俯视图最大可能是首先算出几何体最多可能是多少个,再次基础上,减少正方体的个数,在主视图和左视图不变的前提下,看最少能剩下几个.结合主视图,从前面看俯视图,右侧两个最高是1,所以可以确定右侧两列的最多全是1结合左视图,从左边看俯视图,最上面行和最下面的行最高都是2,如图.最后确定左视图中间的,最高为1 .此时我们得出的小正方体最多可能是2 2 1 1 1 1 1 1 1=11个.如图,减少4个,不影响主视图再减少1个,不影响左视图不能再减少了,所以,此时的数量2 2 1 1=6即是最少需要的正方体个数.点拨:此题已知主视图与左视图,但是不知道俯视图,利用投影的原则,主视图和俯视图的长要相等,左视图和俯视图的宽要相等.尝试画出俯视图的最大可能,首先确定出几何体的最多可能的正方体的个数,在此基础上减少正方体的个数,但不改变主视图与俯视图,到最后不能再减少时,即可确定最少的可能的个数.《义务教育数学课程标准》指出,在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。

巧用三视图妙定正方体方块

巧用三视图妙定正方体方块

1、主俯式
主 视 图
3 2 2 1 1 1
操作方法与步骤 :
(1)根据长对正的原则,仿照全 图中方法⑴⑵,将主视图中三列 正方形块数3、2、1分别写在俯 视图中小方格内,如上图,每个 方格内只有一个数字。 (2)将俯视图中方格内各数字相 加,3+3+2+1+1=10,就是该图 中最多的正方体块数。 (3)从下方看俯视图,再根据主 视图中每列数字3、2、1,每列 上有相同数字只保留一个数(可 任意保留),其它方格内的数字 都减为1,若是1时不再变化,变 化后的图形为:
1
至少有一个地方 是3块,其它1块; 至多每个地方都 3块。 至少有一个地方 是2块,其它一 块;至多每个地 方都2块。
主视图
俯视图
2、左俯式
左 视 图
2 3
操作方法与步骤 :
(1)、根据宽相等的原则, 类比主俯式结合全图中步 骤③④,将左视图中两列 的正方形个数2、3分别 写在俯视图中对应行的方 格内。 (2)、将图中所有数字相 加,2+2+2+3+3=12, 就是该图n中的最大值。
1 2
3 1
主视 图
左视图
6、如图所示的是由几个小立方块所搭几何 体的俯视图,小正方形中的数字表示在该位 置小立方块的个数,请画出相应几何体的主 视图和左视图。
3
4
2
2
1
主视图
左视 图
7、如图所示的是由几个小立方块所搭几何体的 俯视图,小正方形中的数字表示在该位置小立方 块的个数,请画出相应几何体的主视图和左视图。
1、下图1中正方体的块数n的 取值范围是 9≤n≤10 。
主视图
俯视图
俯视图

根据三视图求小正方体的个数课件

根据三视图求小正方体的个数课件

实例三
要点一
总结词
实际生活中三视图的小正方体个数求解需要结合实际情况 进行,通过观察实际物体的三视图并结合实际尺寸来进行 计算。
要点二
详细描述
在实际生活中,有些物体可能不是规则的几何体,如机器 零件、建筑物等。此时需要结合实际物体的尺寸和三视图 中的投影来进行计算。例如,对于一个建筑物,可以通过 测量其长、宽、高来计算其小正方体的数量。同时,还需 要注意实际物体中的一些细节和特征,如孔洞、凸起等, 这些特征可能会影响小正方体的数量。
下一步学习建议
学习根据多视图计算小正方体个数的方 法
练习常见题型及解题思路 提高空间想象能力和几何思维能力
深入理解多视图的原理及应用 学习立体几何中其他相关知识点
THANKS
感谢观看
在日常生活和生产实践中,很多时候 需要从三视图来观察物体的形状和结 构,因此掌握三视图求解小正方体的 个数是非常重要的技能。
课程目标
理解三视图的基本概 念和原理。
学会求解三视图中小 正方体的个数。
掌握三视图下小正方 体的排列规律。
学习方法
通过实例分析,让学生了解三视 图与立体图之间的转换关系。
通过对不同类型三视图的讲解, 让学生掌握小正方体的排列规律
总结词
理解三视图中的投影关系与小正方体个数的关系是求解小正方体个数的关键。
详细描述
在三视图中,每个视图都是从不同的方向对几何体进行投影得到的。理解投影关系可以帮助我们更好 地理解小正方体的数量。例如,在一个视图中看到的小正方体可能在其他视图中并不能看到,这是因 为其他视图是从不同的方向进行投影的。
06
小正方体的形状由左视图的前后 、左右、上下三个方向确定。
04
CATALOGUE

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数

怎样由三视图确定正方体个数三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有( )个.(A )4 (B )5 (C )6 (D )7析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.图121111 图2例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 个.析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小主视图 左视图 俯视图正方体的个数如图3所示,搭成这个几何体的小正方体的个数是1+2+1=4,故本题结果就填4. 相应的几何体如图4所示.图4例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成? ( )(A )12个 (B )13个 (C )14个 (D )18个图6111112222解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.名称: U3:由三视图判断几何体描述: (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.用三视图确定小正方体的块数的简便方法一、由三个视图确定小正方体的块数例 1 如图所示的是一个由相同的小正方体搭成的几何体的三视图,那么这个几何体是由多少个小正方体搭成的?图5主视图左视图俯视图解析:在三个视图中,俯视图最重要,它可以直接确定底层有几个正方体,再由主视图,左视图确定有几层,每层有几个.一般步骤:1.复制一张俯视图,在俯视图的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.21 2 12如在横竖方向对应的都是2,则填入2;若方格所对应的横竖方向上的数字不一样,如在横竖方向对应的分别是填入12211 2 1通过上面的两步,我们就能确定每一个方格中的数字(方格中的数字代表所在位置的正方体的块数),从而就能确定这个几何体所需要的小正方体的块数.答案: 2 1 ,这个几何体是由8块小正方体搭成的.1 2 11二、由两个视图确定小正方体的块数根据两个视图一般不能确定一个几何体,但可以确定搭成这样的几何体最多需要多少块?最少需要多少块?1.由主视图,俯视图来确定例2 如图所示的是由一些正方体小木块搭成的几何体的主视图,俯视图.它最多需要多主视图俯视图解析:(1)复制一张俯视图,在俯视图的下方标上主视图所看到的小正方体的最高层数,将这些数字填入所在竖上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 2 13 23 23 2 1(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每列上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 2 1 1 1 11 1 3 21 1 1 1所以这个几何体最多需要16块,最少需要10块.2.由左视图,俯视图来确定方法跟由主视图,俯视图来确定一样.例3 如图所示的是由一些正方体小木块搭成的几何体的左视图,俯视图,它最多需要多少块?最少需要多少块?左视图俯视图解析:(1)复制一张俯视图,在俯视图的左方标上左视图所看到的小正方体的最高层数,将这些数字填入所在横上的每一个方格,则可得到这个几何体所需最多的小正方体的块数.3 31 1 12 2 2 2(2)因为从俯视图可以确定底层有正方体,所以方格中的数字最小为1,那么只要将每横上的数字留一个,其余的均改为1,这样就可以确定最少需要的小正方体的块数.举两种情况如图:3 3 3 31 1 1 1 1 12 2 1 1 2 1 2 1所以这个几何体最多需要11块,最少需要9块.3.由主视图,左视图来确定由这两个视图来确定小正方体的块数是最难的.例4 如图所示的是由一些正方体小木块搭成的几何体的主视图,左视图,它最多需要多少块?最少需要多少块?主视图左视图解析:(1)取一张3×4的方格纸,在方格纸的下方,左方分别标上主视图,左视图所看到的小正方体的最高层数.然后,在方格纸中填入方格所在横,竖上的较小的数字(如果相同取相同的数字),那么就可确定这个几何体所需最多的小正方体的块数.2 2 1 2 23 2 1 3 21 1 1 1 12 13 2(2)在方格纸中寻找所在横,竖方向上的数字一样的方格,取相同的数字填入方格,这样就可以确定最少需要的小正方体的块数.2 2 23 31 12 13 2所以这个几何体最多需要19块,最少需要8块.通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到.解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错.通过三视图确定组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,再按照上面介绍的方法,小正方体的个数就迎刃而解了.。

由三视图-判断小正方体个数

由三视图-判断小正方体个数

由三视图,判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。

解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。

通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。

在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。

以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。

”一、结果唯一的计数例1 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。

A.9箱 B.10箱 C.11箱 D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。

由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。

故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。

各行、各列小正方体的个数如俯视图中所表示。

这堆货箱共有3+1+1+2+1+1=9(箱)。

二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。

分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。

第1列均为1层,第2列最高2层,第3列最高3层。

左视图为A时,第1行、第2行最高均为3层。

几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。

此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。

三视图小正方体个数口诀

三视图小正方体个数口诀

三视图小正方体个数口诀三视图求正方体个数口诀:主俯看列,俯左看行,主左看层。

前上看列,上右看行,前右看层。

前面看,上下左右都不变。

上面看,左右不变,前下后上。

右面看,上下不变,前左后右。

左面看,上下不变,前右后左。

一、三视图定义
三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来的图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。

从物体的左面向右面投射所得的视图称左视图(侧视图)能反映物体的左面形状,还有其它三个视图不是很常用。

三视图就是主视图(正视图)、俯视图、左视图(侧视图)的总称。

二、特点
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

三视图中的小正方体计数问题

三视图中的小正方体计数问题

三视图中的小正方体计数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。

解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。

通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。

在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。

以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。

”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。

A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。

由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。

故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。

各行、各列小正方体的个数如俯视图中所表示。

这堆货箱共有3+1+1+2+1+1=9(箱)。

练习题1.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱2.在仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱从三个方向看到的图形画了出来,如图所示,则这堆正方体货箱共有()A.9箱B.10箱C.11箱D.12箱3.在某仓库里堆放着若干个相同的正方体货箱,管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.8箱B.9箱C.10箱D.11箱4.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.6个B.5个C.4个D.3个5.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.4个B.5个C.6个D.7个6.在学校教师办公室里堆放着若干个相同的正方体粉笔盒,某同学将这堆粉笔盒的三视图画了出来,如图,则这堆粉笔盒共有()A.2个B.3个C.4个D.5个7.在抗震救灾某仓库里放着若干个相同的正方体货箱,某摄影记者将这堆货箱的三视图照了出来(如图),则这堆正方体货箱共有()A.2箱B.3箱C.4箱D.5箱8.在一个仓库里堆积着若干个正方体的货箱,要搬运这些货箱很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个方法:将这堆货箱分别从正面、左面、上面所看到的平面图形画了出来,如图所示,你能根据这些平面图形帮他清点一下箱子的数量吗?这些正方体货箱的个数为()A.5 B.6 C.7 D.89.如图是抗争救灾某仓库里放着若干个正方体货箱,某摄影记者将这堆货箱的三视图照了出来,则这堆正方体货箱共有()A.5箱B.6箱C.7箱D.8箱10.在学校仓库里堆放着若干个盒相同的正方体小粉笔盒,仓库管理员将这堆粉笔盒的三视图画了出来,如图所示,则这堆正方体小粉笔盒共有()A.11盒B.10盒C.9盒D.8盒11.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些正方体箱的个数是()A.6 B.7 C.8 D.912.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子的个数是()A.9 B.8 C.7 D.613.仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是()A.6 B.7 C.8 D.914.一仓库管理员在清理仓库物品时,发现所有物品都是一些大小相同的正方体箱子.若摆放物品的三视图如图所示,则仓库最高摆放正方体的箱子的个数是()A.1个B.2个C.3个D.无法确定二、根据两种视图确定计数范围(结果不唯一的计数)(1)知道几何体的主视图和俯视图例2.如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。

视图中求正方体个数有妙招

视图中求正方体个数有妙招
通过小正方体组合图形的三视图,确定组合图形中 小正方体的个数,在中考或竞赛中经常会遇到。解决这类 问题如果没有掌握正确的方法,仅仅依赖空间想象去解决, 不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是 要弄清楚这个小正方体组合图形共有多少行、多少列、每 行每列中各有多少层,理清了这些行、列、层的数量,小 正方体的个数就迎刃而解了。在三视图中,通过主视图、 俯视图可以确定组合图形的列数;通过俯视图、左视图可 以确定组合图形的行数;通过主视图、左视图可以确定行 与列中的最高层数。
练习 4.(2010•河南)如图是由大小相同的小正方体组成的简 单几何体的主视图和左视图那么组成这个几何体的小正 方体的个数最多为 7 .
解:3行,2列,最底层最多有3×2=6个正方体,第二 层有1个正方体,那么共有6+1=7个正方体组成.
5.(2005•内江)桌上摆着一个由若干个相同正方体组成 的几何体,其主视图和左视图如图所示,这个几何体最多 可以由 13 个这样的正方体组成.
解:树的顶点和影子的顶点的连线会相交于一点,所 以是中心投影,即它们的影子是在灯光光线下形成 的.故填:灯光.
解:易得第一层最多有9个正方体,第二层最多有4个正 方体,所以此几何体共有13个正方体.
6.由一些大小相同的小正方体组成的简单几何体的主视
图和俯视图.(如图)
(1)请你画出这个几何体的一种左视图;
(2)若组成这个几何体的小正方体的块数为n,请你
写出n的所有可能值.
解:(1)左视图有
以下5种情形:
(2)n=8,9,10,11.
木杆在地面上的影子,将它们按时间先后顺序进行排列,

.
解:太阳从东方升起最后从西面落下,木杆的影子应该 在西面,随着时间的变化影子逐渐的向北偏西,南偏西, 正东方向的顺序移动,故它们按时间先后顺序进行排列, 为(D)(C)(A)(B).

中考根据三视图求小正方体的个数

中考根据三视图求小正方体的个数

在一仓库里堆放着若干个相同的正方体货箱,仓库管理员 将这堆货箱的三视图画了出来,如图所示,则这堆正方体货
箱共有( )。
如图是由大小相同的小正方体组成的简单几何体的主视图和 左视图那么组成这个几何体的小正方体的个数最多为 。
如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图
(1)请你画出这个集合体的一种左视图 (2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值
一个几何体由一些小正方体组成,其主视图和左视图如图所示, 则其俯视图不可能是( )
• 如图,是由一些大小相同的小正方体组 成的简单几何体的主视图和俯视图,若 组成这个几何体的小正方体的块数为n, 则n的所有可能的值之和为 。

如图2,是由若干个(大于8个)大小相同的正方体组成的一个 几何体的主视图和俯视图,则这个几何体的左视图不可能是 ( )。
先填满 后删减

2
一 练
1
2
由这两个视图来确定小正方体的块数是最难的
练 一 练
主视图
11 21
左视图
1 22
想象的俯视图
1.想象俯视图:画m×n的方格纸 2.标数 3.相同数字保留,不同数字取小。可知最多块数.
4.相同数字保留一类,不同数字删减。可知最少块数.
主视图
至少6个,至多10个
左视图 22 1 1 12 1 1 12 1 1
222
1
俯视图
第二类:已知两种视图,求小正方体的个数
先填满,后删减
3 31 1 3
1.在俯视图的方格中标出由主视图所看到的小正方体的 最高层数,可以得到这个几何体所需的最多块数。
先填满
ห้องสมุดไป่ตู้

用三视图确定小正方体的块数的简便方法

用三视图确定小正方体的块数的简便方法
格,则可得到这个几何体所需最多的小正方体的块数.
(2)因为从俯视图可以确定底层有正方体,所以方格中的数! 字最小为1,那么只要将每横上的数字留一个,其余的均改为1,
这样就可以确定最少需要的小正方体的块数.举两种情况,如
下图:
3
3
3
33
3
1
11
2 222
1
11
2 211
1
11
2121
所以这个几何体最多需要11块,最少需要9块.
(二) 由二个视图确定小正方体的块数 根据两个视图一般不能确定一个几何体,但可以确定搭成
这样的几何体最多需要多少块?最少需要多少块? 1. 由主视图,俯视图来确定
例2 如图所示的是由一些正方体小木块搭成的几何体的主 视图、俯视图.它最多需要多少块?最少需要多少块?
321
32
32
32 1
解: (1)复制一张俯视图,在俯视图的下方标上主视图所看到的 小正方体的最高层数,将这些数字填入所在竖上的每一个方格,
上主视图,左视图所看到的小正方体的最高层数.然后,在方 格纸中填入方格所在横,竖上的较小的数字(如果相同取相同的 数字),那么就可确定这个几何体所需最多的小正方体的块数.
(2)在方格纸中寻找所在横、竖方向上的数字一样的方格,取 相同的数字填人方格,这样就可以确定最少需要的小正方体 的块数.
22 3
2 3
1
1
所以这个几何体最多需要19块,最 少需要8块.
2 13 2
在通过小正方体组合图形的三视图,确定组合图形中小正方 体的个数,在中考或竞赛中经常会遇到.解决这类问题如果没 有掌握正确的方法b呶仅依赖空间想象去解决,不仅思维难度 很大,还很容易出错.通过三视图确定组合图形的小正方体的 个数,关键是要弄清楚这个小正方体组合图形共有多少行、多 少列、每行每列中各有多少层,理清了这些行、列、层的数量, 再按照上面介绍的方法,小正方体的个数就迎刃而解了.

怎么数正方体的个数技巧

怎么数正方体的个数技巧

怎么数正方体的个数技巧正方体的个数技巧:一、计算:1、根据面积法:将正方体进行拆分,将其分解为6个平面,其中每个平面上有x个正方体,那么总的正方体数量为6x。

2、根据立体几何计算:根据正方体的三视图,将其拆分为三个部分,每个部分上有x个正方体,那么总的正方体数量为3x。

3、根据体积计算:对正方体进行体积计算,平面上有x个正方体,那么总的体积就为x个正方体的体积总和,那么正方体的总数就为x。

二、应用:1、将正方体进行分组,根据大小、颜色以及其他细节特征的不同,将正方体分组,然后单独统计每组的正方体数量,从而统计出总数。

2、将正方体的面积对应到坐标平面上,画出对应的平面图,并给出正方体的位置,然后计算平面中正方体的个数,也可以统计出正方体的总数。

3、将正方体进行编号,根据编号分别统计每一个正方体,也可以统计出正方体的总数。

三、拓展:1、用立体几何方法将更复杂的几何体拆分为正方体,统计单独正方体的数量,也可以得出整个几何体的总数。

2、用计算机编程,可以利用ALG算法编写一些特殊的正方体个数计算的算法,从而更加快速准确的统计出正方体的总数。

3、对正方体进行算术推理,分析出正方体的个数以及推理其正方体之间的关系,来更进一步的统计正方体的总数。

四、注意:1、正方体的数量计算要准确,比如面积法和体积法,采用6x或者3x的方法会更准确。

2、分组计数643;给它编号注意其中可能存在遗漏的情况;平面图也要将对应的尺寸和位置给准确的画出来,以免不小心遗漏了某些正方体。

3、在拓展的时候可以根据不同的几何体拆分和计算,编写不同的推理算法,来更快准确的统计出正方体的数量。

三视图中的小正方体计数问题

三视图中的小正方体计数问题

三视图中的小正方体计数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。

解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。

通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。

在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。

以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。

”一、结果唯一的计数例1 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。

A.9箱 B.10箱 C.11箱 D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。

由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。

故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。

各行、各列小正方体的个数如俯视图中所表示。

这堆货箱共有3+1+1+2+1+1=9(箱)。

二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。

分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。

第1列均为1层,第2列最高2层,第3列最高3层。

左视图为A时,第1行、第2行最高均为3层。

几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。

此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。

浅谈用“坐标法”求三视图中小正方体的个数

浅谈用“坐标法”求三视图中小正方体的个数

浅谈用“坐标法”求三视图中小正方体的个数作者:朱理权来源:《新课程·中学》2012年第09期给定几何体的三视图,要求小正方体的个数,在近几年各地中考中成为热门考点。

如果仅凭空间想象,对老师的教与学生的学都会带来很大的麻烦。

于是,有部分老师提出了一些独到的见解。

基本上是在俯视图中标出数字,再相加得到结果。

特别是黄石市下陆中学的宋毓彬老师提出了“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。

”大大简化了计数规则。

我在思索之余,还是觉得不甚完美。

于是提出两个问题:(1)既然几何体的三视图给定,那么凭什么只在俯视图中标注数字?大多数老师认为在俯视图中标注简单一些。

按理说在主视图、左视图中都可以标注数字,只要方法得当,难易程度都一样。

(2)既然老师要教方法给学生,就要教学生易于接受的方法。

条条款款过多,反而达不到理想的效果。

那么什么样的方法更好呢?带着疑问,我提出了用“坐标法”求小正方体个数的观点。

它形象直观,学生乐于接受。

现结合例题给予说明,望广大师生指正。

例:仓库里放着若干个相同的正方体货箱。

这堆货箱的三视图如下图所示,则这堆正方体货箱共有___箱。

解:如下三个图1.分别在三个视图中作平面直角坐标系主视图中的横轴为俯视图数据;纵轴为左视图数据左视图中的横轴为俯视图数据;纵轴为主视图数据俯视图中的横轴为主视图数据;纵轴为左视图数据2.主视图中横轴数据由对应俯视图的正方形个数决定(长对正)主视图中纵轴数据由对应左视图的正方形个数决定(高平齐)左视图中横轴数据由对应俯视图的正方形个数决定(宽相等)左视图中纵轴数据由对应主视图的正方形个数决定(高平齐)俯视图中横轴数据由对应主视图的正方形个数决定(长对正)俯视图中纵轴数据由对应左视图的正方形个数决定(宽相等)3.视图中的数字由横纵两个数字中较小的数决定,最后把视图中的数相加即得到小正方体的个数。

解:1.在主视图中标注数字并求总数■计数规则:在主视图中每一个小正方形的数据由横轴和纵轴中较小的数决定。

三视图求组成几何体的小正方体的个数

三视图求组成几何体的小正方体的个数

通过几何体的三视图求组成几何体的小正方体的个数
看【主视图】,按照【左中右】的顺序,在【俯视图】中标出个数。

看【左视图】,按照【上中下】的顺序,在【俯视图】中标出个数,
最后把不符合要求的擦去,把【俯视图】中剩余的数加起来,就是小正方体得个数。

举例子:
主视图是3,1,1. 3可以在“左”的任何位置,【俯视图】中都标上,1在“中”的任何位置,【俯视图】中都标上;1在“右”的任何位置,【俯视图】中都标上;
左视图是1,3,1.“上”面有一个,把3擦去改成1,任意位置留个1,“中”位置一个3,留着,“下”位置没有3,擦去,改为1.最后3+8=11(个)正方体。

三视图中的小正方体计数问题

三视图中的小正方体计数问题

三视图中的小正方体计数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。

解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。

通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。

在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。

以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。

”一、结果唯一的计数例1 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。

A.9箱 B.10箱 C.11箱 D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。

由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。

故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。

各行、各列小正方体的个数如俯视图中所表示。

这堆货箱共有3+1+1+2+1+1=9(箱)。

二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。

分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。

第1列均为1层,第2列最高2层,第3列最高3层。

左视图为A时,第1行、第2行最高均为3层。

几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。

此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样由三视图确定正
方体个数
怎样由三视图确定正方体个数
山东李浩明
三视图不仅是新教材的一大亮点,也是近些年各省市中考的热点. 学习视图,不仅会画空间几何体的三视图,还应会根据一个空间几何体的三视图,想象出这个简单几何体的形状,若是由小正方体组成的几何体,则要能确定小正方体的个数.
例1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么

A)4 (B)5 (C)6 (D)7
析解:解决这类问题要做到,一看俯视图,从左至右共有三列,从上到下
共三行;二看主视图,共有三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中的一、三列上分别只有一个正方体,分别填1(如图1);三看左视图,共三列两行,第一列和第三列上分别只有一层,第二列上有两层,则俯视图中第一行只有一个正方体,填1,第二行有两个正方体,填2,第三行第二列只有一个正方体,填1,所以该俯视图上每个小正方体的个主视图左视图俯视图
收集于网络,如有侵权请联系管理员删除
数如图1所示,搭成这个几何体的小正方体的个数是1+2+1+1+1=6,故本题结果就选 (C). 相应的几何体如图2所示.
图1
2
1
1
1
1
图2
例2. 如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是个.
析解:先看俯视图,从左至右共有两列,从上到下共两行;再看主视图,共有两列两行,第一列上只有一层,第二列上有两层,则俯视图中的第一列的第一行只有一个正方体,填1(如图3),第二列的第一行、第二行中至少有一行有两个正方体,具体情况再看左视图;左视图共两列两行,第一列有两层,第二列上只有一层,则俯视图中(观察者需站在俯视图的左侧看)第一行的第二列有两个正方体,填2,第二行只有一个正方体,填1,所以该俯视图上每个小正方体的个数如图3所示,搭成这个几何体的小正方体的个数是
1+2+1=4,故本题结果就填4. 相应的几何体如图4所示.
图4
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除 例3.一个几何体是由若干个相同正方体组成的,其主视图和左视图如图5所示,则这个几何体最多可由多少个这样的正方体组成? ( )
(A )12个 (B )13个 (C )14个 (D )18个
图61111
12
22
2
解析:主视图和左视图都为3列,可知几何体的俯视图有三列三行,最多为33 的正方形,由主视图可知在俯视图第1、3列每个正方形内填2,第2列每个正方形内填1;又由左视图可知,在俯视图的1、3行中(观察者需站在俯视图的左侧看)每个小正方形内都填入2,第2行填1,重叠交叉处数字取小,如上图,故最多由13个组成. 故选(B ).
点评:由三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个几何体组合的小正方体个数.
图5。

相关文档
最新文档