回转支承的选型设计

合集下载

回转支承的选型分析计算

回转支承的选型分析计算

回转支承的选型分析计算20∞c2)建筑机械化圉锻安张霍,.暑‰娅绀'?回转支承的选型分析计算(上海市建筑构配件运输队回转支承装置是起重,施工类机械设备承受主载荷的重要部件.我公司进口的二手韩国双龙28N砼泵车,其上车部分是意大利产的CIF产品组台件,因使用年久,泵送悬臂架回转支承的滚道与滚柱磨损严重,轴向跳动问隙达7.6mm左右,严重影响砼泵送稳定性.经测绘发现.该支承装置结构设计较为紧凑,连接螺孔与滚道底部间隙仅3.5ram,滚道底部距内齿圈齿根也只有7mm左右,用金属堆焊修复的办法易整体变形.为使泵车尽快修复只能用国产件代替,但要完全满足该泵要求无现成产品可取,故只能自行设计制作.1CIF系列回转支承的主要参数内啮合传动:zI=10,z2=98,m=10,口:20.:滚柱:d=25mm,=132,口=45.;齿圈中心圆直径:D=1074ram.2受力分析T6%.2.1工位分解该泵车可水平360~全旋转,也可0o~180~时针方向转动.对齿圈受力而言,当臂架处于水平位置和垂直向上位置时是承受倾翻力矩一,径向力n一和轴向力一特定之处.故以这些位置作为受力分析的基点,其垂直向上时无^f一,n一,只要对其水平位时作受力分析即可,如图1(a)所示.图1受力计算示意图压制时不会起皱,所以使用模具时坯料定位准确,操作方便.值得注意的是,在压制半球毛胚时,胚料必须加热至720以上,有二点作用,一是减小工作压力,二是减小钢板回弹,保持成型准确.因为球皮下料尺寸较大(~700mm),所以又用钢板焊制了一台焦碳加热炉加热半球胚料,一次加热1O余片,时间约3O分钟.3试验结果及分析模具试验设备为1000t四柱液压机,半球一次冲压成型,经组对后检查钢球直径500_+2,圆度≤2ram,达到模具设计要求和《网架结构工程质量检验评定标准》(JGJ7&__91)的标准.在压制过程中,球皮在拉伸作用下变薄,减薄量超标,后经特殊工艺处理使减薄量控制在规范之内,对此也积累了经验.半球组对后,用二氧化碳气体保护焊打底,埋弧自动焊盖面见图2.此方法在全国同行中处于领先水平,经无损检验其焊接质量符合《钢结构工程施工及验收.规范》(GB50205--95)规定的二围2焊接示意围级标准.成品经冶金部建筑研究总院工程结构试验室进行破坏性试验(6个抗拉,6个抗压),根据《冶金质检(结试)宇(96)第24号检验报告》各项性能全部合格.整套模具的设计制作从简化工艺,降低成本的原则考虑,从加工一装配一试制一生产一检验和试验均保证质量,因此较快,较好地满足了工程需要,同时为新疆地区增加了一个新品种,开拓了市场.增加了企业效益.张之江.工程师,新疆乌鲁木齐市喀什东路56号,830013 收稿日期:2000-01—0735一2.2受力计算如图l(b)所示,支承所承受的外力P0主要包括:①悬臂架自重(质量)G0;②砼质量0;③附加泵选时动载荷系数k,取1.25.则有P0=(Gog+mo)k,计算时视P0集中作用于臂架中点上.经测算,G0=1650kg,0=0.25×2200=550kg,P0=(1650X98+550x9.8)X1,25=2.695×104N.取AB杆为对象有:∑朋A=0,X2=P0X27.2/2,‰:18.326×104N,=Roy/sinl6.=66.49×104N:取cD杆(二力杆)为对象时如图2所示,有D:D=Rc=66.49×104N,=sinl6*×Ro18.326X10N,=eosl6.XD=63.91X104N;取Ac杆(二力杆)为对象时如图3所示,有∑=0,因+一P0:0,其中,R=2.695X104N一18.326X104N一15.631×104N,R=R一15.631X104N.图2CD杆为对蠹时受力分析●霄lo4霄田3AC杆为对蠹时受力分析对c点,轴向=+,则=18.326X10N一15.631X104N=2.695X104N.2.3支承受力由图4所示,各受力情况:力矩朋々=P0X27.2/2:36.652×10N?m,轴向力=2.695×1酽N,径向力=63.91×104N.3选型计算回转支承常在低速大负荷下运转,决定其寿命的主要是静容量.所谓静容量即滚道永久变形量达到时的负荷能力,根据试验:3d./1000.3.1按承载能力曲线选型根据IB230~---$4标准,回转支承能力曲线图按36?建筑机械化2O∞(2J接触角口=45.和60.两种计算方法计算,只要有一种符合曲线要求即可.如果有一种计算的坐标点落在曲线下方,另一种落在上方,则可通过;若另一种坐标点落在曲线下方较远处,说明过于安全,不经济,应选结构更小的类型.J-r尼图4肼I,力的分析根据原回转支承有关参数,系单排交叉滚柱式回转支承,泵车工况类似于悬臂运输机类型,由回转支承工况及负荷系数表选取负荷系数(静), (动),并用々,和当量倾翻力矩,求得坐标点和螺栓等级.=(+2.05Fr)=147.08×104N,g'=fMk=40.32x104Nm,=2.695×104N,取1.10,M=36.652Xl04Nm.由图5定出和点可套用l1X.28.1120支承,螺栓8.8级.但是,我们所要求得的支承不完全与该支承一致,只是相近而已.因此,根据原基座的安装尺寸和回转支承中心圆直径以及计算得的当量倾翻力矩,轴向力等数据参照承载曲线圈类比选取更相近些的支承,并加以圆整.由图6定出C,D点选用02X.30.1120支承.螺栓8.8级.如图中可知c点离静容曲线有一些距离,支承结构形式是双排异径球式.由标准规定双排球式回转支承,上排大球接触角=90*,只承受轴向力和倾翻力矩;下排小球接触角'9=45~,承受径向力和恢复力矩.考虑到该砼泵车在A位置时倾翻力矩和轴向力都不太大,而径向力却比较大2OOOc2)建筑机械化圈5Ux.2,8.1120晕截曲线圈l一睁窖量;2--动窖量的因素,将标准中规定的上下排球径趋于一致,把30/20改为25/25,并根据加工工艺和安装位置许可,设计双排球式非标回转支承,代号073-25? 1074FI.(1o'H.-】圈602x.3o.112,0晕截曲线圈3.2计算静容量校核安全度球式回转支承的额定静容量按下式计算:c=Tod~nsir【l0O0(1o4N)式中——球式回转支承静容量系数,与滚道表面硬度f1RC及滚动体直径有关,见表1.取To=5.76;d——滚球直径(mm),d=25;_滚球与滚道接触角(双排球式f9=9);n——滚球数量,n=96;D.——齿圈中心圆直径(m),Do=1.074.四点接触球式回转支承所受的当量中心轴向负荷C=+4.37M/(1o4N)安全系数=c越/C≥[r,],[r,]值见表2,取[r]=1.4.c越=5.76X25×96/1000=345.6(104N)C=2.695+4.37X36.652/1.074:151.828(10N),故安全系数T,:c珊/=2.276>[T]=1.4.裹1滚道囊面硬度与滚动体直径关系(xl~N/mm) 202530354045505560607377.316676.185785.415肝4.7745a597026.986.355.915535.154.844.54436586.706.646065.635264.914614.34416576386.355785.365.024.694414.15398566.126.025485.084764.454173.94377555885.765.164.934524.233963.7335a裹2不同工作类型的安全系数工作类型机器举啻I[]轻工作堆取料机工程起重机10一l2中工作塔式起重机船用起重机11~l3较重工作抓取起重机港口起重机1.3一I5重工作单斗挖掘机冶垒用起重机1.4一I6特重工作斗轮挖掘机隧道掘进机1.6—204结束语本泵车回转支承装置的更新改造.由于受到安装尺寸,齿圈中心圆直径和传动形式相对确定的局限,故在受力分析的基础上,应用静容量,动容量承载曲线类比选择的面比较窄,坐标点的位置均在两曲线的下方且离开一段距离,即显得过于安全. 该回转支承外形尺寸在高度方向上比原始回转支承高50ram,总质量,增加25%左右,致使连接螺栓的长度增加,螺栓强度提高1个等级,故整体可靠性比较大.安装使用至今已近6个月左右,性能情况良好.该回转支承从设计选型至加工制作,安装约2个月左右,合计费用3.2万元,而进口CIF原规格回转支承费用约24万元,且进口周期需6个月左右,因此,无论从经济上还是从时间上来讲经济效益均很明显.所以说消化,吸收,因地制置地改造进口设备,尽快地使其零部件国产化已成为使用进口设备的企业所面临的紧迫任务张田龙,高工,技术队长,上海市老闵路54号200233 收稿日期:1999—1o.1237?¨ⅢⅢ帅。

回转支承选型计算

回转支承选型计算

回转支承选型计算引言回转支承是工程机械中的重要部件之一,用于实现旋转运动,并承受机械负荷。

在设计回转支承时,需要进行选型计算,以确保其能够满足工作条件下的安全和可靠运行。

本文将介绍回转支承选型计算的基本原理和步骤,并给出示例计算,以帮助工程师们正确选型回转支承。

选型计算步骤选型计算的基本步骤如下:1.确定旋转类型:首先需要确定回转支承的旋转类型,即单圈旋转还是多圈旋转。

根据实际工况和使用要求,选择合适的旋转类型。

2.确定工作负荷:根据实际工作条件和所需的运载能力,确定回转支承的工作负荷,包括垂直载荷、径向载荷、轴向载荷和倾斜载荷等。

3.确定工作周期:根据使用要求和工况条件,确定回转支承的工作周期,包括连续工作周期和断续工作周期等。

4.确定工作速度:根据实际工作条件和工作要求,确定回转支承的工作速度,包括正常工作速度和临界工作速度等。

5.计算工作寿命:根据回转支承的工作负荷、工作周期和工作速度等参数,通过寿命计算公式计算出回转支承的工作寿命。

6.选择合适型号:根据回转支承的工作负荷、工作周期、工作速度和工作寿命等参数,从厂商提供的选型手册中选择合适的型号。

示例计算假设我们需要选型一个用于挖掘机的回转支承。

根据工程师提供的参数,我们进行以下选择计算:•旋转类型:单圈旋转•垂直载荷:10000 N•径向载荷:20000 N•轴向载荷:5000 N•倾斜载荷:3000 N•连续工作周期:10 小时•正常工作速度:1 rpm首先,我们需根据给定数据,计算出工作寿命。

根据回转支承的工作负荷、工作周期和工作速度等参数,回转支承的工作寿命可以通过以下公式计算:工作寿命 = (C / P)^b × L其中,C 是基本动载荷,P 是动载荷,b 是寿命指数,L 是回转支承的总公转数。

根据实际情况,我们选择适用的参数值:• C = 100000 N•P = 20000 N• b = 10•L = 1000000代入公式中,可得到回转支承的工作寿命。

回转支承的选型设计

回转支承的选型设计

回转支承的选型设计回转支承是现代工程机械中重要的转动支承部件,广泛应用于各种起重、装卸、建筑、矿山机械设备以及焊接机器人等。

回转支承的选型设计对工程机械的性能和使用寿命至关重要。

本文将从回转支承的选型原则、设计流程和具体选型方法等方面进行详细介绍。

一、回转支承的选型原则1.承载能力:根据机器的工作负荷和挖掘物料的重量,选择合适承载能力的回转支承。

承载能力过大会导致成本和重量增加,承载能力过小则无法满足机器的使用需求。

2.尺寸和安装空间:根据机器的结构形式和尺寸要求,确定回转支承的外径、孔径大小和安装形式。

3.转动速度和工作环境:根据机器的转动速度要求和工作环境条件,选择合适的回转支承类型和轮毂形式,以保证良好的转动性能和耐久性。

4.可靠性和寿命:选择具有良好可靠性和较长寿命的回转支承,以减少故障率和维修成本。

5.维修和维护便捷性:考虑回转支承的拆装和维护便捷性,以提高机器的可用性和维修效率。

二、回转支承的选型设计流程1.确定机器的工作负荷和工作条件,包括最大承载力、工作转速、工作环境等。

2.根据机器的结构形式和尺寸要求,确定回转支承的外径、孔径大小和安装形式。

3.根据机器的工作循环和使用寿命要求,选择具有较长寿命和良好可靠性的回转支承。

4.通过计算或参考相关设计手册,确定回转支承的基本参数,包括额定载荷、滚道直径、齿排数、齿高等。

5.进行结构设计,确定回转支承的内部结构和布局,包括滚子直径、滚子排列方式、轴向间隙、形变补偿等。

6.根据选型结果,评估回转支承的转动性能、承载能力和寿命等,进行优化设计,并进行相关验证计算和分析。

7.选择适当的材料和热处理工艺,提高回转支承的强度和硬度,以满足工作条件的要求。

8.提供详细的选型报告和设计图纸,以供后续生产和使用。

三、回转支承的具体选型方法1.根据机器的工作负荷和应力计算,确定回转支承的额定载荷。

可根据以下公式计算:Fn=(Fs×Fd×Fa×Fv)/Fr其中,Fn为额定载荷;Fs为动载荷系数;Fd为动载荷系数;Fa为应力集中系数;Fv为动载荷系数;Fr为安全系数。

第6章 回转支承的选型

第6章  回转支承的选型

第6章 回转支承的选型6.1 载荷计算6.1.1载荷确定将作用在回转支承的各种载荷综合后,有以下载荷:垂直力:31G G G P k G b Q P +++⋅=力矩:W b b Q h W h W h P l G l G l G R P k M ⋅+⋅+⋅+⋅-⋅-⋅+⋅⋅=2113311 水平力:γcos 121r P P W W H -++=式中:Q P ——起升载荷; b G ——吊臂自重;1G ——上车除吊臂自重和配重外的其他部分重量;3G ——配重;1W ——沿吊臂方向的吹在重物上的水平力; 2W ——沿吊臂方向的吹在起重机上的水平力;1P ——重物的离心力;Pr ——回转齿轮的啮合力;k ——超载系数,对于一般工程起重机按动载试验(超载10%)取,即取 )1(55.0211.11.1226ϕϕϕ+=+⨯=⋅=k 轮胎式起重机上离心力和风力引起的力矩一般占起升载荷引起的力矩10%左右,取03.12=ϕ,则1165.1)03.11(55.0=+=k ,简化M 可得:33112.1l G l G l G R P M b b Q ⋅-⋅-⋅+⋅⋅=R ——幅度;b l ——吊臂重心到回转中心的水平距离;1l ——上车其他重量1G 的重心到回转中心的水平距离;3l ——配重重心到回转中心的水平距离。

参照《回转支承型式、基本参数和技术要求》(JB2300-84)计算表需说明以下几点: (1)、可近似取水平力 P G H 1.0=;(2)、给出的许用载荷图中有1和2两条界线,其中界线1用于静态校核,界线2用于动态校核;(3)、可近似认为吊臂质心位于臂长的1/2处,根据经验可取0.625处; (4)、可忽略风载荷。

2、最大压力计算[]⎥⎦⎤⎢⎣⎡=+⎭⎬⎫⎩⎨⎧-+=)5.0(1cos 2),(),(12sin sin 121210maxεαεεεεααM e M g e e P J n H J J n D M n G N 式中 α——接触角;0D ——回转支承公称直径;e n ——滚动体在受力时有效数目。

回转支承选型原则

回转支承选型原则

回转支承选型原则(万达回转支承研发所,徐州,20100525)(1)结构型式的选择常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。

根据我们的经验和计算,有以下结论:相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。

在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。

当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。

(2)单排球式回转支承系列的选择在国内,目前单排球式回转支承有3个系列的尺寸规格:HS系列,Q系列和01系列。

对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下:3个系列的参数比较(以滚道中心直径1250外齿式为例)公司主要回转支承产品的类型和规格回转支承的主要型式是交叉滚柱式,八十年代后开始生产单排球式回转支承,交叉滚柱式回转支承逐渐被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。

其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。

因此,从节约成本和资源出发,HS系列应该尽可能不用。

考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。

②. 01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。

其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与 011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。

回转支承的选型设计(回转支承的选型计算)

回转支承的选型设计(回转支承的选型计算)

回转支承的选型计算A.1 外载荷的确定单排球式回转支承上的外载荷是组合后的总载荷,包括:a) 总倾翻力矩M, 单位为N•mm;b) 总轴向力P, 单位为N;c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。

在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。

A.2 单排球式回转支承的当量静容量按公式 (A.1)计算C o=f0×d02×z×sinα…………………………………………(A.1) 式中:C o---当量静容量,单位为N;f o---静容量系数,按表A.1 选取,单位为N/mm2 ;d o---钢球公称直径,单位为mm;α---公称接触角,单位为(°);对一般建筑机械,可取α=50°,当2M/PD0≥10 时, 可取α=45°,对于特殊受力的情况,应根据外力的大小,作用方向另行计算:z---钢球个数,按公式(A.2)计算z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2)z取较小的圆整值;式中:D o ---滚道中心直径,单位为mm;b---隔离块隔离宽度,单位为mm, 按表7选取。

表A.1 静容量系数f0 Static Capacity FactorA.3 选型计算根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008C P =P+4.37M/D0 +3.44Hr …………………………………(A.3)式中:C P ---当量轴向载荷,单位为N.单排球式回转支承选型应满足下式要求:C0/C P≥f S式中:f S---单排式回转支承安全系数, 按表A.2 选取当径向力小于轴向力10% 时,可以根据组合的外载荷M、P 各乘以安全系数fS 后直接在单排球式回转支承性能曲线图上比较安全性。

单排球式回转支承性能曲线图见附录BA.4 齿轮传动参数的确定与外齿式和内齿式单排球式回转支承啮合的小齿轮应采用GB/T 1356 规定的基准齿形。

回转支承选型计算

回转支承选型计算

回转支承选型计算1. 简介回转支承是各种旋转设备中起转动、支撑和承受载荷作用的关键组件。

在进行回转支承的选型计算时,需要综合考虑载荷、转速、寿命、结构形式等因素,以确保回转支承的稳定运行和可靠性。

2. 计算步骤回转支承选型计算主要包括以下几个步骤:2.1 确定载荷根据实际应用需求,确定回转支承所承受的载荷类型和大小。

常见的载荷类型包括径向载荷、轴向载荷和矩形力矩。

根据载荷的大小和方向,确定回转支承的受力情况。

2.2 计算转矩根据回转支承所在的设备类型和运行条件,计算承受的转矩大小。

转矩包括静载矩和动载矩,需要考虑运转状态下的转矩波动。

2.3 选择支承形式根据回转支承的使用环境和载荷要求,选择合适的支承形式。

常见的支承形式有单行球式回转支承、双列球式回转支承、交叉滚子式回转支承等。

2.4 计算额定载荷根据所选的支承形式和受力情况,计算回转支承的额定载荷。

额定载荷是回转支承设计的载荷上限,超过额定载荷可能导致支承失效。

2.5 计算寿命根据回转支承的额定载荷和转速,通过标准寿命公式计算出回转支承的寿命。

寿命是回转支承运行的预期使用时间,需要根据实际工作条件进行修正。

2.6 检查选型结果根据计算结果,对所选回转支承的选型进行检查。

检查包括检查所选支承形式是否满足要求,以及额定载荷和寿命是否在设计范围内。

3. 注意事项在进行回转支承选型计算时,需要注意以下几点:•精确测量和确定实际载荷和转矩大小,避免过大或过小的估算;•考虑回转支承的安装和维护便捷性,选择适合的支承形式;•根据实际工作条件对寿命进行修正,确保选型结果的可靠性;•在计算过程中,考虑运转状态下的载荷和转矩波动,避免产生额外的风险。

4. 结论回转支承选型计算是确保回转支承稳定运行和可靠性的重要环节。

通过准确确定载荷、计算转矩、选择支承形式、计算额定载荷和寿命,并进行检查和修正,可以得出合适的回转支承选型结果。

同时,在计算过程中需要注意实际情况和风险评估,以确保选型结果的可靠性和安全性。

回转支承选型原则

回转支承选型原则

回转支承选型原则回转支承选型原则1. 结构型式的选择常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。

根据我们的经验和计算,有以下结论:相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。

在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。

当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。

2.单排球式回转支承系列的选择在国内,目前单排球式回转支承有3个系列的尺寸规格:HS系列,Q系列和01系列。

对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下:3个系列的参数比较(以滚道中心直径1250外齿式为例)公司主要回转支承产品的类型和规格a. HS系列单排球式回转支承是历史的延续。

上世纪八十年代前,国内生产的回转支承的主要型式是交叉滚柱式,八十年代后开始生产单排球式回转支承,交叉滚柱式回转支承逐渐被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。

其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。

因此,从节约成本和资源出发,HS系列应该尽可能不用。

考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。

b.01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。

其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。

回转支承选型设计与优化分析

回转支承选型设计与优化分析

回转支承选型设计与优化分析摘要:为满足工程机械产品市场个性化需求,以工程机械回转支承的选型优化设计为目标,建立回转支承装置齿轮传动系统的动力学模型,并基于ADAMS 软件对其进行动力学仿真分析。

通过对齿轮动载荷历程的分析及研究结构设计参数对齿轮动态性能的影响,提出了回转支承装置的优化设计选型方法。

在此基础上,还研究了齿轮激励对回转齿轮工作性能的影响,对回转支承的设计安装及使用具有一定的指导意义。

前言工程机械产品市场极具个性化,不同的应用场合和使用需求对同一类型产品的结构和功能有不同的要求。

回转支承装置一般是各种履带式工程机械的重要组成部分,其设计强度及动态特性将直接关系到整机的工作性能及使用安全。

在工程机械行业中,回转支承装置价格昂贵,更换维修困难,因此回转支承早期失效是生产企业及用户不能接受的故障现象。

行业统计数据显示,回转支承早期失效有90%是由断齿所导致[1]。

轮齿的折断形式主要有两种,一是弯曲疲劳折断,二是过载折断。

引起疲劳折断的主要原因是传动系统的动载荷过大,而过载折断则通常是由于短时严重过载的冲击载荷作用,使轮齿承受的应力超过其极限应力所致。

此外,载荷严重集中、动载荷过大均可能引起过载折断[2]。

从设计角度看,目前的回转支承选型都是采用基于经验知识的静态选型计算,很难满足具体的个性化工况使用要求。

国内外学者在齿轮动力学、回转支承受载状况,回转支承故障诊断技术、齿轮变形因素及寿命分析等领域展开了相关研究,并取得了许多成果[3-9]。

但大部分研究都没有从回转支承的个性化实际工况出发,从设计角度开展回转支承的选型和齿轮设计参数优化设计,很难在根本上解决回转支承的断齿问题。

本文以某打桩机回转支承为研究对象,基于虚拟仿真技术,根据打桩机实际工况,对回转支承装置进行动力学研究,分析回转齿轮设计参数对其动态性能的影响,提出回转支承优化设计选型方法。

1 回转支承装置的设计与选型针对某中型液压打桩机械,参考《回转支承》标准JB/T2300-1999,根据其静态选型计算方法,通过计算回转支承静止时承受的轴向、径向力及倾覆力矩,选择单排四点接触球式回转支承QNA2000.50 作为液压打桩机的回转机构,其额定扭矩6000 Nm,最高扭矩7500 Nm,转速范围0.4-50r/min。

回转支承选型计算及结构

回转支承选型计算及结构

回转支承选型计算及结构回转支承是构筑物中非常重要的一种构件,用于实现构件之间的旋转和转移。

在设计和选型回转支承时,需要计算和考虑许多因素,包括承载能力、稳定性、可靠性和安全性等。

本文将对回转支承的选型计算和结构进行详细的介绍。

回转支承主要有两种基本类型:球面回转支承和滚珠回转支承。

球面回转支承是由一个球面外圈和一个球面内圈组成,中间通过钢球进行转动。

滚珠回转支承则是由一个滚珠外圈和一个滚珠内圈组成,中间通过滚珠进行转动。

两种类型的回转支承都有各自的优点和适用范围,选型时需要根据具体情况来确定。

在进行回转支承的选型计算时,首先需要确定承载能力。

承载能力是回转支承最重要的性能指标之一,可以通过计算得到。

一般来说,承载能力包括静态承载能力和动态承载能力。

静态承载能力是指回转支承在不转动或转动较慢的情况下的承载能力,可以通过静态分析来计算得到。

动态承载能力是指回转支承在高速转动或不同转速下的承载能力,可以通过动态分析来计算得到。

对于球面回转支承,承载能力的计算方法如下:首先计算球面外圈上的最大接触应力,然后与材料的势能蠕变极限相比较,确定是否满足要求。

接着计算球面内圈上的最大接触应力,确定是否满足要求。

最后计算钢球与外圈和内圈之间的接触应力,也需要满足要求。

通过这些计算,可以得到球面回转支承的承载能力。

对于滚珠回转支承,承载能力的计算方法如下:首先计算滚珠外圈上的最大接触应力,然后与材料的势能蠕变极限相比较,确定是否满足要求。

接着计算滚珠内圈上的最大接触应力,确定是否满足要求。

最后计算滚珠与外圈和内圈之间的接触应力,也需要满足要求。

通过这些计算,可以得到滚珠回转支承的承载能力。

除了承载能力,回转支承的稳定性也是非常重要的。

稳定性可以通过计算回转支承的刚度系数来进行评估。

刚度系数越大,回转支承的稳定性越好。

刚度系数可以通过有限元分析来计算得到。

同时,在选型回转支承时,还需要考虑可靠性和安全性。

可靠性是指回转支承在使用寿命内无故障运行的能力。

回转支承选型计算及结构

回转支承选型计算及结构

回转支承选型计算(JB2300-1999)•转支承受载情况回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。

通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。

两种安装形式支承承受的载荷示意如下:二、回转支承选型所需的技术参数•回转支承承受的载荷•每种载荷及其所占有作业时间的百分比•在每种载荷作用下回转支承的转速或转数•作用在齿轮上的圆周力•回转支承的尺寸•其他的运转条件主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。

也可向我公司提供会和转支承相关信息,由我公司进行设计选型。

每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。

曲线图中有二种类型曲线,一类为静止承载曲线(1 线),表示回转支承保持静止状态时所能承受的最大负荷。

另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径5 倍,预紧力为螺栓材料屈服极限70% 是确定的。

•回转支承选型计算方法•静态选型1 )选型计算流程图2 )静态参照载荷Fa' 和M' 的计算方法:•单排四点接触球式:单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。

I、a=45° II、a=60°Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fsM'=1.225*M*fs M'=M*fs然后在曲线图上找出以上二点,其中一点在曲线以下即可。

•单排交叉滚柱式Fa'=(Fa+2.05Fr)*fsM'=M*fs•双排异径球式对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。

回转支承选型计算方法

回转支承选型计算方法

回转支承选型计算方法万达回转支承技术科1静态选型:静态参照载荷Fa’和M’的计算方法●单排四点接触球式单排四点接触球式回转支承的选型计算分别按承载角45°和60°两种情况进行。

I、a=45°Ⅱ、a=60°Fa’=(1.225·Fa+2.676·Fr)·fs Fa’=(Fa+5.046·Fr)·fsM’=1.225·M·fs M’=M·fS然后在曲线图上找出以上两点,其中一点在曲线以下即可。

●单排交叉滚柱式Fa’=(Fa+2.05·Fr)·fsM’=M·fs●双排异径球式对于双排异径球式回转支承选型计算,当Fr≤10%Fa时,Fr忽略不计。

当Fr>10%Fa时,必须考虑滚道内压力角的变化,其计算请与我们联系。

Fa’=Fa·fsM’=M·fs●三排滚柱式三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。

Fa’=Fa·fsM’=M·fs2动态选型:对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司技术部联系。

3螺栓承载能力验算:1)把回转支承所承受的最大载荷(没有乘静态安全系数fs)作为选择螺栓的载荷;2)查对载荷是否落在所需等级螺栓极限负荷曲线以下;3)若螺栓承载能力不够,可重新选择回转支承,或与我公司技术部联系。

表1应用场合fsfL原则上,必须以作用在支承上的最大载荷做为静态计算值,这个载荷必须包括附加载荷和试验载荷。

没有被列入表中的应用场合,可以参照表中与其相类似的工作条件和应用,选取静安全系数fL 。

*)上回转式塔机M=空载时的反向倾覆力矩 M=幅度最大时的倾覆力矩**)对于静安全系数fs 取1.45的应用场合,因平均负载较高和繁重的工作场合,应优先选择多排滚道式回转支承。

回转支承选型计算

回转支承选型计算

回转支承选型计算回转支承是一种常见的机械元件,用于承载旋转的轴承或轴承座,并且能够使轴承在旋转时具有指定的运动轨迹。

回转支承广泛应用于各种机械设备中,包括工程机械、船舶、起重机械等。

回转支承的选型计算是为了确定适用于特定应用的最佳回转支承类型和尺寸。

这涉及到对机械设备的工作条件、载荷和运动要求进行全面的分析和评估。

以下是回转支承选型计算中的一些关键步骤和注意事项。

1.确定工作条件:首先需要了解机械设备的工作条件,包括旋转速度、工作温度、工作环境等因素。

这些因素将影响回转支承的材料选择和润滑要求。

2.分析载荷:根据机械设备的设计要求和工作条件,计算出回转支承所承受的载荷。

这包括径向载荷、轴向载荷和扭矩等。

需要注意的是,载荷的大小和方向将决定回转支承的选型和尺寸。

3.确定运动要求:根据机械设备的运动要求,确定回转支承所需的运动轨迹和速度。

这将决定回转支承的稳定性和精度要求。

4.选择回转支承类型:根据工作条件、载荷和运动要求,选择适合的回转支承类型。

常见的回转支承类型包括旋转球式回转支承、滚道式回转支承和双列滚子式回转支承等。

5.计算回转支承尺寸:根据所选的回转支承类型和载荷计算出回转支承的尺寸。

这包括内径、外径、高度等。

可以利用相关的计算公式和数据手册进行计算。

6.确定回转支承的寿命:根据所选回转支承的类型和尺寸,参考相应的寿命计算方法,确定回转支承的寿命。

这将有助于评估回转支承的可靠性和维护周期。

7.进行强度计算:根据回转支承的尺寸和载荷,进行强度计算以确保回转支承的结构安全。

这涉及到应力和变形的计算,可以使用经验公式和有限元分析等方法。

8.润滑计算:根据回转支承的工作条件和运动要求,选择合适的润滑方式和润滑材料。

润滑计算包括油脂量和加油周期的确定。

9.评估选型结果:综合考虑以上各项因素,对计算得到的回转支承选型结果进行评估。

如果选型结果符合机械设备的要求并且满足安全性和可靠性要求,则可以确定该选型结果。

第2章回转支承的选用

第2章回转支承的选用

第2章回转支承的选用1.1概述回转支承又被称为转盘轴承,是一种能够同时承受较大的轴向载荷、径向载荷和倾覆力矩的大型轴承。

回转支承在现代工业中应用较广泛被人们称为“机器的关节”其主要应用在汽车起重机、集装箱起重机、船用起重机、挖掘机、机器人及旋转餐厅等发面。

1.2回转支承的类型回转支承一般都带有安装孔、内齿轮或外齿轮、润滑油孔和密封装置,因而能使主机的结构设计紧凑、引导可靠、维护方便。

回转支撑具有以下部分型号:1.单排四点接触球式回转支撑(01系列)2.双排异径球式回转支承(02系列)3.单排交叉滚柱式回转支承(II系列)4.单排四点接触球式回转支承(HS系列)5.单排交叉滚柱式回转支承(HJ系列)6.三排滚柱式回转支承(13系列)7.四点接触式回转轴承(VL系列)1.3回转支撑结构形式的比较与选择常用回转支承的结构形式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。

相同尺寸的回转支承,单排球式的承载能力高于交叉滚柱式和双排球式,在倾覆力矩160吨载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。

①单排四点接触球式回转支撑其结构特点、性能、适用范围单排四点接触球式回转支撑由两个座圈组成,结构紧凑、重量轻,钢圈与圆弧滚道四点接触,能同时承受径向力、轴向力和倾覆力矩。

回转式输送机、焊接操作机、中小型起重机和挖掘机等工程机械均可选用。

②双排异径球式回转支承其结构特点、性能、适用范围双排异径球式回转支承具有三个座圈,钢球和隔离层可直接排入上下滚道,根据受力情况安排了上下两排直径不同的钢球。

这种形式装配非常简单,上下圆弧滚道的承载角都为90°,能承受较大的轴向力和倾覆力矩。

双排球式回转支承的轴向、径向尺寸都比较大,结构紧凑,特别适用于中等以上的塔式起重机、汽车起重机等装卸机械上。

③三排滚柱式回转支承其结构特点、性能、适用范围三排滚柱式回转支承具有三个座圈,上下及径向滚道自分开,使每一排的滚珠的负载都能确切地加以确定,能够同时承受各种载荷,是四种型号中承载能力最大的,特别适用于较大直径的重型机械,如斗轮式挖掘机、轮式起重机、船用起重机等机械上。

回转支承选型计算

回转支承选型计算

回转支承选型计算选型计算:回转支承的回转承载在使用回转支承时,通常需要承受轴向力Fa、径向力Fr和倾覆力矩M的作用。

不同的应用场合会有不同的载荷组合方式,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。

回转支承的安装方式分为座式安装和悬挂式安装,两种安装形式所承受的载荷不同。

如果所用回转支承为座式安装,可以参考下面的选型计算进行选型。

如果所用回转支承为悬挂式安装或其他安装型式,请与我们的技术部联系。

回转支承的选型1、结构型式的选择常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式和三排柱式。

根据我们的经验和计算,有以下结论:当Do≤1800时,单排球式为首选型式;当Do>1800时,优先选用三排柱式回转支承。

相同外形尺寸的回转支承中,单排球式的承载能力高于交叉滚柱式和双排异径式。

Q系列单排球式回转支承尺寸更紧凑,重量更轻,具有更好的性价比,为单排球式的首选系列。

2、回转支承的选型计算单排球式回转支承的选型计算:①计算额定静容量CO= 0.6×DO×do0.5式中:CO───额定静容量,kN;DO───滚道中心直径,mm;do───钢球公称直径,mm。

②根据组合后的外载荷,计算当量轴向载荷Cp = Fa + 4370M/DO+ 3.44Fr式中:Cp───当量轴向载荷,kN;M───倾覆力矩,kN·m;Fa───轴向力,kN;Fr───径向力,kN。

③安全系数fs = Co / Cp安全系数fs的值可以参考下表:回转支承安全系数fs工作类型轻型light duty 中型middle duty 重型heavy duty 特重型extremely heavy duty安全系数fs 2.5~3 2~2.5 1.5~2 1~1.5三排柱式回转支承的选型计算:①计算额定静容量Co= 0.534×DO×do0.75式中:CO───额定静容量,kN;DO───滚道中心直径,mm;do───上排滚柱直径,mm。

回转支承选型计算

回转支承选型计算

回转支承选型计算(JB2300-1999)• 转支承受载情况回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。

通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。

两种安装形式支承承受的载荷示意如下:二、回转支承选型所需的技术参数• 回转支承承受的载荷• 每种载荷及其所占有作业时间的百分比• 在每种载荷作用下回转支承的转速或转数• 作用在齿轮上的圆周力• 回转支承的尺寸• 其他的运转条件主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。

也可向我公司提供会和转支承相关信息,由我公司进行设计选型。

每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。

曲线图中有二种类型曲线,一类为静止承载曲线(1 线),表示回转支承保持静止状态时所能承受的最大负荷。

另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径5 倍,预紧力为螺栓材料屈服极限70% 是确定的。

• 回转支承选型计算方法• 静态选型1 )选型计算流程图2 )静态参照载荷Fa' 和M' 的计算方法:• 单排四点接触球式:单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。

I、a=45° II、a=60°Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fsM'=1.225*M*fs M'=M*fs然后在曲线图上找出以上二点,其中一点在曲线以下即可。

• 单排交叉滚柱式Fa'=(Fa+2.05Fr)*fsM'=M*fs• 双排异径球式对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。

回转支承选型计算

回转支承选型计算

回转支承选型计算:一、单排球式回转支承的选型计算1、计算额定静容量C0 = f ·D·d式中:Co ——额定静容量,kNf ——静容量系数,0.108 kN / mm2D ——滚道中心直径,mmd ——钢球公称直径,mm2、根据组合后的外载荷,计算当量轴向载荷式中:Cp ——当量轴向载荷,kNM ——总倾覆力矩,kN·mFa ——总轴向力,kNFr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数fs = Co / Cpfs值可按下表选取。

二、三排柱式回转支承的选型计算1、计算额定静容量C0 = f ·D·d式中:Co ——额定静容量,kNf ——静容量系数,0.172 kN / mm2D ——滚道中心直径,mmd ——上排滚柱直径,mm2、根据组合后的外载荷,计算当量轴向载荷式中:Cp ——当量轴向载荷,kNM ——总倾覆力矩,kN·mFa ——总轴向力,kN3、计算安全系数fs = Co / Cpfs值可按下表选取。

回转支承安全系数fs回转支承产品标准对合理选型的影响《建筑机械》2002年第三期现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。

在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。

目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。

由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。

随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回转支承的选型计算
A.1 外载荷的确定
单排球式回转支承上的外载荷是组合后的总载荷,包括:
a) 总倾翻力矩M, 单位为N•mm;
b) 总轴向力P, 单位为N;
c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。

在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。

A.2 单排球式回转支承的当量静容量
按公式 (A.1)计算
C o=f0×d02×z×sinα…………………………………………(A.1) 式中:
C o---当量静容量,单位为N;
f o---静容量系数,按表A.1 选取,单位为N/mm2 ;
d o---钢球公称直径,单位为mm;
α---公称接触角,单位为(°);
对一般建筑机械,可取α=50°,
当2M/PD0≥10 时, 可取α=45°,
对于特殊受力的情况,应根据外力的大小,作用方向另行计算:
z---钢球个数,按公式(A.2)计算
z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2)
z取较小的圆整值;
式中:
D o ---滚道中心直径,单位为mm;
b---隔离块隔离宽度,单位为mm, 按表7选取。

表A.1 静容量系数f0 Static Capacity Factor
A.3 选型计算
根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008
C P =P+4.37M/D0 +3.44Hr …………………………………(A.3)
式中:
C P ---当量轴向载荷,单位为N.
单排球式回转支承选型应满足下式要求:
C0/C P≥f S
式中:
f S---单排式回转支承安全系数, 按表A.2 选取
当径向力小于轴向力10% 时,可以根据组合的外载荷M、P 各乘以安全系数fS 后直接在单排球式回转支承性能曲线图上比较安全性。

单排球式回转支承性能曲线图见附录B
A.4 齿轮传动参数的确定
与外齿式和内齿式单排球式回转支承啮合的小齿轮应采用GB/T 1356 规定的基准齿形。

外啮合传动和内啮合传动均采用径向变位齿轮。

A.4.1 外啮合小齿轮参数
a) 齿数 z1≥12;
b) 变位系数对于表1中外齿式啮合的小齿轮,x1取为+0.5。

A.4.2 内齿啮合小齿轮参数:
a) 齿数z1≥12
b) 变位系数对于表2 中内齿啮合的小齿轮,x1取为+0.5。

A.4.3 根据A.4.1、A.4.2 确定的小齿轮参数,与回转支承大齿轮啮
合时可满足下述条件:
a) 啮合的重合度ε≥12;
b)小齿轮齿顶厚Se1≥0.4m (模数);
c)小齿轮不发生根切;
d)齿根过渡处不发生啮合干涉。

本系列回转支承的齿轮应按GB/T 3408 进行强度计算。

用户根据齿轮的工作条件,对内、外齿圈齿部硬度可提出淬火或调质的不同要求。

小齿轮应采取相应措施提高齿轮强度。

JB/T 2300-1999
表7 套圈滚道有效硬化层深度mm
A5 安装螺栓的选择
A.5.1 螺栓按GB/T3098.1 和GB/T5782选用,亦可自行设计大六角头螺栓。

性能等级为8.8级,10.9级和12.9级
5.1.2.4 滚道淬火软带
a) 轨道淬火软带:对于无堵塞孔的套圈的软带,当DW≤25mm时,应不大于2DW值;当当DW>25mm时,应不大于50mm.对于堵塞孔的套圈的软带宽度应不大于堵塞孔直径加35mm.
b)软带标记:除带堵塞孔的的套圈软带应设置在堵塞的滚道部位而不做标记外,其余套圈均应在软带对应的非安装配合处做永久性的“S”标记。

对于双半套圈的软带,除应做如上标记外,还应在配合钻孔和装配式,使双半套圈软带重合于一体。

5.1.2.5 当内、外径有定位配合止口要求时,其尺寸公差应分别是H9-H10、h9-h10.
5.1.2.6 加工后的滚道表面不得有裂纹。

5.1.3 隔离块 Insulation block 隔离块的材料用聚酰胺1010树脂制造,并应符合HG/T 2349的规定
5.1.4 密封圈Seal 密封圈的材料用SN7453型丁腈橡胶制造,并符合HG/T 2811的规定。

5.1.5 套圈的齿轮 Ring gears 5.1.5.1 齿轮为标准直齿渐开线圆柱齿轮,径向变位系数x一般为+0.5。

对于单排四点接触球式滚道中心圆直径为200-450mm的回转支承,齿轮径向变位系数x一般为0。

5.1.5.2 齿轮模数应符合GB/T 1357 的规定。

3 齿轮的精度一般采用GB/T 10095 中的10GK.
5.1.5.4需淬火的齿轮分为齿面淬火、齿根齿面淬火和全齿淬火,其
淬火的表面硬度为50-60HRC.
有效硬化层深度应符合表8的规定。

表8 齿轮有效硬化层深度(mm)
5.1.5.5 加工后的齿轮表面不得有裂纹。

5.1.6 油杯 Oil cup 油杯应符合JB/T 7940.7
总成 Assembly 5.2.1总成表面应光整,无划痕、碰伤等缺陷。

5.2.2 总成的套圈应能反正灵活地旋转,无异常响声。

5.2.3总成的滚动体和滚道之间应加注锂基润滑脂,润滑脂应符合GB/T 7324的规定
总成装配精度应不大于表9中规定的数值。

相关文档
最新文档