一质点运动学

合集下载

大学物理第1章质点运动学

大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。

一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。

质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。

二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。

1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。

匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。

2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。

非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。

三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。

主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。

我们可以通过坐标系建立一个参照系,来描述质点的位置。

2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。

位移的大小可以用位移公式Δr=r2-r1来计算。

3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。

速度的大小可以用速度公式v=Δr/Δt来计算。

4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。

加速度的大小可以用加速度公式a=Δv/Δt来计算。

四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。

曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。

1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。

弧长的大小可以用弧长公式s=rθ来计算。

2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。

曲率半径可以根据曲线的形状计算得出。

3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

1质点运动学

1质点运动学

可以将物体简化为质点的两种情况:
物体不变形,不作转动(此时物体上各点的速度及加速度都相
同,物体上任一点可以代表所有点的运动)。
物体本身线度和它活动范围相比小得很多(此时物体的变形及 转动显得并不重要)。
注意: 1、相对性。 2、理想模型。 3、研究质点运动是研究物质运动的基础。
描述物体运动必须作的三点准备:
加速度
加速度大小
2 2 2 a a a x a y az
结论:
瞬时加速度是矢量,精确反映速度变化的大小及 速度的方向。
1. a 的方向:
当质点作曲线运动时, a 的方向总是指向轨迹曲 线凹的一面,与同一时刻速度 v的方向一般是不 2. a 的大小
同的。
当 t 0 v 的极限方向即 dv 的方向。
由于经典力学是最早形成的物理理论,后 来的许多理论,包括相对论和量子力学的形成 都受到它的影响。后者的许多概念和思想都是 经典力学概念和思想的发展或改造。经典力学 在一定意义上是整个物理学的基础。这是我们 要学习经典力学的另一个重要原因。 力学部分主要讲述经典力学的基础,包括 质点力学和部分刚体力学。着重阐明动量、角 动量和能量诸概念及相应的守恒定律。
t1时刻,位矢为 r t2时刻,位矢为 r2 1
t2 t1 时间间隔内的
P 1 Δs
则定义矢量 P P2 为质点在 t 1
位移 (displacement)
由矢量三角形,知
位移
P1 P2 r2 r1 r
基本定义式
O
Δ r r r
1
P2
Г
2
直角坐标系 P点坐标(x,y,z)
而其他天体的作用力和 形状均可忽略

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

1 质点运动学

1  质点运动学

en
2.切向加速度
法向加速度
v dv
d
;t+dt时刻:B点 t时刻:A点 v v dv dt时间内经过弧长ds ds对应圆心角角度d
B
R
A
v
ˆ dr dset
ˆ dv d v ( t )e t a dt dt
例1.路灯距地面高H ,行人高h ,若人以速率 u从路 灯正下方背向路灯运动时,求人头顶影子的运动方程 (以路灯的正下方为原点)。
解:
x ut
H x h x x H H x x ut H h H h
§1.2 位移 速度 加速度
位移(displacement): 位置矢量的变化量 r(t)
ˆ ˆ d( xi yˆ zk ) j ˆ ˆ v vx i v y ˆ vz k j dt
速度的大小:
v v v v
2 2 x y
2 z
速度的方向:为轨迹切线的方向,指向时间 t 值增 大的一方。
注意:
s r , d s d r
r r , d r d r
r | r |
2 2
2 2
2 2
2 1
2 1
2 1
路程(path): 位置矢量末端运动轨迹 s 的长度
位移与路程的区别: (A)位移是矢量,路程是标量。 (B)一般情况,位移大小不等于路程。
r s
(C)两点间的路程是不唯一的,而位移是唯一的。
r ?s
什么情况下
1. 不改变方向的直线运动;
大小: 方向:
r
4 2 ( 4) 2 5.65m
4 arctg 4 4

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第一章_质点运动学

第一章_质点运动学
v
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角

1质点运动学

1质点运动学

1质点运动学第1章质点运动学⼀、基本要求1.理解描述质点运动的位⽮、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即⽤求导法由已知的运动学⽅程求速度和加速度,并会由已知的质点运动学⽅程求解位⽮、位移、平均速度、平均加速度、轨迹⽅程;⽤积分法由已知的质点的速度或加速度求质点的运动学⽅程;3.理解⾃然坐标系,理解圆周运动中⾓量和线量的关系,会计算质点做曲线运动的⾓速度、⾓加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。

⼆、基本内容(⼀)本章重点和难点:重点:掌握质点运动⽅程的物理意义及利⽤数学运算求解位⽮、位移、速度、加速度、轨迹⽅程等。

难点:将⽮量运算⽅法及微积分法应⽤于运动学解题。

(提⽰:⽮量可以有⿊体或箭头两种表⽰形式,教材中⼀般⽤⿊体形式表⽰,学⽣平时作业及考试请⽤箭头形式表⽰)(⼆)知识⽹络结构图:相对运动总加速度法向加速度切向加速度⾓加速度⾓速度曲线运动轨迹⽅程参数⽅程位⽮⽅程质点运动⽅程运动⽅程形式平均加速度加速度平均速度速度位移位⽮基本物理量,,,,:)(,,(三)容易混淆的概念: 1.瞬时速度和平均速度瞬时速度(简称速度),对应于某时刻的速度,是质点位置⽮量随时间的变化率,⽤求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不⽤求导法。

2. 瞬时加速度和平均加速度瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度⽮量随时间的变化率,⽤求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不⽤求导法。

3.质点运动⽅程、参数⽅程和轨迹⽅程质点运动⽅程(即位⽮⽅程),是质点位置⽮量对时间的函数;参数⽅程是质点运动⽅程的分量式;⽽轨迹⽅程则是从参数⽅程中消去t 得到的,反映质点运动的轨迹特点。

4.绝对速度、相对速度和牵连速度绝对速度是质点相对于静⽌参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静⽌参照系的速度。

1-质点运动学

1-质点运动学
z0 1 2 r v 0 ti gt j 2
0 y0
0y
x0
0
y y
v0
v 0v
0
x x
x
注意:不同的坐标系对同一运动的描述不同。 1 2 取Y轴向上为正向: r v 0 ti gt j 2
取 ( x0 , y0 ) 为抛点:
1 2 r x 0 v 0 t i y 0 gt j 2
xi y j z k
速度的大小表示为
x y z
2 2

2
速度的方向由下式决定
cos
vx
v
vy cos v
vz cos v
性质: 1、瞬时性 2、矢量性 3、可加性 4、相对性
ⅲ、平均速率
Δs v Δt
x( t ) 0
r( t )
·
y( t )
P( t )
y
(x,y,z) 确定。
②自然法
x
o
s
p
+
在已知的运动轨迹上任选一故定点o,为自然坐标的 原点,运动轨迹的长度 s ,为p点的自然坐标。
③位置矢量 在直角坐标系中,用来确定质点所在位置的矢 z 量,叫做位置矢量,简称位矢。位置矢量是从坐标 原点指向质点所在位置的有向线段。
8
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。
研究地球自转
v R
地球上各点的速度相差很大,因此,地球自身的 大小和形状不能忽略,这时不能作质点处理。
例2:研究汽车在平直道路上运动
除车轮在转动外,汽车各部分运动情况(速度、 加速度)完全相同,车轮的运动是次要的,此时 可把汽车作为质点处理。

第一章 质点 运动学

第一章  质点 运动学

rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt

R
s
A

角加速度:
t 0

O
x
lim
t 0
t

d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。


研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。

一质点沿直线运动,其运动学方程

一质点沿直线运动,其运动学方程

一质点沿直线运动,其运动学方程一质点沿直线运动的运动学方程是描述质点在直线运动中位置随时间变化的数学表达式。

在物理学中,直线运动是一种最简单的运动形式,质点沿着一条直线运动,没有转动的情况发生。

运动学方程能够描述质点的位置、速度和加速度等随时间的变化规律。

在研究一质点沿直线运动时,我们通常会关注以下几个方面的内容:质点的位移、速度和加速度。

我们来看一质点的位移。

位移是指质点从起始位置到终止位置的距离,可以用Δx来表示。

在直线运动中,质点的位移与时间的关系可以用如下的运动学方程表示:Δx = v0t + 1/2at^2其中,v0是质点的初始速度,t是运动的时间,a是质点的加速度。

这个方程表明了质点的位移与时间的二次关系,即位移与时间的平方成正比。

接下来,我们来看一质点的速度。

速度是指质点在单位时间内所移动的距离,可以用v来表示。

在直线运动中,质点的速度与时间的关系可以用如下的运动学方程表示:v = v0 + at其中,v0是质点的初始速度,t是运动的时间,a是质点的加速度。

这个方程表明了质点的速度与时间成一次关系,即速度与时间成正比。

我们来看一质点的加速度。

加速度是指单位时间内速度的变化率,可以用a来表示。

在直线运动中,质点的加速度与时间的关系可以用如下的运动学方程表示:a = (v - v0) / t其中,v是质点的终止速度,v0是质点的初始速度,t是运动的时间。

这个方程表明了质点的加速度与速度和时间之间的关系,即加速度与速度和时间的比值成正比。

通过以上的运动学方程,我们可以得到质点在直线运动中的位置、速度和加速度随时间的变化规律。

在实际问题中,我们可以根据已知条件,利用这些方程来求解未知量,从而得到质点的运动状态。

需要注意的是,以上的运动学方程适用于质点在直线运动中的匀加速运动情况。

如果质点的运动是变速运动或者非直线运动,运动学方程将有所不同。

此外,还需要根据具体问题的情况,确定质点的初始条件和运动过程中的其他限制条件,以获得准确的运动学方程。

第一章- 质点运动学

第一章- 质点运动学

间位置而设置的坐标系统,是固结于参考系上的一个数
学抽象。 常见的坐标系:
角向
r

径向
•P(r,α)
极轴
z
P•(x,y,z)
r
Or
y
x
极坐标系
r n
τr
P(n,τ)
O
•P(r,ϕ ,θ ) r
直角坐标系
自然坐标系
球坐标系
§1-2 描述质点运动的物理量
1-2-1 位置矢量与运动方程
上海
热带风暴
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
设质点: t+
t ∆t
时位时移刻刻::: AB∆,, rvrvrBvA
z
A v
∆rv
B
rA
v rB
O
y
x
平均速度: vr = ∆rv ∆t
单位:m⋅s-1
平均速度的方向与∆t时间内位移的方向一致
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 瞬时速度(速度) 精细地描述质 z
avt
=
dv dt
evt
=
d2s dt 2
evt
v 讨论 det
dt
∆evt
=
v et
(t
+
∆t)
-
v et
(t
)
当: ∆t → 0 , ∆θ → 0
有 ∆et = et ⋅ ∆θ = ∆θ
方向 ∆evt ⊥ evt
v d et dt
= lim ∆evt ∆t→0 ∆t
= lim ∆θ ∆t→0 ∆t

一质点沿半径为r的圆周运动,运动学方程为

一质点沿半径为r的圆周运动,运动学方程为

一质点沿半径为r的圆周运动,运动学方
程为
运动学是研究物体运动的一门科学,它是力学的重要组成部分,是研究物体运动规律的重要手段。

一质点沿半径为r的
圆周运动的运动学方程是:x=rcosα,y=rsinα,v=rω,a=rα,
其中,x,y分别为一质点在圆周上的横纵坐标,v为一质点在
圆周上的速度,a为一质点在圆周上的加速度,r为圆周半径,α为一质点在圆周上的角度,ω为一质点在圆周上的角速度。

一质点沿半径为r的圆周运动是一种特殊的直线运动,它
是一种定向运动,运动方向不断改变,运动的轨迹是一个圆周。

运动的过程中,一质点的位置不断变化,但是它的瞬时速度一直保持定值,而加速度一直保持为零,这就是直线运动的最大的特点。

一质点沿半径为r的圆周运动的运动学方程,是我们研究
物体运动规律的重要依据。

它可以帮助我们准确计算物体在圆周上的运动轨迹,这对我们研究物体运动规律,研究物理学和力学问题具有重要意义。

此外,一质点沿半径为r的圆周运动的运动学方程,也可
以帮助我们研究复杂的物理系统,比如:人体的运动、机器人的运动、木块的旋转等。

这些复杂的物理系统,都可以用一质点沿半径为r的圆周运动的运动学方程来描述,这样就可以更
准确地研究这些复杂的物理系统。

总之,一质点沿半径为r的圆周运动的运动学方程,是我
们研究物体运动规律的重要依据,它可以帮助我们准确计算物体在圆周上的运动轨迹,也可以帮助我们研究复杂的物理系统,已达到更准确的研究结果。

第一章质点运动学

第一章质点运动学

3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m

1质点运动学

1质点运动学

圆周运动
y
一、圆周运动的角量描述 1 角坐标 质点相对x 轴转过的角度
(t ) (rad)
••
O

2 角速度
d lim (rad s1 ) t 0 t dt
x
3 角加速度
d d 2 a 2 ( rad s ) dt dt
2
一般规定逆时针方向的角速度和角加速度 为正,顺时针为负 4 速率
x R cos t y R sin t ( z 0)
其中R和为常量。求任一时刻的位矢、速度、 y 加速度 R
O
x
y
r R cos ti R sin tj
v R sin ti R cos tj 2 2 a R cos ti R sin tj
r r0
0
t r (t ) r0 v ( )d
t 0
分量形式
x(t ) x0 vx ( )d
t 0
y(t ) y0 vy ( )d
z (t ) z0 vz ( )d
0
t
2、已知 a (t ) dv a dv adt dt 定积分,应用初始条件 t 0 v v0 t v t dv ' a ( )d v (t ) v0 a ( )d
v r 2 an r r r
2
2
2
[例] 一质点沿半径为0.1m的圆周运动,其角 位置随时间变化关系为: 2 4t 3 求:t =2s 时质点的法向和切向加速度
一、人以恒定速率 v0 拉着绳子运动,船开始 静止,地面到水面高度h,求船在离岸边 x 距离时的速度、加速度 y

大一质点运动学知识点总结

大一质点运动学知识点总结

大一质点运动学知识点总结质点运动学是物理学中的一个重要分支,研究物体的运动状态、运动规律以及与运动相关的物理量。

在大一学习的过程中,质点运动学是物理学的基础部分,下面将对大一质点运动学的几个重要知识点进行总结。

一、位移和位移公式质点在某个时间段内,从初始位置到最终位置所经过的路径称为位移。

位移可以是矢量量,具有大小和方向。

其大小可由位移公式计算得出,位移公式为:Δx = x - x₀其中,Δx表示位移,x表示最终位置,x₀表示初始位置。

二、速度和速度公式质点的速度是描述质点移动快慢和方向的物理量,即单位时间内质点位移的大小。

速度也是矢量量,由速度公式计算得出,速度公式为:v = Δx / Δt其中,v表示速度,Δx表示位移,Δt表示时间间隔。

三、加速度和加速度公式质点的加速度是描述质点速度改变快慢和方向的物理量,即单位时间内速度的变化量。

同样,加速度也是矢量量,由加速度公式计算得出,加速度公式为:a = Δv / Δt其中,a表示加速度,Δv表示速度变化量,Δt表示时间间隔。

四、匀速直线运动在匀速直线运动中,质点在单位时间内的位移相等,即速度为常量。

位移、速度和加速度之间的关系可以用质点在匀速直线运动中的运动学方程表示,该方程包括:①位移公式:x = x₀ + vt②速度公式:v = v₀③加速度公式:a = 0其中,x表示位置,x₀表示初始位置,v表示速度,v₀表示初始速度,t表示时间。

五、匀加速直线运动在匀加速直线运动中,质点在单位时间内的速度发生等量增加或减少的改变,即加速度为常量。

位移、速度和加速度之间的关系可以用质点在匀加速直线运动中的运动学方程表示,该方程包括:①位移公式:x = x₀ + v₀t + (1/2)at²②速度公式:v = v₀ + at③加速度公式:a = (v - v₀) / t其中,x表示位置,x₀表示初始位置,v表示速度,v₀表示初始速度,t表示时间,a表示加速度。

第1章 质点运动学

第1章 质点运动学

第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解

dv a dt
t dv adt
t0
同理:

r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds

大学物理第一章 质点运动学

大学物理第一章 质点运动学
这一类型问题是直线运动中较简单,也是大家 在中学就已熟习的。 •匀速直线运动: a 0, v 常量,x x0 vt
a 常量,v v0 at,
•匀变速直线运动:
1 2 x x0 v0t at 2 2 2 v v0 2a( x x0 )
注意:以上各式仅适用于匀加速情形。
t t
要求 v( y ),可由
dv dv dy dv a v dt dy dt dy

积分得
v
dv kv v dy
2
dv kdy v
y dv v ky v0 v k 0 dy ln v0 ky, v v0e
1-3 曲线运动
一.运动的分解
如图,A、B为在同一高度的两个小球。在同一 时刻,使A球自由落体,B球沿水平方向射出,虽然 两球的轨道不同,但是两球总是在同一时刻落地。 说明,B球的运动可分解为在水平方向作匀速直线运 动,在竖直方向作自由落体运动。
其大小注意a aa a2 x 2 y2 z
dv dv a a dt dt
•描述质点运动的状态参量的特性 状态参量包括
r , v, a
应注意它们的
(1)矢量性。注意矢量和标量的区别。
(2)瞬时性。注意瞬时量和过程量的区别。 (3)相对性。对不同参照系有不同的描述。
1 gx y xtg 2 2 2 v0 cos 19.6 2 50tg 50tg 19.6(1 tg ) 2 cos
两边一起定积分得
dv dv adt kv dt kdt 2 v
2

v
v0
t dv k dt 2 0 v
v0 v(t ) kv0t 1

1 质点运动学

1 质点运动学

1—3
一、速度:
1 粗略描写:
质点运动的描述㈡
r r (t ) A 平均速度 V : 设:
r V t
△t 时间内的位移为 r
路程为 s
x y i j Vx i V y j t t r 大小: V t 方向: r 一般情况: B 平均速率 V : V V s V t
1—2
一、位置矢量
r
质点运动的描述㈠

y
y
描述质点位置的矢量, 简称“位矢” 。 是自参考点O 到 t 时刻质点所 在位置P 所引出的矢量。 在直角坐标系有:
r xi y j zk
o
r
·
x
p
x
可见:
z
z
位置矢量与质点的位置一一对应。
二、运动方程:
1 运动方程:
r ( t ) x ( t )i y( t ) j z ( t )k
③ 综上可知,在自然坐标系中有:
a an a
大小:
方向:
V 2 2 dV 2 ( ) ( ) dt
an tan a
(a , V )
⑶ 按照an 、a 的情况可以将平面运动进行分类:
a=0
(改变 V 方向)
V (改变 大小)
0 t
2 2 0 2 ( 0 )
(t t )

ds V dt
d 1 ds
(速率)
d V n dt
其中 为t 时刻该点附近曲线的曲率半径。 大小: 方向:
an V 2
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档