2019年浙江省高职单招单考温州市第一次模拟考试《数学》试卷参考答案
2019届浙江省温州市高三第一次模拟考试数学试题Word版含解析
2019届浙江省温州市高三第一次模拟考试数学试题选择题部分(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 设全集错误!未找到引用源。
,则集合错误!未找到引用源。
( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
【答案】B【解析】试题分析:如图,错误!未找到引用源。
.故选B .13U :1,2,3,4,5BA考点:集合的运算.2. 已知错误!未找到引用源。
是虚数单位,则满足错误!未找到引用源。
的复数错误!未找到引用源。
在复平面上对应点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A考点:复数的模,复数的几何意义.3. 设实数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
的最大值为( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .2D .3【答案】C【解析】试题分析:作出可行域,如图错误!未找到引用源。
内部(含边界),作出直线错误!未找到引用源。
,平移直线错误!未找到引用源。
,当它过点错误!未找到引用源。
时,错误!未找到引用源。
取得最大值2.故选C.考点:简单的线性规划.4. 若错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
或1 D.错误!未找到引用源。
或-1【答案】A考点:三角函数的同角关系.5. 在错误!未找到引用源。
的展开式中,各项系数和与二项式系数和之比为64,则错误!未找到引用源。
的系数为()A.15 B.45 C.135 D.405【答案】C【解析】试题分析:由题意错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,令错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
.故选C.考点:二项式定理的应用.6. 已知正整数错误!未找到引用源。
2019年浙江省单独考试招生文化考试仿真模拟数学试题卷
2019年浙江省单独考试招生文化考试仿真模拟数学试题卷姓名:___________准考证号:___________本试题卷共3大题,共4页。
满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
一、单项选择题(本大题共20小题,1-10小题每小题2分,13-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)1.若全集R U =,5}-3|{<<x N x A ∈=,0}1|{<-∈=x Z x B ,则 A B C U =()A.{2,3,4}B.{1,2,3,4}C.{1,2,4}D.{0,1,2,3,4}2.函数)2lg(1--=x x y 的定义域是()A.(2,∞+)B.[1,2)∪(2,∞+)C.[1,∞+)D.[1,2)3.下列函数在其定义域内恒为减函数的是()A.x xy +=1 B.xy 21log = C.xy 3= D.64-2++=x x y 4.数列}{a n ,对任意*∈N x ,均满足点),(n S n M 在二次函数2x y =的图像上,则()A.该数列公比为2B.32=SC.该数列中所有奇数项呈公差为4的等差数列D.221+=+n a n 5.在平面直角坐标系中,点(2,3)关于直线032=-+y x 的对称点是()A.(-2,-3)B.(-1,0)C.(1,2)D.(0,-1)6.一椭圆以双曲线122=-y x 的顶点为焦点,焦点为顶点,则下列关于该椭圆的说法错误的是()A.短轴长为2B.离心率为22 C.焦距为2 D.长轴长为短轴长的2倍7.若232cos 232sin =-αα,则αtan ()A.62 B.2196C.23 D.228.已知直线l :0232=-+y x 的倾斜角α,直线l 与x 轴交点为A ,将其绕点A 逆时针旋转α度后得到直线1l ,则1l 的斜率为()A.512- B.34-C.32- D.09.抛物线2x y =图像上任意一点到其焦点的最短距离为()A.21 B.1C.41 D.3110.若方程04)2(222=-++-+m y x m y x 表示一个圆,则m 的取值范围是()A.]4-4[, B.)4-4(, C.),(),(∞+∞44-- D.),,(∞+∞4[]4-- 11.下列不等式中,解集为)[3,1)-(+∞∞ ,的是()A.0)3)(1(≥--x x B.{01-x 03<≥-x C.013≥--x x D.0342>+-x x 12.在一个角为60°的△ABC 中,∠A 、∠B 、∠C 所对的边分别为c b a 、、,则“c b a ,,三边成等差”是“△ABC 为等边三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件13.如图所示,在正方形ABCD 中,两条对角线交点为O ,则下列结论中错误的是()A.AC AB AD =-B.CBCA CD =+C.=+ D.=+第13题图14.6人平均分成3组,且甲、乙必须同组,则不同的分组方案有_________种.()A.48 B.6 C.36 D.315.给出以下四个命题,其中真命题的个数是()①如果两条相交直线均与第三条直线垂直,则这三条直线构成了三个平面②若直线⊥A 平面α,直线B 垂直A ,则α∥B ③若已知平面α,且αα⊆⊆B A ,,则B A ,两条直线共面,反之,则异面④若平面外的一条斜线l 与平面相交,且直线1l 与l 在平面内的的射影垂直,则l l ⊥1A.0个 B.1个 C.2个D.3个16.下列各式不正确的是()A.)cos()cos(ααπ-=+B.)2cos()3sin(απαπ+=+C .απαtan )tan(=- D.)sin()sin(βαβα--=+-AB C CD17.函数)6sin(2)(πω+=x x f 的一个单调区间为]3,32[ππ-,则ω的值为()A.1B.±1C.-1D.±218.点Q 的坐标为)0,30(sin !︒则点Q 所在的位置是()A.第一象限B.第二象限C.第三象限D.坐标轴上19.某年寒假时间为25天,其中雨雪天为15天,则晴天占寒假总天数的概率为()A.53 B.52 C.83 D.8520.在△ABC 中,2sin =Aa,B ∠:C ∠3:2=,则B ∠的度数为()A.30°B.45°C.60°D.75°二.填空题(本大题共7小题,每小题4分,共28分)21.若直线01=--ay x 和02)2(=++-y a ax 互相垂直,则a =__________.22.已知)0(lg )0(42{)1(>x x x x x f ≤+=+,则=-)]3([f f ___________.23.在一等比数列}{n a 中,01>a ,42=a ,则31a a +的取值范围是_____________.24.已知23-sin =α,]23,[ππα∈,则=α2tan _____________.25.某设备购买时价值为100万元,第一年报废了其中的一半,以后每年报废剩余价值的一半,价值低于5万元后视同报废,则__________年后该设备视同报废.26.已知海绵宝宝在盛有足量水的容器中会逐渐长大,受到外界碰撞或容器壁挤压则会破裂,一海绵宝宝呈球形,现有一圆柱形玻璃杯(不计玻璃厚度),底面直径与高相等,侧面积为π92cm ,为使海绵宝宝能“顺利成长”,则应控制其体积不超过______________.27.直线)}{(2常数∈+=b b x y 与双曲线4422=-y x 的图像有_________个交点.三.解答题(本大题8小题,共72分)解答应写出文字说明及演算步骤28.(本题满分7分)求值:πcos 32(2lg 3125lg 2213++++-C P .29.(本题满分8分)已知椭圆短轴上的一个顶点A 与两个焦点1F 、2F 构成一个等腰直角三角形,焦点在x 轴上,原点到直线1AF 的距离为1,直线01=+-y x 与椭圆相交于E 、F 两点,求OEF S ∆.30.(本题满分9分)已知函数x x x f 2cos )1(tan )(+=.(1)求函数的最大值和周期;(2)讨论函数在定义域),(π0上的单调性.31.(本题满分9分)二项式nt x )(+(其中t 为常数)展开后只有第5项的二项式系数最大,且各项系数之和256.(1)求t 的值;(2)求展开后所有偶数项的系数之和.32.(本题满分9分)在如图所示的直三棱柱111C B A ABC -中,62,42211====AC BC AB BB ,求:(1)点1A 到平面11C AB 的距离;(2)平面ABC 与平面11C AB 所成角的正切值.第32题图33.(本题满分10分)已知圆9)2(22=+-y x 与直线02=++-A y Ax (A 为常数)相切.(1)求A 的值;(2)若P 为圆上一动点,求当点P 到直线的距离最大时点P 的坐标.34.(本题满分10分)某地为迎接改革开放40周年,进行绿化建设,打算开发一块长8米、宽6米的矩形空地,为了美化,欲在如图所示的这块空地中挖一块圆形土地,记圆形土地面积为1S ,剩余部分面积为2S .若21S S <,则在圆内种草皮,剩余地块种郁金香;若12S S >,则反之.已知每平方米的草皮价格为320元,郁金香价格为318元.并且,当圆形土地半径为1米时,管理成本为3000元,半径每扩大1米,管理成本增加30元.求:(π取3)(1)所需总费用C 与圆形土地半径r 的函数关系式;(2)请问应如何设计种植,才能使总费用最低?第34题图35.(本题满分10分)在如图所示的坐标轴中,点P 、Q 均从原点出发向右移动,点P 移动的路径为(0,1,3,7,15,31…),点Q 移动的路径为(0,1,3,6,10,15,21…),括号内的数字为每经过1秒所到达的点的位置,在坐标轴中每相邻两点间的距离为一个单位长度.(1)观察这些点的特点,分别写出点P 和点Q 经过t 秒后所到达的点表示的数字;(2)若点Q 经过t 秒后所在的点表示数字为a ,求数列⎭⎫⎩⎨⎧t a 前n 项和.x第35题图1S 2S。
2019高三职高单招单考数学模拟测试1
2019浙江单招单考数学1检测时间: 120 分钟 分值: 150 分 命题人:一、选择题(共20大题,1-10小题每题2分,11-20小题每题3分,共50分){}{})(,2,1log 0.13=⋂≤=<<=B A x x B x x A 则集合()(]()(]2,1D 2,1C 2,0B 1,0、、、、A )(的中点,是中在==∆AE ,DC 2B D ,.2AD E ABCAC AB AC AB AC AB AC AB A 6131D 3161C 6131B 3161+--+、、、、)”的(”是“则“设021,.32<-+<∈x x x R xA 、充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件)上是减函数的是(下列函数在R .4xxy y xy x y A 12D 2C ln B ====-、、、、)的值为(平行,则与直线直线a y x y ax 0132012.5=--=-+3D 2C 34B 3、、、、--A)的定义域为(函数)1lg()(.6-=x x f[)()()()()()+∞+∞⋃+∞⋃+∞,1D ,11,0C ,22,1B ,2、、、、A)的短轴长是(椭圆82.722=+y x 24D 4C 22B 2、、、、A=θθsin )43-(.8,则,的终边经过点设角P54D 54C 53B 53、、、、--A )(则且设=+∈-=-)22sin(),23,(,35)sin(.9απππααπ36D 66C 66B 36、、、、--A)的位置关系是(与,则是异面直线,直线设b c a c n m //,.10、异面或相交平行、、异面、相交D A C B)的解集是(则不等式设0)1)((,1.11>---<a x a x a⎭⎬⎫⎩⎨⎧><⎭⎬⎫⎩⎨⎧><⎭⎬⎫⎩⎨⎧<<⎭⎬⎫⎩⎨⎧<<a x a x x a x a x x a x a x a x a x A 或、或、、、1D 1C 1B 1)方案(个学校任教,共有分配位老师分配到将34.12256D 7C 12B 81、、、、A{})是(则满足的一个通项公式,,项为中,前已知数列241263.13n a 5D 3C 23B 42+==⋅=+=n a a a n a A n nn nn n 、、、、)(,则实数的一条渐近线为双曲线===-a x y a y x 212.14224D 3C 2B 2、、、、A)展开式中常数项是()(612.15--x x20D 20C 15B 15、、、、--A)概率为(次恰好出现一次正面的将一枚均匀硬币抛掷2.161D 43C 41B 21、、、、A)是(则角位于第二象限点θθθθ,)cos sin ,(sin .17⋅P、第四象限、第三象限、第二象限、第一象限D C B A)则下列正确的是(函数,1)4(cos 2.182--=πx y 32D 12C 3B 1最大为、周期为最大为、周期为最大为、周期为最大为、周期为ππππA)的值为(则角中,若C B a A b C c ABC ,cos cos cos 2.19+=∆3D 65C 65B 32ππππ、、、、A )则离心率为(且相切于点与圆的直线的左右焦点,过为双曲线,3,1-,.20122221222221MF MF M b y x l F by a x F F ==+=3D 3C 2B 2、、、、A二、填空题(本大题共7小题,每小题4分,共28分)____),3-2B(),3,2(45.210的值为则,直线过点倾斜角为m m A _____))1((1,log 1,2)(.222=⎩⎨⎧≥<=f f x x x x f x ,则函数()()_____221.2322对称的圆的方程为关于直线圆x y y x ==-+-{}______,0,12.245347==-=-S a a a a n 则中,若等差数列_______043.25则该球的体积为积相等,的表面积与此圆锥侧面,若球,底面半径为圆锥的高为______2sin 12cos ,314tan .26=-=⎪⎭⎫ ⎝⎛-αααπ则已知_______12,1log log ,0,0.2722的最小值为则且若yx y x y x +=+>>三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤)28(本题满分7分)1ln 312321log )2019(23sin 8133++⎪⎭⎫ ⎝⎛++πA 计算:29(本题满分8分)64)(为展开中二项式系数之和已知nxm x +分)的值(求4)1n)4(160)2分值,求若常数项为m030105,2)9.(30===∆C A c ABC ,中,分分)的值(和求5)1a b )4(ABC )2分的面积求∆相切与圆过点直线:圆C l y x y x )0,2(,0342C .3122-=+-++分)的圆心和半径(求圆4C )1)5()2分的方程求l分)的正切值()求二面角分)体积()求四棱锥,,为梯形,,底面面中,如图,四棱锥5A CD P 24D 15AD 3BC 4AB PA 90BAD ABCD D .320---=====∠⊥-ABC P ABC PA ABC P个个可以售出元个,若按元已知这种商品进价为个元,其销售量就减少每涨价某种商品在进价基础上分满分500/50/40101)10.(33分)润最大,并求最大值()当售价为多少时,利分)的函数关系(元与利润求当售价为424)1y x)2(60)3分,求最大利润为多少不能超过若xBA 2)0,22(61)10.(342222,交椭圆于:设直线,其中一个焦点的长轴长为已知椭圆:分满分+==+x y l F by a x 分)求椭圆的标准方程(4)1)6()2分的中点坐标和弦长求AB{}{}{}分)(项和前)求数列分)是等比数列(证明若分求且设等差数列333,2)2)4()1.16,2,.35421n n n n a n n n T n b a b b a a a a a n +==+=,。
2019年浙江高职考数学试卷
2019年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}1,01,-=A ,{}3,1,1,3--=B ,则=B A I A. {-1,1} B. {-1} C. {1} D.Ø2. 不等式x 2-4x ≤0的解集为A.[0,4]B.(0,4)C.[-4,0)∪(0,4]D.(-∞,0]∪[4,+∞) 3. 函数()31)2ln(-+-=x x x f 的定义域为 A.(2,+∞) B.(0,4) C.(-∞,2]∪[3,+∞) D..(2,3)∪(3,+∞) 4. 已知平行四边形ABCD,则向量+=A. BDB. DBC.D.5. 下列函数以π为周期的是A.)8sin(π-=x y B. x y cos 2= C. x y sin = D.x y 2sin = 6. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是A. 400B.380C. 190D.407. 已知直线的倾斜角为60°,则此直线的斜率为 A.33- B.3- C. 3 D.33 8. 若sin α>0且tan α<0,则角α终边所在象限是A.第一象限B.笫二象限C.第三象限D.第四象限9. 椭圆标准方程为144222=-++ty t x ,一个焦点为(-3,0),则t 的值为 A. -1 B.0 C. 1 D.310. 已知两直线l 1、l 2分别平行于平面β,则两直线l 1、l 2的位置关系为A.平行B.相交C.异面D.以上情况都有可能11. 圆的一般方程为x 2+y 2-8x +2y+13=0,则其圆心和半径分别为A. (4,-1),4B.(4,-1),2C.(-4,1),4D.(-4,1),212. 已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是 A.100001 B.501 C. 1003 D.10017 13.a 、b 、c 为实数,则下列各选项中正确的是 A.c b c a b a -<-⇔<-0 B.b a b a ->⇔>-0C.b a b a 220->-⇔<-D.c b a a c b a >⇔>>>014. s in1050°的值为A. 22B.23 C.21- D.2115. 双曲线12222=-by a x 的实轴长为10,焦距为26,则双曲线的渐近线方程为 A.x y 513±= B.x y 512±= C.x y 125±= D.x y 135±= 16. 方程442+-=x x y 对应曲线的图形是A. B.C. D.17. 若角α的终边经过点(4,-3),则cos2α的值为A.257B.2516-C. 257-D.2516 18. 动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是A.(0,6)B.(0,5)C.(0,4)D.(0,3)19. “1201912=-k ”是“k=1”的A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件20. 某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折,按照购票费用最少原则,建立实际游览人数x 与购票费用y(元)的函数关系,以下正确的是A. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1344,240,80B.⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,1680,210,80C. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1920,240,80D.⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,2400,210,80 二、填空题(本大题共7小题,每小题4分,共28分)21. 等比数列41,1,4,16,…的第5项是 22. 化简:cos(π+θ)tan(π-θ)=23. (2x-y)6展开式的第5项为24. 圆柱的轴截面是边长为3的正方形,则圆柱的体积等于 25. 如图所示,函数y=f (x)的图象关于直线x=8对称,则f (6) f (13)(填“>”、“<”或“=”)26. 正数xy 满足Igx+lgy=2,则x+y 的最小值等于27. 已知椭圆中心在原点且对称轴为坐标轴,它与双曲线1322=-y x 有且仅有两个公共点,它们的离心率之积为1,则椭圆标准方程为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤) 28. 计算:()25215!33225.01000lg 2sin -+-÷+--π29. (本题满分8分)在△ABC 中,∠B=∠C=30°,32=a(1)求c;(4分)(2)N 为AC 中点时,求△ABN 的面积.(4分)30. 已知圆C 的圆心为(-1,1),半径为2(1)写出圆C 的标准方程;(3分)(2)试判断直线x+y-1=0与圆C 的位置关系;若相交,求出两交点间的距离.(6分) 31. 已知α、β为第二象限角,且满足332sin =α,53sin =β,求(1)cos(α-β);(5分)(2)函数()x x x f sin cos cos cos βα+=的最大值.(4分)32. .(本题满分9分)已知抛物线的顶点在原点,焦点坐标为F(3,0)(1) 求抛物线的标准方程;(3分)(2) 若抛物线上点M 到焦点的距离为4,求点M 的坐标.(6分)33. 如图,正三棱锥P-ABC 的侧棱长为32,底面边长为4(1)求正三棱锥P-ABC 的全面积;(4分)(2)线段PA 、AB 、AC 的中点分别为D 、E 、F,求二面角D-EF-A 的余弦值.(6分)34. (本题满分10分)体育场北区观众席共有10500个座位观众席座位编排方式如图所示,由内而外依次记为第1排、第2排……从第2排起,每一排比它前一排多10个座位,且最后排有600个座位(1)北区观众席共有多少排?(7分)(2)现对本区前5排的座位进行升级改造,改造后各排座位数组成数列{b n },{b n }满足:①b 1等于原第1排座位数的一半;②b n =b n-1+n 2(n=2,3,4,5).求第5排的座位数(3分)35. (本題满分10分)电影《流浪地球》上映期间,一场电影的票价定为50元时,电影院满座,满座时可容纳600人.若票价每提高5x (x ∈N)元,售出票数就减少30x 张(1)若票价为60元,求实际售出的电影票数;(2分)(2)写出一场电影的票房收入R(元)与x 的函数关系式;(3分)(3)已知放映一场电影所需的总成本为600(20-x)元,若不考虑其他因素,票价定为多少时,电影院能获得最大利润?(5分)。
2019年浙江省温州市高考数学模拟试卷(5月份)(解析版)
2019年浙江省温州市高考数学模拟试卷(5月份)一、选择题(本大题共10小题,共40.0分)1.已知集合U=R,A=,,则A∩∁U B=()A. B. C. D.2.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A.B.C.D.3.设S n是等差数列{a n}的前n项和,且S4=a4+3,则a2=()A.B.C.1D. 24.设m,n为直线,α、β为平面,则m⊥α的一个充分条件可以是()A.⊥,,⊥B.,⊥C. ⊥,D. ,⊥5.已知实数x,y满足,则z=x2+y2的最大值等于()A. 2B.C. 4D. 86.已知双曲线:与双曲线:没有公共点,则双曲线C1的离心率的取值范围是()A. B. C. D.7.已知点A(x1,y1),B(x2,y2)是函数的函数图象上的任意两点,且y=f(x)在点,处的切线与直线AB平行,则()A. ,b为任意非零实数B. ,a为任意非零实数C. a、b均为任意实数D. 不存在满足条件的实数a,b8.盒中有6个小球,其中4个白球,2个黑球,从中任取i(i=1,2)个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数X i(i=1,2),则()A. ,B. ,C. ,D. ,9.已知平面向量,,满足:=0,||=1,||=||=5,则||的最小值为()A. 5B. 6C. 7D. 810.如图,矩形ABCD中,AB=1,BC=,E是AD的中点,将△ABE沿BE折起至△A'BE,记二面角A'-BE-D的平面角为α,直线A'E与平面BCDE所成的角为β,A'E与BC所成的角为γ,有如下两个命题:①对满足题意的任意的A'的位置,α+β≤π;②对满足题意的任意的A'的位置,α+γ≤π,则()A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立二、填空题(本大题共7小题,共36.0分)11.若复数z满足2z=3+i,其中i是虚数单位,是z的共轭复数,则z=______12.若展开式中常数项为5,则a=______,含x5的项的系数等于______.13.已知正数a、b满足a+b=1,则的最小值等于______,此时a=______.14.如图△ABC是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF=2AF,AB=,则△EDF的面积为______.15.已知函数,若函数f(x)在R上是单调的,则实数a的取值范围是______;若对任意的实数x1<a,总存在实数x2≥a,使得f(x1)+f(x2)=0,则实数a的取值范围是______.16.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有______种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).17.如图所示,点A(1,2),B均在抛物线y2=4x上,等腰直角△ABC的斜边为BC,点C在x轴的正半轴上,则点B的坐标是______.三、解答题(本大题共5小题,共74.0分)18.已知函数>的图象向左平移后与函数<图象重合.(1)求ω和φ的值;(2)若函数,求h(x)的单调递增区间及图象的对称轴方程.19.如图,四棱锥P-ABCD中,底面为直角梯形,AB∥CD,∠BAD=90°,AB=2CD=4,PA⊥CD,在锐角△PAD中,E是边PD上一点,且AD=PD=3ED=.(1)求证:PB∥平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为30°?20.数列{a n}满足a1=,a n+2a n+1=0,其前n项和为S n,数列的前n项积为.(1)求S n和数列{b n}的通项公式;(2)设,求{c n}的前n项和T n,并证明:对任意的正整数m、k,均有S m>T k.21.如图,过点M(2,2)且平行与x轴的直线交椭圆>于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线x=2于点E、F,求证:是定值.22.设函数,.(1)若g(x1)=g(x2)=t(其中x1≠x2)(i)求实数t的取值范围;(ii)证明:2x1x2<x1+x2;(2)是否存在实数a,使得f(x)≤g(x)在区间(0,+∞)内恒成立,且关于x的方程f(x)=g(x)在(0,+∞)内有唯一解?请说明理由.答案和解析1.【答案】A【解析】解:B={y|y≥1};∴∁U B={y|y<1};∴A∩∁U B=[0,1).故选:A.可求出集合B,然后进行交集、补集的运算即可.考查描述法、区间的定义,以及补集、交集的运算.2.【答案】D【解析】解:由三视图知几何体是四棱锥,底面是边长为2的正方形,棱锥的高为2,利用勾股定理求得四棱锥的侧面的斜高是:.∴几何体的表面积:=4+4.故选:D.由三视图知几何体是四棱锥,底面是正方形,边长为2;四棱锥的高为2,利用正四棱锥数据代入表面积公式计算可得答案.本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及数据所对应的几何量.3.【答案】C【解析】解:依题意S n是等差数列{a n}的前n项和,且S4=a4+3,所以S4=4a1+6d=a1+3d+3,可得3(a1+d)=3,即a2=1.故选:C.S4=4a1+6d=a1+3d+3,可得3(a1+d)=3,可得a2.本题考查了等差数列的前n项和,等差数列的通项公式,属于基础题.4.【答案】B【解析】解:A.当m⊄β内时,结论不成立,B.若α∥β,m⊥β,时,m⊥α,成立,满足条件C.α⊥β,m∥β时,m⊥α不一定成立,D.nα,m⊥n,则m⊥α不一定成立,故选:B.根据线面垂直的判定定理进行判断即可.本题主要考查充分条件和必要条件的判断,结合线面垂直的判定定理以及空间直线和平面的位置关系是解决本题的关键.5.【答案】D【解析】解:根据实数x,y满足,画出可行域z=x2+y2表示O(0,0)到可行域的距离的平方,由解得B(2,2),当点B与点原点连线时,OB距离最大,则z=x2+y2的最大值是B(2,2)到(0,0)的距离的平方为:8,故选:D.先根据约束条件画出可行域,再利用z=x2+y2的几何意义表示点(0,0)到可行域的点的距离的平方,求最值,即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.6.【答案】C【解析】解:双曲线的渐近线方程为y=±2x,当双曲线的渐近线方程也为y=±2x,则两双曲线没有公共点,又若<2,可得两双曲线没有公共点,则双曲线C1的离心率e1=≤,又e1>1,即有1<e1≤,故选:C.求得双曲线C2的渐近线方程,考虑双曲线C1的渐近线的斜率的绝对值小于等于2,结合离心率公式可得所求双曲线的离心率范围.本题考查双曲线的方程和性质,主要是渐近线方程和离心率的范围,考查方程思想和运算能力、推理能力,属于基础题.7.【答案】A【解析】解:函数的导数为f′(x)=+2bx,y=f(x)在点处的切线与直线AB平行,即有+b(x1+x2)==+b(x1+x2),可得=,由于对任意x1,x2,上式都成立,可得a=0,b为非零实数,故选:A.求得f(x)的导数,结合两点的斜率公式和两直线平行的条件:斜率相等,化简可得a=0,b为任意非零实数.本题考查导数的运用:求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于基础题.8.【答案】C【解析】解:X1=3表示取出的为一个白球,∴P(X1=3)==,X1=2表示取出一个黑球,P(X1=2)==,E(X1)=3×+2×=;X2=3表示取出两个球,其中一黑一白,P(X2=3)==;X2=2表示取出2个球为黑球,P(X2)==,X2=4表示取出2个白球,P(X2=4)==,E(X2)=3×+2×+4×==,故选:C.根据古典概型概率公式求得概率,期望,比较可得.本题考查了离散型随机变量的期望和方差,属中档题.9.【答案】B【解析】解:设=(cosθ,sinθ),设=,=,设A为x轴正半轴上一点,坐标为(m,0),B为y轴正半轴上一点,坐标为(n,0),依题意m∈[4,6],n∈[4,6].所以=(m-cosθ,-sinθ),=(-cosθ,n-sinθ).因为||=||=5,所以m2-2mcosθ+cos2θ+sin2=25,n2-2nsinθ+sin2θ+cos2θ=25,即m2+n2=48+2mcosθ+2nsinθ.||=|()-()|=.==≥,当且仅当m=n=3时(θ=)取得等号.所以||≥=6.故选:B.建立坐标系,将已知条件转化为所设未知量的关系式,再将||的最小值转化为用该关系式表达的算式,利用基本不等式求解即可.本题考查了向量的位置关系,向量的模,平面向量基本定理,基本不等式等知识,属于难题.10.【答案】A【解析】解:①如图所示,过A′作A′O⊥平面BCDE,垂足为O,连接OE,作OM⊥BE,连接A′M.则∠A′OM=π-α,∠A′EO=β≤∠A′OM=π-α,∴α+β≤π;因此①正确.②∵BC∥DE,∴A'E与BC所成的角γ=π-∠A′ED<∠A′OM=π-α,∴对满足题意的任意的A'的位置,α+γ≤π,因此②正确.综上可得:①②都正确.故选:A.①如图所示,过A′作A′O⊥平面BCDE,垂足为O,连接OE,作OM⊥BE,连接A′M.可得∠A′OM=π-α,根据∠A′EO=β≤∠A′OM=π-α,即可判断出结论.②由BC∥DE,可得A'E与BC所成的角γ=π-∠A′ED<∠A′OM=π-α,即可判断出结论.本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.11.【答案】1+i【解析】解:设z=a+bi(a,b∈R),由2z=3+i,得2a+2bi+a-bi=3a+bi=3+i,得a=1,b=1,∴z=1+i.故答案为:1+i.设z=a+bi(a,b∈R),代入2z=3+i,整理后利用复数相等的条件求得a,b,则答案可求.本题考查复数相等的条件,是基础题.12.【答案】1 10【解析】解:由展开式中的通项T r+1=(ax2)5-r ()r=a5-r x,令=0,得r=4,即a=5,故a=1,令=5,得r=2,即x5的项的系数等于=10,故答案为:1 10.由二项式定理及展开式的通项得:T r+1=(ax2)5-r ()r=a 5-r x,令=0,得r=4,即a=5,故a=1,令=5,得r=2,即x5的项的系数等于=10,得解.本题考查了二项式定理及展开式的通项,属中档题.13.【答案】3【解析】解:根据题意,正数a、b满足a+b=1,则==++1≥2+1=3,当且仅当a=b=时,等号成立,故的最小值为3,此时a=;故答案为:3,.根据题意,分析可得==++1,由基本不等式的性质可得++1≥2+1=3,进而分析基本不等式成立的条件可得a的值,即可得答案.本题考查基本不等式的性质以及应用,关键是掌握基本不等式的形式,属于基础题.14.【答案】【解析】解:由3个全等的三角形⇒AF=DB.在△ABD中,∠ADB=180°-60°=120°.设AF=x=DB,则AD=3x.由余弦定理可得:13=x2+9x2-6x2cos120°,解得x2=1.∴△EDF的面积S=×4x2=.故答案为:.由3个全等的三角形,可得AF=DB.在△ABD中,∠ADB=180°-60°=120°.设AF=x=DB,可得AD=3x.由余弦定理可得:x2.再利用△EDF的面积S=×4x2,即可得出.本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题.15.【答案】[2,+∞)(-∞,-2]【解析】解:函数,若函数f(x)在R上是单调的,由x<a时,f(x)=x+2递增,可得f(x)在R上递增,可得a≥0,且a+2≤a2,解得a≥2;由对任意的实数x1<a,总存在实数x2≥a,使得f(x1)+f(x2)=0,可得x1+2+x22=0,即-x22=x1+2≤0,即有a+2≤0,可得a≤-2.故答案为:[2,+∞),(-∞,-2].由函数f(x)在R上是单调的,以及一次函数的单调性可得f(x)在R上递增,可得a≥0,且a+2≤a2,可得a 的范围;由对任意的实数x1<a,总存在实数x2≥a,使得f(x1)+f(x2)=0,可得x1+2+x22=0,即-x22=x1+2≤0,可得a的范围.本题考查分段函数的单调性和函数的值域求法,考查单调性的定义和转化思想,以及推理能力,属于基础题.16.【答案】192【解析】解:根据题意,分2步进行分析:①,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有3×4=12种安排方法;②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有2×2×2×2=16种安排方法,则有且仅有一对父子是相邻而坐的坐法16×12=192种;故答案为:192.根据题意,分2步进行分析:①,在三对父子中任选1对,安排在相邻的位置上,②,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.17.【答案】(3,2)【解析】解:设B(a,b),C(c,0),(a,b,c>0),可得b2=4a,k AC•k BA =•=-1,由|AB|=|AC|,可得=,化为(1-)2+(2-b)2=4+,可得(4-b2)2(16+(2+b)2)=64(16+(2+b)2),即有b2-4=8,可得b=2,(负的舍去),即有a=3,则B(3,2),故答案为:(3,2).设B(a,b),C(c,0),(a,b,c>0),由抛物线方程和两直线垂直的条件:斜率相等,以及两点的距离公式,解方程可得所求值.本题考查抛物线的方程和运用,考查方程思想和运算能力,属于基础题.18.【答案】解:(1)已知函数>的图象向左平移后与函数<图象重合,所以:ω=2.所以:f(x+)=sin(2x+)=cos(2x+),由于<,则:.(2)根据题意:h(x)=f(x+)+g(x),=,=.令2x+=k(k∈Z),整理得图象的对称轴方程为(k∈Z),令:(k∈Z),整理得:(k∈Z),所以函数的单调递减区间为[,](k∈Z).【解析】(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.19.【答案】(1)证明:连接BD交AC于O,∵AB∥CD,∴△OCD∽△OAB,∴=,又=,∴OE∥PB,又OE平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)解:过A作AF⊥PD,垂足为F,连接CF,∵CD⊥AD,CD⊥PA,PA∩AD=A,∴CD⊥平面PAD,∴CD⊥AF,又AF⊥PD,PD∩CD=D,∴AF⊥平面PCD,∴∠ACF为AC与平面PCD所成的角,即∠ACF=30°.AC==,∴AF=AC=,∴sin∠ADF==,cos∠ADF==,∴PA==.∴当PA=时,AC与平面PCD所成的角为30°.【解析】(1)连接BD交AC于O ,由相似三角形可得=,结合=得出OE∥PB,故而PB∥平面ACE;(2)过A作AF⊥PD,可证AF⊥平面PCD,根据∠ACF=30°计算AF,得出∠ADF的大小,再计算PA的长.本题考查了线面平行的判定,线面垂直的判定与线面角的计算,属于中档题.20.【答案】解:(1)数列{a n}满足a1=,a n+2a n+1=0,整理得:(常数),所以:数列{a n}是以1为首项为公比的等比数列,则:,所以:.当n≥2时,数列的前n项积为.则:①,②,则:得:所以:b n=2n-1.(2),=,=,所以:,=<所以:<,,故:S m>T k.【解析】(1)利用已知条件建立等量关系求出数列的通项公式.(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论.本题考查的知识要点:数列的通项公式的求法及应用,数列的前n项和的应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.21.【答案】(1)解:由题意,A(-4,2),B(4,2),代入椭圆方程得m=12.∴椭圆的标准方程为;(2)证明:设直线CD的方程为y=k(x-2)+2,联立,得(1+2k2)x2+8k(1-k)x+8k2-16k-16=0.设C(x1,y1),D(x2,y2),则,.AC的方程为,令x=2,得.BD的方程为,令x=2得.∴=====为定值.【解析】(1)由题意求得A,B的坐标,代入椭圆方程求得m,则椭圆方程可求;(2)设直线CD的方程为y=k(x-2)+2,联立,可得关于x的一元二次方程,设C(x1,y1),D(x2,y2),分别求出AC与BD的方程,得到E,F的纵坐标,则利用根与系数的关系即可证明=为定值.本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.22.【答案】解:(1)(i)∵g(x)=,∴g'(x)=,令g'(x)=0,则x=1,∴当x<1时,g'(x)>0,当x>1时,g'(x)<0,∴g(x)在(-∞,1)上单调递增,g(x)在(1,+∞)上单调递减,∴g(x)min=g(1)=1.又∵当x≤0时,g(x)≤0;当x>0时,g(x)>0,∴结合g(x)的图象知,0<t<1,∴t的取值范围为:(0,1);(ii)证明:∵x1≠x2,不妨设x1<x2,由(i)知:0<x1<1<x2,∴<1,要证:2x1x2<x1+x2成立,只需证:x1<<1,∵g(x)在(1,+∞)上单调递减,故只需证:g(x2)=g(x1)<g(),即证:>0,令μ=2x2-1>1,只需证:>0(μ>1),即证:lnμ-<0(μ>1),令φ(μ)=lnμ-,则φ'(μ)=<0,∴φ(μ)<φ(1)=0,证毕,∴2x1x2<x1+x2.(Ⅱ)令h(x)=g(x)-f(x)=-ln x+ax2+a-1(x>0),∵h(1)=0,且需h(x)≥0在区间(0,+∞)内恒成立,∴h'(1)=0,可得a=-,事实上,当a=-时,h(x)=-ln x+x2-,下证:h(x)=-ln x+x2-≥0,证明:h'(x)=,令F(x)=e x-ex,则F'(x)=e x-e,∴F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴F(x)≥g(1)=0,即e x≥ex,∴<(x>0),∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴h(x)min=h(1)=0,∴h(x)≥0在区间(0,+∞)内恒成立,证毕,∴当a=-时,f(x)≤g(x)在区间(0,+∞)内恒成立,且关于x的方程f(x)=g(x)在(0,+∞)内有唯一解x=1.【解析】(1)(i)根据函数y=g(x)与y=t在R的图象有两个不同的交点可得t的范围;(ii)证明2x1x2<x1+x2成立,只需证:x1<<1;(Ⅱ)构造函数h(x)=g(x)-f(x),证明h(x)≤0在区间(0,+∞)内恒成立.本题主要考查数形结合,函数与不等式,以及函数恒成立问题,综合性较强,属于难题.。
浙江省温州市2019-2020学年高三数学一模试卷含解析
浙江省温州市2019-2020学年高三数学一模试卷含解析一、单选题(共10题;共20分)1.已知全集U={1,2,3,4},A={1,3},C U B={2,3},则A∩B=()A. {1}B. {3}C. {4}D. {1,3,4}2.设实数x,y满足不等式组{x≥0 y≥03x+4y−12≤0,则z=x+2y的最大值为()A. 0B. 2C. 4D. 63.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()A. 16cm3 B. 13cm3 C. 12cm3 D. 23cm34.已知双曲线x2a2- y2b2=1(a>0,b>0)的离心率为√3,则双曲线的渐近线方程为( )A. y=± √22x B. y=± √2x C. y=±2x D. y=± 12x5.已知a,b是实数,则“ a>1且b>1”是“ ab+1>a+b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.函数f(x)=1x+1−2x−1的图象可能是()A. B.C. D.7.在四面体ABCD 中, ΔBCD 为等边三角形, ∠ADB =π2 ,二面角 B −AD −C 的大小为 α ,则 α 的取值范围是( )A. (0,π6]B. (0,π4]C. (0,π3]D. (0,π2]8.已知随机变量 ξ 满足 P(ξ=0)=1−p , P(ξ=1)=p ,其中 0<p <1 .令随机变量 η=|ξ−E(ξ)| ,则( )A. E(η)>E(ξ)B. E(η)<E(ξ)C. D(η)>D(ξ)D. D(η)<D(ξ) 9.如图,P 为椭圆 E 1:x 2a2+y 2b 2=1(a >b >0) 上的一动点,过点P 作椭圆 E 2:x 2a2+y 2b 2=λ(0<λ<1) 的两条切线PA ,PB ,斜率分别为 k 1 , k 2 .若 k 1⋅k 2 为定值,则 λ= ( )A. 14B. √24C. 12 D. √2210.已知数列 {x n } 满足 x 1=2 , x n+1=√2x n −1(n ∈N ∗) .给出以下两个命题:命题 p: 对任意 n ∈N ∗ ,都有 1<x n+1<x n ;命题 q: 存在 r ∈(0,1) ,使得对任意 n ∈N ∗ ,都有 x n ≤r n−1+1 .则( ) A. p 真,q 真 B. p 真,q 假 C. p 假,q 真 D. p 假,q 假二、填空题(共7题;共7分)11.若复数z满足(2−i)z=(1+2i)2,其中i为虚数单位,则z=________,|z|=________.12.直线x4+y2=1与x轴、y轴分别交于点A,B,则|AB|=________;以线段AB为直径的圆的方程为________.13.若对x∈R,恒有x7+a=(1+x)(a0+a1x+⋯+a5x5+a6x6),其中a,a0,a1,…,a5,a6∈R,则a=________,a5=________.14.如图所示,四边形ABCD中,AC=AD=CD=7,∠ABC=120°,sin∠BAC=5√314,则ΔABC的面积为________,BD=________.15.学校水果店里有苹果、香蕉、石榴、橘子、葡萄、西梅6种水果,西梅数量不多,只够一人购买.甲、乙、丙、丁4位同学前去购买,每人只选择其中一种,这4位同学购买后,恰好买了其中3种水果,则他们购买水果的可能情况有________种.16.已知平面向量a⃗,b⃗⃗,c⃗满足|a⃗|=1,|b⃗⃗|=√3,a⃗⋅b⃗⃗=0,c⃗−a⃗与c⃗−b⃗⃗的夹角为π6,则c⃗⋅(b⃗⃗−a⃗)的最大值为________.17.设函数f(x)=|x3−|x+a|+3|.若f(x)在[−1,1]上的最大值为2,则实数a所有可能的取值组成的集合是________.三、解答题(共5题;共50分)18.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b=3,sinA+asinB=2√3.(1)求角A的值;(2)求函数f(x)=cos2(x−A)−cos2x(x∈[0,π2])的值域.19.如图,已知四棱锥P−ABCD,BC//AD,平面PAD⊥平面PBA,且DP=DB,AB=BP=PA= AD=2BC.(1)证明:AD⊥平面PBA;(2)求直线AB与平面CDP所成角的正弦值.20.已知等差数列{a n}的首项a1=1,数列{2a n}的前n项和为S n,且S1+2,S2+2,S3+2成等比数列.(1)求通项公式a n;(2)求证:1n (√a na1+√a na2+⋯+√a na n)<1+√nn+1(n∈N∗);21.如图,F是抛物线y2=2px(p>0)的焦点,过F的直线交抛物线于A(x1,y1),B(x2,y2)两点,其中y1>0,y1y2=−4.过点A作y轴的垂线交抛物线的准线于点H,直线HF交抛物线于点P,Q.(1)求p的值;(2)求四边形APBQ的面积S的最小值.22.已知实数a≠0,设函数f(x)=e ax−ax.(1)求函数f(x)的单调区间;(2)当a>12时,若对任意的x∈[−1,+∞),均有f(x)≥a2(x2+1),求a的取值范围.注:e=2.71828⋯为自然对数的底数.答案解析部分一、单选题1.【答案】A【解析】【解答】因为U={1,2,3,4}, C U B={2,3}所以由补集定义与运算可得B={1,4}又因为A={1,3}根据交集运算可得A∩B={1,3}∩{1,4}={1}故答案为:A【分析】根据补集的定义与运算,可求得集合B.结合交集运算即可求得A∩B.2.【答案】D【解析】【解答】实数x,y满足不等式组{x≥0 y≥03x+4y−12≤0,其表示出平面区域如下图所示:将函数y=−12x平移,可知当经过点A(0,3)时, y=−12x+z2的截距最大此时z=0+2×3=6所以z=x+2y的最大值为6故答案为:D【分析】根据不等式组画出可行域,将目标函数平移后,即可求得最大值.3.【答案】B【解析】【解答】由三视图,还原空间几何体如下图所示:根据题中线段长度可知, AE=EC=AE=PE=1, AB=BC=√2且AB⊥BC,PE⊥AC则V P−ABC=13SΔABC⋅PE=13×12×√2×√2×1=13cm2故答案为:B【分析】根据三视图,还原空间几何体,即可由题中给出的线段长求得体积.4.【答案】A【解析】【解答】由e= ca ,得e2= c2a2= a2+b2a2=1+ b2a2=3,∴b2a2=2,∴ba= √2,双曲线渐近线方程为y=± abx,即y=± √22x,故答案为:A.【分析】利用双曲线的离心率公式结合双曲线中a,b,c三者的关系式,从而求出ba= √2,进而求出双曲线的渐近线方程。
浙江省温州市2019年高考数学一模试卷(文科)含答案解析
浙江省温州市2019年高考数学一模试卷(文科)(解析版)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)2.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m∥α,则l⊥αC.若l⊥α,m⊥α,则l∥m D.若l⊥m,l⊥α,则m∥α3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣34.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知正方形ABCD的面积为2,点P在边AB上,则的最大值为()A.B.C.2 D.6.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E﹣BC﹣F的余弦值为()A.B.C.D.7.如图,已知F1、F2为双曲线C:﹣=1(a>0,b>0)的左、右焦点,点P在第一象限,且满足(+)=0,||=a,线段PF2与双曲线C交于点Q,若=5,则双曲线C的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x8.已知集合M={(x,y)|x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是()A.{(λ,μ)|λ+μ=4} B.{(λ,μ)|λ2+μ2=4}C.{(λ,μ)|λ2﹣4μ=4}D.{(λ,μ)|λ2﹣μ2=4}二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知直线l1:ax﹣y+1=0,l2:x+y+1=0,l1∥l2,则a的值为,直线l1与l2间的距离为.10.已知钝角△ABC的面积为,AB=1,BC=,则角B=,AC=.11.已知f(x)=,则f(f(﹣2))=,函数f(x)的零点的个数为.12.某几何体的三视图如图所示,则该几何体的体积为,表面积为.13.若数列{a n}满足a n+1+a n=2n﹣1,则数列{a n}的前8项和为.14.已知f(x)=ln(x+),若对任意的m∈R,方程f(x)=m均为正实数解,则实数a的取值范围是.15.已知椭圆C:=1(a>)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex+a,P为点F1关于直线l对称的点,若△PF1F2为等腰三角形,则a的值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.17.设等比数列{a n}的前n项和为S n,已知a1=2,且4S1,3S2,2S3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=|2n﹣5|a n,求数列{b n}的前n项和T n.18.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.19.如图,已知点F(1,0),点A,B分别在x轴、y轴上运动,且满足AB⊥BF,=2,设点D的轨迹为C.(I)求轨迹C的方程;(Ⅱ)若斜率为的直线l与轨迹C交于不同两点P,Q(位于x轴上方),记直线OP,OQ的斜率分别为k1,k2,求k1+k2的取值范围.20.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若∃t∈(0,2),对于∀x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.2019年浙江省温州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)【分析】分别求出集合A,B,从而求出其交集即可.【解答】解:∵集合A={x|y=lgx}={x|x>0|,B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∩B=(0,3),故选:B.【点评】本题考查了集合的运算,是一道基础题.2.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m∥α,则l⊥αC.若l⊥α,m⊥α,则l∥m D.若l⊥m,l⊥α,则m∥α【分析】利用线面平行的性质定理和判定定理对四个选项分别分析解答.【解答】解:对于A,若l∥α,m∥α,则l与m的位置关系可能为平行、相交或者异面;故A错误;对于B,若l⊥m,m∥α,则l与α平行或者相交;故B 错误;对于C,若l⊥α,m⊥α,利用线面创造的性质可得l∥m;故C正确;对于D,若l⊥m,l⊥α,则m∥α或者m⊂α;故D错误;故选C.【点评】本题考查了线面平行的性质定理和判定定理的运用;关键是熟练掌握定理,正确运用.3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣3【分析】令z=x﹣y,从而化简为y=x﹣z,作平面区域,结合图象求解即可.【解答】解:令z=x﹣y,则y=x﹣z,由题意作平面区域如下,,结合图象可知,当过点A(3,0)时,x﹣y取得最大值3,故选B.【点评】本题考查了学生的作图能力及线性规划的应用,同时考查了数形结合的思想应用.4.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】先根据直线l与曲线C有公共点,根据直线和圆的位置关系得到b2≤1+k2,再根据充分,必要条件的定义判断即可.【解答】解:由题意可得直线直线l:y=kx+b,曲线C:x2+y2=1有公共点,∴≤1,∴b2≤1+k2,当b=1时,满足,b2≤1+k2,即“b=1”是“直线l与曲线C有公共点”充分条件,当直线l与曲线C有公共点,不一定可以得到b=1,b=0时也满足,故“b=1”是“直线l与曲线C有公共点”的充分不必要条件,故选:A.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,以及充分必要条件的判定,体现了转化、数形结合的数学思想,属于基础题.5.已知正方形ABCD的面积为2,点P在边AB上,则的最大值为()A.B.C.2 D.【分析】建立平面直角坐标系,设P(x,0),使用坐标法将表示成x的函数,根据x的范围求出函数的最大值.【解答】解:以AB为x轴,以AD为y轴建立平面直角坐标系,∵正方形ABCD的面积为2,∴B(,0),C(),D(0,).设P(x,0)(0),则=(,),=(﹣x,).∴=﹣x()+2=x2﹣+2=(x﹣)2+.∴当x=时,取得最大值.故选B.【点评】本题考查了平面向量的数量积运算,使用坐标法求值是常用方法之一.6.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E﹣BC﹣F的余弦值为()A.B.C.D.【分析】根据折叠前和折叠后的边长关系,结合二面角的平面角定义得到∠FOE是二面角E ﹣BC﹣F的平面角进行求解即可.【解答】解:取BC的中点O,连接OE,OF,∵BA=CD,∴BF=FC,即三角形BFC是等腰三角形,则FO⊥BC,∵BE=CF,∴△BEC是等腰三角形,∴EO⊥BC,则∠FOE是二面角E﹣BC﹣F的平面角,∵EF⊥CF,BF⊥EF,∴EF⊥平面BCF,EF⊥FO,则直角三角形EFO中,OE=AB=2,EF=DE=,则sin∠FOE===,则cos∠FOE===,故选:B【点评】本题主要考查二面角的求解,根据二面角的定义作出二面角的平面角是解决本题的关键.注意叠前和折叠后的线段边长的变化关系.7.如图,已知F 1、F 2为双曲线C :﹣=1(a >0,b >0)的左、右焦点,点P 在第一象限,且满足(+)=0,||=a ,线段PF 2与双曲线C 交于点Q ,若=5,则双曲线C 的渐近线方程为( )A .y=±xB .y=±xC .y=±xD .y=±x【分析】连接F 1Q ,由向量共线定理可得|F 2Q |=,|PQ |=,由双曲线的定义可得|F 1Q |=,运用向量的数量积的性质可得|F 1F 2|=|F 1P |=2c ,在△F 1PQ 和△QF 1F 2中,由∠PQF 1+∠F 2QF 1=π,可得cos ∠PQF 1+cos ∠F 2QF 1=0,运用余弦定理,化简整理可得b=a ,运用双曲线的渐近线方程即可得到.【解答】解:连接F 1Q ,由||=a ,=5,可得|F 2Q |=,|PQ |=,由双曲线的定义可得|F 1Q |﹣|F 2Q |=2a ,即有|F 1Q |=,由(+)=0,即为(+)(﹣)=0,即有2﹣2=0,|F 1F 2|=|F 1P |=2c ,在△F 1PQ 和△QF 1F 2中,由∠PQF 1+∠F 2QF 1=π,可得cos ∠PQF 1+cos ∠F 2QF 1=0,由余弦定理可得, +=0,化简可得c 2=a 2,由c 2=a 2+b 2,可得b=a ,可得双曲线的渐近线方程为y=±x ,即为y=±x . 故选:A .【点评】本题考查双曲线的渐近线方程的求法,注意运用三角形中的余弦定理,同时考查向量数量积的性质和向量共线定理的运用,考查化简整理的运算能力,属于中档题.8.已知集合M={(x ,y )|x 2+y 2≤1},若实数λ,μ满足:对任意的(x ,y )∈M ,都有(λx ,μy )∈M ,则称(λ,μ)是集合M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是( )A .{(λ,μ)|λ+μ=4}B .{(λ,μ)|λ2+μ2=4}C .{(λ,μ)|λ2﹣4μ=4}D .{(λ,μ)|λ2﹣μ2=4}【分析】由题意,λ2x 2+μ2y 2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得结论.【解答】解:由题意,λ2x 2+μ2y 2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得C 符合. 故选:C .【点评】本题考查曲线与方程,考查学生的计算能力,问题转化为λ2+μ2≤1与选项有交点是关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知直线l 1:ax ﹣y +1=0,l 2:x +y +1=0,l 1∥l 2,则a 的值为 ﹣1 ,直线l 1与l 2间的距离为.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:直线l 1:ax ﹣y +1=0,l 2:x +y +1=0,分别化为:y=ax +1,y=﹣x ﹣1, ∵l 1∥l 2,∴a=﹣1,1≠﹣1.两条直线方程可得:x +y ﹣1=0,x +y +1=0.直线l 1与l 2间的距离d==.故答案分别为:﹣1;.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.10.已知钝角△ABC 的面积为,AB=1,BC=,则角B=,AC=.【分析】利用已知及三角形面积公式可求sinB ,可求B=或,分类讨论:当B=时,由余弦定理可得AC=1,可得AB 2+AC 2=BC 2,为直角三角形,舍去,从而利用余弦定理可得AC 的值.【解答】解:∵钝角△ABC 的面积为,AB=1,BC=,∴=1××sinB ,解得:sinB=,∴B=或,∵当B=时,由余弦定理可得AC===1,此时,AB 2+AC 2=BC 2,可得A=,为直角三角形,矛盾,舍去.∴B=,由余弦定理可得AC===,故答案为:;.【点评】本题主要考查了三角形面积公式,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于中档题.11.已知f (x )=,则f (f (﹣2))= 14 ,函数f (x )的零点的个数为 1 .【分析】根据x <0与x ≥0时f (x )的解析式,确定出f (f (﹣2))的值即可;令f (x )=0,确定出x 的值,即可对函数f (x )的零点的个数作出判断.【解答】解:根据题意得:f(﹣2)=(﹣2)2=4,则f(f(﹣2))=f(4)=24﹣2=16﹣2=14;令f(x)=0,得到2x﹣2=0,解得:x=1,则函数f(x)的零点个数为1,故答案为:14;1.【点评】此题考查了函数零点的判定定理,以及函数的值,弄清函数零点的判定定理是解本题的关键.12.某几何体的三视图如图所示,则该几何体的体积为12,表面积为36.【分析】根据三视图作出棱锥的直观图,根据三视图数据计算体积和表面积.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示:其中底面ABCD是边长为3正方形,EA⊥底面ABCD,EA=4.∴棱锥的体积V=.棱锥的四个侧面均为直角三角形,EB=ED=5,∴棱锥的表面积S=32++=36.故答案为12;36.【点评】本题考查了棱锥的三视图和结构特征,体积与表面积计算,属于基础题.13.若数列{a n}满足a n+1+a n=2n﹣1,则数列{a n}的前8项和为28.【分析】数列{a n}满足a n+1+a n=2n﹣1,对n分别取1,3,5,7,求和即可得出.【解答】解:∵数列{a n}满足a n+1+a n=2n﹣1,∴数列{a n}的前8项和=(2×1﹣1)+(2×3﹣1)+(2×5﹣1)+(2×7﹣1)=28.故答案为:28.【点评】本题考查了递推关系、分组求和方法,考查了推理能力与计算能力,属于中档题.14.已知f(x)=ln(x+),若对任意的m∈R,方程f(x)=m均为正实数解,则实数a的取值范围是(4,+∞).【分析】根据对数函数的性质结合不等式的性质得到关于a的不等式,解出即可.【解答】解:f(x)=ln(x+)=m,则a=x+﹣e m>4故答案为:(4,+∞).【点评】本题考察了对数函数的性质,不等式的性质,是一道基础题.15.已知椭圆C:=1(a>)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex+a,P为点F1关于直线l对称的点,若△PF1F2为等腰三角形,则a的值为.【分析】运用椭圆的离心率公式和a,b,c的关系,结合点到直线的距离公式,由题意可得|PF1|=|F1F2|,解方程即可求得a的值.【解答】解:由题意可得c=,e=,F1(﹣c,0)到直线l的距离为d=,由题意可得|PF1|=|F1F2|,即为2d=2c,即有=a2﹣2,化简可得a4﹣3a2=0,解得a=.故答案为:.【点评】本题考查椭圆的方程和性质,考查离心率公式的运用和点到直线的距离公式,以及运算化简能力,属于中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【分析】(Ⅰ)由已知推导出2cos2α+3cosα﹣2=0,由此能求出α.(Ⅱ)f(x)=4cosxcos(x﹣α)=2sin(2x+)+1,由,得2x+∈[],由此能求出函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【解答】解:(Ⅰ)∵2sinαtanα=3,且0<α<π.∴2sin2α=3cosα,∴2﹣2cos2α=3cosα,∴2cos2α+3cosα﹣2=0,解得或cosα=﹣2(舍),∵0<α<π,∴α=.(Ⅱ)∵α=,∴f(x)=4cosxcos(x﹣α)=4cosx(cosxcos+sinxsin)=2cos2x+2sinxcosx=+cos2x+1=2sin(2x+)+1,∵,∴2x+∈[],∴2≤2sin(2x+)+1≤3,∴函数f(x)=4cosxcos(x﹣α)在[0,]上的值域为[2,3].【点评】本题考查角的求法,考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式及余弦加法定理和正弦加法定理的合理运用.17.设等比数列{a n}的前n项和为S n,已知a1=2,且4S1,3S2,2S3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=|2n﹣5|a n,求数列{b n}的前n项和T n.【分析】(Ⅰ)根据4S1,3S2,2S3成等差数列.根据等差中项6S2=4S1+2S3,化简整理求得q=2,写出通项公式;(Ⅱ)讨论当n=1、2时,求得T1=6,T2=10,写出前n项和,采用错位相减法求得T n.【解答】解:(Ⅰ)∵4S1,3S2,2S3成等差数列,∴6S2=4S1+2S3,即6(a1+a2)=4a1+2(a1+a2+a3),则:a3=2a2,q=2,∴;(Ⅱ)当n=1,2时,T1=6,T2=10,当n≥3,T n=10+1×23+3×24+…+(2n﹣5)2n,2T n=20+1×24+3×25+…+(2n﹣7)×2n+(2n﹣5)×2n+1,两式相减得:﹣T n=﹣10+8+2(24+25+…+2n)﹣(2n﹣5)×2n+1,=﹣2+2×﹣(2n﹣5)×2n+1,=﹣34+(7﹣2n)2n+1,∴T n=34﹣(7﹣2n)2n+1.∴.【点评】本题求等比数列的通项公式和采用错位相减法求前n项和,属于中档题.18.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.【分析】(I)由DE⊥平面得出DE⊥AB,又DF⊥AB,故而AB⊥平面DEF,从而得出平面ABD⊥平面DEF;(II)以E为坐标原点建立空间直角坐标系,求出和平面DAB的法向量,则|cos<>|即为所求.【解答】证明:(Ⅰ)∵DE⊥平面ABC,AB⊂平面ABC,∴AB⊥DE,又AB⊥DF,DE,DF⊂平面DEF,DE∩DF=D,∴AB⊥平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF.(Ⅱ)∵DA=DC,DE⊥AC,AC=4,AD⊥CD,∴E为AC的中点,DE==2.∵AB⊥BC,AC=4,∠BAC=60°,∴AB=.以E为原点建立如图所示的空间直角坐标系,则E(0,0,0),A(0,﹣2,0),D(0,0,2),B(,﹣1,0).∴=(0,﹣2,﹣2),=(,﹣1,﹣2),=(,﹣1,0).设平面DAB的法向量为=(x,y,z).则,∴,令z=1,得=(,﹣1,1).∴=2,||=,||=2,∴cos<>==.∴BE与平面DAB所成的角的正弦值为.【点评】本题考查了了面面垂直的判定,空间角的计算,空间向量的应用,属于中档题.19.如图,已知点F(1,0),点A,B分别在x轴、y轴上运动,且满足AB⊥BF,=2,设点D的轨迹为C.(I)求轨迹C的方程;(Ⅱ)若斜率为的直线l与轨迹C交于不同两点P,Q(位于x轴上方),记直线OP,OQ的斜率分别为k1,k2,求k1+k2的取值范围.【分析】(I)根据=2得B为AD的中点,利用AB⊥BF,可得=0,从而可得轨迹C的方程;(Ⅱ)斜率为的直线l的方程为y=x+b,代入y2=4x,整理,利用韦达定理,结合斜率公式,即可求k1+k2的取值范围.【解答】解:(I)设D(x,y),则由=2得B为AD的中点,所以A(﹣x,0),B(0,)∵AB⊥BF,∴=0,∴(x,)(1,﹣)=0∴y2=4x(x≠0);(Ⅱ)斜率为的直线l的方程为y=x+b,代入y2=4x,整理可得x2+(4b﹣16)x+4b2=0,△=(4b﹣16)2﹣16b2>0,∴b<2设P(x1,y1),Q(x2,y2),∴x1+x2=16﹣4b,x1x2=4b2.k1+k2=+==,∵b<2,∴<0或>2,∵k1+k2的取值范围是(﹣∞,0)∪(2,+∞).【点评】本题考查求轨迹方程,考查向量知识的运用,解题的关键是用好向量,挖掘隐含,属于中档题.20.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若∃t∈(0,2),对于∀x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.【分析】(Ⅰ)讨论x的取值范围,将函数表示为分段函数形式,然后判断函数的单调性即可.(Ⅱ)将不等式恒成立进行转化,利用参数分离法进行求解即可.【解答】解:(Ⅰ),…(1分)当t>0时,f(x)的单调增区间为,单调减区间为…(4分)当t=0时,f(x)的单调增区间为(﹣∞,+∞)…(5分)当t<0时,f(x)的单调增区间为[0,+∞),,单调减区间为…(8分)(Ⅱ)设g(x)=f(x)﹣x=,当x∈[0,2]时,∵∈(0,2),∴…(9分)当x∈[﹣1,0]时,∵g(﹣1)=﹣t,g(0)=0,∴g min(x)=﹣t…(10分)故只须∃t∈(0,2),使得:成立,即…(13分)∴a≤…(14分)另解:设h(t)=f(x)﹣x=﹣|x|t+x|x|﹣x,t∈(0,2)…(9分)只须h(t)max≥a,对x∈[﹣1,2]都成立.…(10分)则只须h(0)=x|x|﹣x≥a,对x∈[﹣1,2]都成立.…(12分)再设m(x)=x|x|﹣x,x∈[﹣1,2],只须m(x)min≥a,易求得a≤…(14分)【点评】本题主要考查函数单调性的判断以及不等式恒成立问题,利用参数转化法是解决本题的关键.。
(最新整理)2019年浙江省高职单招单考温州市第一次模拟考试《数学》试卷参考答案
得∠A′CA=45°, ------------------------------------- 9 分
所以二面角 C-AB-C′的大小为 45°.----------------------- 10 分 33.解:(1)依题意,将坐标(1,60)、(10,33)代入 p(x) kx b ,
( 第 32 题 图)
-------- 3
所以圆 C′的标准方程是 x2 (y 7)2 1. -------------------------------存在,设为 k ,直线方程为 y 3 k(x 1) 即 kx y k +3 0 ,
相切时1 r d
1
3
32.解:(1) 由题意,AC=1,BC= 3,V = SΔABC h = 2 ×1× 3 ×1 = 2 . ------------- 4 分
(2)由题意,∠A′CA 为二面角 A′-BC-A 的平面角. ----------- 7 分
在直角三角形 A′CA 中,AC=A′A , -------- 8 分
34.解:(1) 设等差数列 an 的公差为 d ,则由 S 4 4S2 得 2a1 d , ①
------- 2 分
由 a2 = 2a1 + 1 得 a1 d+1 0 , ②
此时 2x+
2k
,即x k
(k Z) ,
----------------------------------- 7 分
4
2
8
即 f (x) 取得最大值时 x 的集合为{x | x k ,k Z}. --------------------------- 8 分
8
30.解:(1) 根据余弦定理 b2=a2 c2 2ac cos B 9+25 2 3 5 cos120 49 , ------ 3 分
2019年浙江省单独考试招生文化考试数学(含答案)
=-2.
29.(8分)
解:(1)由已知得∠A=120°,
由正弦定理得 = ,即 ,
C=2.
(2)由已知得S△ABN= S△ABC,
S△ABC= acsin30°=1×2 ×2× = ,
S△ABN= .
30.(9分)
解:(1)由已知得圆C的标准方程为(x+1)2+(y-1)2=2
11.圆的一般方程为 ,则其圆心和半径分别为
A. B.
C. D.
12.已知100张奖券共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是
A. B.
C. D.
13. 、 、 为实数,则下列各选项中正确的是
A. B.
C. D.
14. 的值为
A. B.
C. D.
15.双曲线 的实轴长为10,焦距为26,则双曲线的渐近线方程为
(1)求正三棱锥 的全面积;(4分)
(2)线段 、 、 的中点分别为 、 、 ,求二面角 的余弦值.(6分)
34.(本题满分10分)体育场北区观众席共有10500个座位.观众席座位编排方式如图所示,由内而外依次记为第1排、第2排、…….从第2排起,每一排比它前一排多10个座位,且最后一排有600个座位.
31.(本题满分9分)已知 、 为第二象限角,且满足 , 求:
(1) ;(5分)
(2)函数 的最大值.(4分)
32.(本题满分9分)已知抛物线的顶点在原点,焦点坐标为 .
(1)求抛物线的标准方程;(3分)
(2)若抛物线上点 到焦点的距离为4,求点 的坐标.(6分)
33.(本题满分10分)如图,正三棱锥 的侧棱长为 ,底面边长为 .
2019年浙江省高职考单招单考数学试卷(附答案)
2019浙江省高职单独考试数学试卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1. 已知集合A ={-1,0,1},集合B ={-3,-1,1,3},则A ∩B =( ) A. {-1,1} B. {-1} C. {1}D. ∅2. 不等式x 2-4x ≤0的解集为( )A. [0,4]B. (0,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)3. 函数f (x )=ln (x −2)+1x −3的定义域为( ) A. (2,+∞) B. [2,+∞) C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)4. 已知平行四边形ABCD ,则向量⃗AB +⃗B C =¿( ) A. ⃗BDB. ⃗DBC. ⃗ACD. ⃗C A5. 下列函数以π为周期的是( ) A .y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin2x6. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 400B. 380C. 190D. 407. 已知直线的倾斜角为60°,则此直线的斜率为( ) A.−√33B. −√3C. √3D. √338. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限 B. 第二象限 C. 第三象限D.第四象限9. 椭圆标准方程为x 22t +4+y 24−t=1,一个焦点为(-3,0),则t 的值为( ) A. -1 B. 0 C. 1 D. 310.已知两直线l 1、l 2分别平行于平面β,则两直线l 1、l 2的位置关系为( ) A. 平行 B. 相交 C. 异面 D. 以上情况都有可能11.圆的一般方程为x 2+y 2-8x +2y +13=0,则其圆心和半径分别为( ) A. (4,-1),4 B. (4,-1),2 C. (-4,1),4 D. (-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为( ) A.110000B.150C.3100D.1710013. a 、b 、c 为实数,则下列各选项中正确的是( ) A. a -b <0⇔a -c <b -c B. a -b >0⇔a >-b C . a -b >0⇔-2a >-2b D . a >b >c >0⇔a b >a c 14.sin1050°的值为( ) A. √22B. √32C.−12D.1215. 双曲线x2a2−y2b2=1的实轴长为10,焦距为26,则双曲线的渐渐近线方程为( )A. y=±135x B. y=±125x C. y=±512x D. y=±513x16.方程y=√x2−4x+4所对应曲线的图形是( )17.若角α的终边经过点(4,-3),则cos2α的值为( )A. 725B.−1625C.−725D.162518.动点M在y轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M的坐标是( )A. (0,6)B. (0,5)C. (0,4)D. (0,3)19.“2019k2−1=1”是“k=1”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件20.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折. 按照购票费用最少原则,建立实际游览人数x与购票费用y(元)的函数关系,以下正确的是()A. y={80x,0≤x<24,x∈N1344,24≤x≤30,x∈N56x,x>30,x∈N B. y={80x,0≤x<21,x∈N1680,21≤x≤30,x∈N56x,x>30,x∈NC. y={80x,0≤x<24,x∈N1920,24≤x≤30,x∈N56x,x>30,x∈N D. y={80x,0≤x<21,x∈N2400,21≤x≤30,x∈N56x,x>30,x∈N二、填空题(本大题共7小题,共28分)21.等比数列14,1,4,16,…的第5项是_____.22.化简:cos(π+θ)tan(π-θ)=_____.23.(2x-y)6展开式的第5项为_____.24.圆柱的轴截面是边长为3的正方形,则圆柱的体积等于_____.25.如图所示,函数y=f(x)的图象关于直线x=8对称,则f(6)_____f(13)(填,“>”、“<”或“=”).26.正数x、y满足lg x+lg y=2,则x+y的最小值等于_____.27.已知椭圆中心在原点且对称轴为坐标轴,它与双曲线x2−y 23=1有且仅有两个公共点,它们的离心率之积为1,则椭圆标准方程为_______________.三、解答题(本大题共8小题,共72分)(解答应写出文字说明及演算步骤)28.(本题满分7分)计算:sin π2−l g1000+0.25−12÷5√32−3!+√(−5)2.29.(本题满分8分)在△ABC中,∠B=∠C=30°,a=2√3.(1)求c;(4分)(2)N为AC中点时,求△ABN的面积.(4分)30.(本题满分9分)已知圆C的圆心为(-1,1),半径为√2.(1)写出圆C的标准方程;(3分)(2)试判断直线x+y-1=0与圆C的位置关系;若相交,求出两交点间的距离.(6分)31.(本题满分9分)已知α、β为第二象限角,且满足sinα=2√23,sinβ=35,求:(1)cos(α-β);(2)函数f (x)=cosαcos x+cosβsin x的最大值.(4分)32.(本题满分9分)已知抛物线的顶点在原点,焦点坐标为F(3,0).(1)求抛物线的标准方程(3分)(2)若抛物线上点M到焦点的距离为4,求点M的坐标.(6分)33.(本题满分10分)如图,正三棱锥P-ABC的侧棱长为2√3,底面边长为4.(1)求正三棱锥P-ABC的全面积;(4分)(2)线段P A、AB、AC的中点分别为D、E、F,求二面角D-EF-A的余弦值.(6分)34.(本题满分10分)体育场北区观众席共有10500个座位. 观众席座位编排方式如图所示,由内而外依次记为第1排、第2排、……. 从第2排起,每一排比它前一排多10个座位,且最后一排有600个座位.(1)北区观众席共有多少排?(7分)(2)现对本区前5排的座位进行升级改造,改造后各排座位数组成数列{b n}. {b n}满足:①b1等于原第1排座位数的一半;②b n=b n-1+n2(n=2,3,4,5). 求第5排的座位数.(3分)35.(本题满分10分)电影《流浪地球》上映期间,一场电影的票价定为50元时,电影院满座,满座时可容纳600人. 若票价每提高5x(x∈N)元,售出票数就减少30x张.(1)若票价为60元,求实际售出的电影票数;(2分)(2)写出一场电影的票房收入R(元)与x的函数关系式;(3分)(3)已知放映一场电影所需的总成本为600(20-x)元,若不考虑其他因素,票价定为多少时,电影院能获得最大利润?(5分)答案一、单项选择题1. A2. A3. D4. C5. D6. C7. C8. B9. D 10. D 11. B 12. D 13. A 14. C 15.B16. A 17. A 18. C 19. B 20. B二、填空题21. 64 22. 23. 24. 25. > 26. 20 27. 或三、解答题28. -229.(1)2;(2)30.(1);(2)直线与圆相交,31.(1);(2)32.(1);(2)33.(1);(2)34.(1)21排;(2)254个35.(1)540张;(2);(3)票价定为85元时,电影院能获得最大利润。
(完整word版)2019年浙江高职考数学试卷
2019年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}1,01,-=A ,{}3,1,1,3--=B ,则=B A I A. {-1,1} B. {-1} C. {1} D.Ø2. 不等式x 2-4x ≤0的解集为A.[0,4]B.(0,4)C.[-4,0)∪(0,4]D.(-∞,0]∪[4,+∞)3. 函数()31)2ln(-+-=x x x f 的定义域为 A.(2,+∞) B.(0,4) C.(-∞,2]∪[3,+∞) D..(2,3)∪(3,+∞) 4. 已知平行四边形ABCD,则向量BC AB +=A. B. C. D.5. 下列函数以π为周期的是A.)8sin(π-=x y B. x y cos 2= C. x y sin = D.x y 2sin = 6. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是A. 400B.380C. 190D.407. 已知直线的倾斜角为60°,则此直线的斜率为 A.33- B.3- C. 3 D.33 8. 若sin α>0且tan α<0,则角α终边所在象限是A.第一象限B.笫二象限C.第三象限D.第四象限9. 椭圆标准方程为144222=-++ty t x ,一个焦点为(-3,0),则t 的值为 A. -1 B.0 C. 1 D.310. 已知两直线l 1、l 2分别平行于平面β,则两直线l 1、l 2的位置关系为A.平行B.相交C.异面D.以上情况都有可能11. 圆的一般方程为x 2+y 2-8x +2y+13=0,则其圆心和半径分别为A. (4,-1),4B.(4,-1),2C.(-4,1),4D.(-4,1),212. 已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是 A.100001 B.501 C. 1003 D.10017 13.a 、b 、c 为实数,则下列各选项中正确的是 A.c b c a b a -<-⇔<-0 B.b a b a ->⇔>-0C.b a b a 220->-⇔<-D.c b a a c b a >⇔>>>014. s in1050°的值为A. 22B.23 C.21- D.21 15. 双曲线12222=-by a x 的实轴长为10,焦距为26,则双曲线的渐近线方程为 A.x y 513±= B.x y 512±= C.x y 125±= D.x y 135±= 16. 方程442+-=x x y 对应曲线的图形是A. B.C. D.17. 若角α的终边经过点(4,-3),则cos2α的值为A.257B.2516-C. 257-D.2516 18. 动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是A.(0,6)B.(0,5)C.(0,4)D.(0,3)19. “1201912=-k ”是“k=1”的A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件20. 某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折,按照购票费用最少原则,建立实际游览人数x 与购票费用y(元)的函数关系,以下正确的是A. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1344,240,80B.⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,1680,210,80 C. ⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3024,1920,240,80 D.⎪⎩⎪⎨⎧∈>∈≤≤∈<≤=N x x x N x x N x x x y ,30,56,3021,2400,210,80二、填空题(本大题共7小题,每小题4分,共28分)21. 等比数列41,1,4,16,…的第5项是 22. 化简:cos(π+θ)tan(π-θ)=23. (2x -y)6展开式的第5项为24. 圆柱的轴截面是边长为3的正方形,则圆柱的体积等于 25. 如图所示,函数y=f (x)的图象关于直线x=8对称,则f (6) f (13)(填“>”、“<”或“=”)26. 正数xy 满足Igx+lgy=2,则x+y 的最小值等于27. 已知椭圆中心在原点且对称轴为坐标轴,它与双曲线1322=-y x 有且仅有两个公共点,它们的离心率之积为1,则椭圆标准方程为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤) 28. 计算:()25215!33225.01000lg 2sin-+-÷+--π29. (本题满分8分)在△ABC 中,∠B=∠C=30°,32=a(1)求c;(4分)(2)N 为AC 中点时,求△ABN 的面积.(4分)30. 已知圆C 的圆心为(-1,1),半径为2(1)写出圆C 的标准方程;(3分)(2)试判断直线x+y -1=0与圆C 的位置关系;若相交,求出两交点间的距离.(6分) 31. 已知α、β为第二象限角,且满足332sin =α,53sin =β,求(1)cos(α-β);(5分)(2)函数()x x x f sin cos cos cos βα+=的最大值.(4分)32. .(本题满分9分)已知抛物线的顶点在原点,焦点坐标为F(3,0)(1) 求抛物线的标准方程;(3分)(2) 若抛物线上点M 到焦点的距离为4,求点M 的坐标.(6分)33. 如图,正三棱锥P -ABC 的侧棱长为32,底面边长为4(1)求正三棱锥P -ABC 的全面积;(4分)(2)线段PA 、AB 、AC 的中点分别为D 、E 、F,求二面角D-EF-A 的余弦值.(6分)34. (本题满分10分)体育场北区观众席共有10500个座位观众席座位编排方式如图所示,由内而外依次记为第1排、第2排……从第2排起,每一排比它前一排多10个座位,且最后排有600个座位(1)北区观众席共有多少排?(7分)(2)现对本区前5排的座位进行升级改造,改造后各排座位数组成数列{b n },{b n }满足:①b 1等于原第1排座位数的一半;②b n =b n-1+n 2(n=2,3,4,5).求第5排的座位数(3分)35. (本題满分10分)电影《流浪地球》上映期间,一场电影的票价定为50元时,电影院满座,满座时可容纳600人.若票价每提高5x (x ∈N)元,售出票数就减少30x 张(1)若票价为60元,求实际售出的电影票数;(2分)(2)写出一场电影的票房收入R(元)与x 的函数关系式;(3分)(3)已知放映一场电影所需的总成本为600(20-x)元,若不考虑其他因素,票价定为多少时,电影院能获得最大利润?(5分)。
2019年浙江省高职单招单考温州市第一次模拟考试《数学》试卷
2019年浙江省高职单招单考温州市第一次模拟考试《数学》试题卷本试卷共三大题.全卷共 4 页.满分150 分,考试时间120 分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分 1 分,在试题卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题(本大题共20 小题,1-10 小题每题 2 分,11-20 小题每题 3 分,共50 分)1.平面直角坐标系中,x轴上的点构成的集合是(▲)A.{( x, y) | y 0} B.{( x, y) | x = 0} C.{( x, y) | xy 0} D.{ y | y 0}2.下列结论正确的是(▲)A.若a b ,则a2 > b2 B.若ac2 bc2 ,则a bC.若a b ,则1a1bD.若a b,c d ,则acbd3.“x 3”是“| x |< 2 ”的(▲)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数y log2 x x 1 的定义域为(▲)A.{ x | x 1}B.{ x | x 1}C.{ x | x 1}D.{ x | x 1} 5.如果函数 f (x) 在R 上单调递减,且f (2a 4) f (4 2a) ,则a的取值范围是(▲)A.,0 B.2, C.0, D.,2 6.数列{a n} 中,a1 2 ,a n 1 2a n 1(n∈N*) ,则该数列的第六项是(▲)A.33 B.64 C.65 D.1297.sin 2的值一定是(▲)A.正数B.负数C. 1 D.08.角的终边在函数y 2x(x 0) 图象上,则cos 的值是(▲)A.33B.33C.55D.559.直线3x 3y 1 0的倾斜角大小为(▲)A.30 B.60 C.120 D.150《数学》试题卷第1 页共4 页***。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年浙江省高职单招单考温州市第一次模拟考试
《数学》试题卷参考答案
一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 A B B A D A A C D C 题号 11 12 13 14 15 16 17 18 19 20 答案
C
A
B
D
C
C
D
D
A
B
二、填空题(本大题共7小题,每空格4分,共28分)
21.8 22.
31 23.72 24.43
25.20x y -=或2+100x y -= 26.413 27.32cm π 三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤)
28.解:原式=21log 125410!sin ()(21)2lg 2lg 25692+π----++=.1112
3
211=++-- 评分标准:前4计算正确各1分,后2运算正确计2分,最后结果准确计1分
29.解:(1)2()2sin cos 2cos 1sin 2+cos2f x x x x x x =⋅+-==2sin(2+)4
x π
,-------------- 3分
∴ ()f x 的最小正周期=π 4分
(2)()f x 的最大值为2,------------------------------------------------- 5分
此时2+
2()428
x k x k k Z π
π
π
ππ=+=+∈,即,----------------------------------- 7分
即()f x 取得最大值时x 的集合为{|}8
x x k k Z =+
∈,π
π.--------------------------- 8分
30.解:(1) 根据余弦定理222
2cos b =a c ac B +-⋅925235cos12049+=-⨯⨯⨯︒=,------ 3分 b=7.----------------------------------------------------------------- 4分
(2)由cos cos c A a C ⋅=⋅,根据正弦定理,有sin cos sin cos C A A C ⋅=⋅-------------- 6分
所以sin cos sin cos sin 0A C C A A C ⋅-⋅=-=() ------------------------------ 7分 所以A C ∠=∠,从而可知ABC ∆为等腰三角形.
------------------------------ 9分
31. 解:(1)利用方程组可求得点 P 坐标为(1,3),--------------------------------- 1分
圆224240C x y x y +-++=:的标准方程是
22
2+11x y -+=()(), 其圆心C 为(2,-1),半经为1,
---------------------------------------- 2分
利用对称知识,圆C′的半径与圆C 半径相同,圆C′的圆心坐标是(0,7),
-------- 3分
所以圆C′的标准方程是22
71x y +
-=(). ----------------------------------- 4分
ⅰ)若过P 的直线l 的斜率存在,设为k ,直线方程为3(1)y k x -=-即+30kx y k --=,
相切时2
+411k r d k
===
+,得2
+41k k =+解得15
8
k =-
; -------------------- 6分
可得切线方程为158y 390x +-=. ------------------------------------------ 7分
ⅱ)若过P 的直线m 的斜率不存在,可得切线方程为10x -=,切线方程为10x -=.---- 9分 综合两种情况可得所求的切线方程为158y 390x +-=和10x -=.
32.解:(1) 由题意,AC=1,BC=
,2
3
=1×3×1×21==Δh S V ABC .------------- 4分
(2)由题意,∠A ′C A 为二面角A ′-BC -A 的平面角. ----------- 7分 在直角三角形A ′C A 中,AC=A ′A , -------- 8分 得∠A ′C A=45°, ------------------------------------- 9分 所以二面角C -AB -C′的大小为45°.----------------------- 10分
33.解:(1)依题意,将坐标(1,60)、(10,33)代入()p x kx b =+,
解得363k b =-=,.---- 3分
所以产量p (x )与x 的函数表达式为:()363,(110,)p x x x x N =-+≤≤∈.
(第33题图)
(第32题
----------- 4分
(2)依题意,第x 档次时,每件利润为:821)62+x x -=+(,------ 6分
所以总利润L (x )为:
()62()62363L x x p x x x =+⋅=+⋅-+()()()
(110,x x N ≤≤∈)-- 8分 ()69864L x x +=--2(),当9x =时,max ()864L x =(元). ---- 9分
答:当生产第9档产品时,利润最大,最大利润是864元. --------- 10分
34.解:(1) 设等差数列{}n a 的公差为d ,则由244S S =得12a d =, ① ------- 2分 由1+2=12a a 得110a d+-= ,
② ---------------------------- 3分
由①②解得11
2a d ==,, -------------------------- 5分
(2)因为n a
n b 2=得
121
224n+n a a n+n
b b -===, --------------------------- 7分
所以{}n b 是公比4q =,首项12b =的等比数列.--------------------------- 8分
根据等比数列的求和公式可得1(1)2(41)13
n n
n b q T q -=
=--.-------------------- 10分 35. (1)依题意,23c =3c =3
c a =得2a = 从而22411b a c -=-=, ---------------------- 3分
所求的椭圆标准方程为: 2
214
x y +=. ----------------------- 4分 (2) 解法一:由点斜式可求得PQ 所在的直线方程为32y x =- . --------------- 5分
设1122(,),Q(,)P x y x y ,由22
3214
y x x y ⎧=-⎪⎨+=⎪⎩,得012316132
=+-x x ,
所以13
31621=
+x x ,1212
13x x = , ------------------ 6分
2221212|Q |1()42(163/13)412/1324/13P k x x x x =++-=--⨯=,-- 8分
点O 到直线32y x =-的距离|2|
12
d -=
=, ----------------------------- 9分
所以12412
121313
AOB S =⨯⨯=V . --------------------------------------- 10分
解法二:
由点斜式可求得PQ 所在的直线方程为32y x =- . ------------------- 5分
设1122(,),Q(,)P x y x y ,由22
32
14
y x x y ⎧=-⎪⎨+=⎪⎩,得012316132
=+-x x ,
所以13
31621=
+x x ,1212
13x x =, ----------------------------------- 6分
.13
124)(||||212122121=-+=-=
-=∆∆∆x x x x x x OA S S S OAP OAQ OPQ 解法三:直线32y x =-与x 轴交于点M (
,0)3
,则P OPQ O M OQM S S S ∆∆∆=+,
由①可知,121212484
+(32)+(32)3441313
y y x x x x =--=+-=
-=-(),121212128
(32)(32)323()413
y y x x x x x x =--=+++=-
,则221212121212
1111
||||||()()42233333OAB S y y y y y y y y y y ∆=⋅+⋅=-=-=+-
2
148124131313
3⎛⎫⎛⎫=---= ⎪ ⎪⎝⎭⎝⎭.-------------------------------------------- 10分。