反激式开关电源课程设计
反激式开关电源设计培训教材(第一节)
5、开关管峰值电流Ip
6、初级绕组匝数Np 天通TP4/TP4A的磁芯Bs为5100GS,FSDM0265R有过温保护,因 此Bw可选0.6Bs,则Bw=3060GS,如IC无过温保护,则要留一定
的裕量,否则,在过载状态时,变压器易饱和,在饱和状态,
易发生故障损坏开关管,Bw要选低一点,选(0.3-0.5)Bs; 气隙Lg选0.025cm
• 参数计算 1、最大允许的反激电压
Vf=650V-373V-32.5V –100V=144.5V 选反激电压Vf为75V,则Mosfet的漏极最高电压为: 373V+100V+75V=548V<617.5V,是比较安全的。
2、原、副边的匝比n 次级选用3A/100V肖特基整流,则1.25A输出电流时的
输入过流保护主要是靠保险管、保险丝绕线电阻的过电流过功 率熔断特性。保险管主要用在高输出功率的电源上,绕线电阻用 在低输出功率的电源上。保险管重要的参数有额定电流、熔断时 间、分断能力,额定电流大、熔断时间长、分断能力低,容易炸 裂管壁,这在安全认证时是不允许的,因此,要尽量选择分断能 力高的保险管;保险丝绕线电阻重要的参数主要是过功率熔断时 间,一般加在电阻两端的电压与电流的乘积为电阻标称功率的25 倍时,要在60S内熔断
•PWM控制芯片(Fairchildsemi的FSDM0265R)
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感, 它要承担着储能、变压、传递能量等工作。下面对工 作于连续模式和断续模式的单端反激变换器的变压器 设计进行总结。 • 1、已知的参数 根据需求和电路的特点确定,包括:输入电压Vin、输
S012B系列变压器设计步骤
• 已知条件 1、输入电压Vin:90Vac-264Vac 2、输出电压Vout:12V 3、输出电流Iout:1.25A 4、Mosfet耐压Vmos:650V 5、开关频率f:67KHz 6、FSDM0265R最大输出功率:
反激型开关电源电路课程设计报告
第一章设计的基本要求题目:反激型开关电源电路设计(1)注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
(2)主要技术数据1、交流输入电压AC220V,波动±50%;2、直流输出电压5V和12V;3、输出电流1.5A和200mA;4、输出纹波电压≤0.2V;5、输入电压在±50%范围之间变化时,输出电压误差≤0.03V (3)设计内容:1、开关电源主电路的设计和参数选择2、IGBT电流、电压额定的选择3、开关电源驱动电路的设计4、开关变压器设计5、画出完整的主电路原理图和控制电路原理图6、电路仿真分析和仿真结果第二章主电路的原理2.1 总体方案的确定输入—EMI滤波—整流(也就一般的AC/DC类似全桥整流模块)—DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC)—输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC 变换部分,以及负载部分,其中整流滤波和DC—DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
开关稳压电源的基本原理框图如图2.1所示。
图2.1 开关稳压电源基本原理框图2.2 反激型电路原理反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。
其电路原理图如图2.2所示。
图2.2 反激型电路原理图工作过程:当S 导通时,电源电流流过变压器原边,1i 增加,其变化为11//W U dt di s =,而副边由于二极管VD 的作用,2i 为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流2i 在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//W U dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。
课程设计:反激式开关电源
U g RCD吸收电路
+
VD1
Io
Ug
+
VD1
Io
Rs
Cs N p
Ds
Ns
C + R Uo
Lm Nc
Np
Ns
C + R Uo
C1
Q
C1
Dc
-
Q
-
Ri
(a)
Ri
(b)
图 3 吸收电路
4.反激变换器的系统结构
反激式变换器的系统结构示意图如图 4 所示。由图中可以看出,一个 AC 输入 DC 输出 的反激式变换器主要由如下五部分构成:输入电路、变压器、控制电路、输出电路和吸收电 路构成。输入电路主要包括整流和滤波,将输入的正弦交流电压变成直流,而输出电路也是 整流和滤波,是将变压器副边输出的方波电压单向输出,且减少输出电压的纹波。吸收电路 如图 3 所示。所以,反激变换器的关键在于变压器和控制电路的设计。这也是本次课程设计 的重点。
3.反激变换器的吸收电路
实际反激变换器会有各种寄生参数的存在,如变压器的漏感,开关管的源漏极电容。所 以基本反激变换器在实际应用中是不能可靠工作的,其原因是变压器漏感在开关 Q 截止时, 没有满意的去磁回路。为了让反激变换器的工作变得可靠,就得外加一个漏感的去磁电路, 但因漏感的能量一般很小,所以习惯上将这种去磁电路称为吸收电路,目的是将开关 Q 的 电压钳位到合理的数值。 在 220V AC 输入的小功率开关电源中, 常用的吸收电路主要有 RCD 吸收电路和三绕组吸收电路。其结构如图 3(a)(b)所示。
U o MU g ,
I g MI o ,其中 M
Np D ,N 。 Ns N (1 D)
中国石油大学电力电子课程设计 单端反激式开关电源设计
电力电子课程设计报告学院:信息与控制工程学院题目:单端反激式开关电源210/7V 班级:电气12-4班学号:姓名:设计日期: 2015年7月6日 - 2015年7月13日目录一、课程设计的目的 (3)二、课程设计的要求 (3)三、课程设计原理 (3)四、参数计算 (12)五、焊接及调试输出结果 (14)六、课程设计中出现的问题 (17)七、实验总结 (17)八、课程设计相关器件资料 (18)一、课程设计的目的1、熟悉Power MosFET的使用;2、熟悉磁性材料、磁性元件及其在电力电子电路中的应用;3、增强设计、制作和调试电力电子电路的能力。
二、课程设计的要求本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。
电源输入电压:210V电源输出电压电流:7V/1A电路板:万用板手焊。
三、课程设计原理1、引言电力电子技术有三大应用领域:电力传动、电力系统和电源。
在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。
电源可以分为线性电源和开关电源两大类。
线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。
通常用于低于10W的电路中。
通常使用的7805、7815等就属于线性电源。
开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。
反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。
2、基本反激变换器工作原理基本反激变换器如图1所示。
假设变压器和其他元件均为理想元器件,稳态工作下。
开关电源课程设计报告(反激稳压电源)
D
2
INDUCTOR
1
5
R8
R7
D
1
5
C1
22
1k
10u
R1
D3
9
9
C5
C6
75k
470u
470u
6
6
2
2
3
3
D2
7
7
R6
C4
510
100u
R2
R4
8
8
510
0
4
4
BIANYA
D1
P2
P1
FAN
C
C3
1
C
2
220u
Q1
P4
4N6 0
P5
P1
P5
P2
P4
R3
2.2
R1 1
R1 2
20k
1k
R1 3
R14
R13=0ΩR14=100ΩR15=20*10^3Ω
C7=10*10^3uF C9=10*10^3uF C11=10*10^3uF C10=10*10^2uF C8=10*10^2uF
绘制总体电路图
五、波形分析
1、功率开关管驱动信号
...
.
功率开关管驱动信号(图5-1)
2、功率开关管漏-源电压
功率开关管漏-源电压(图5-2)
.
华南理工大学广州汽车学院
电力电子课程设计报告
题目:反激稳压电源
专业:
班级:
姓名:
学号:
日期:2010年5月
...
.
一、设计要求
(1)输入电压: AC220±10%V
(2)输出电压:12V
反激式开关电源电路设计
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激变换电源课程设计
反激变换电源课程设计一、课程目标知识目标:1. 学生能理解反激变换电源的基本原理和工作流程。
2. 学生能掌握反激变换器中关键参数的计算方法。
3. 学生能描述反激变换器在不同负载下的性能特点。
技能目标:1. 学生能够设计简单的反激变换电源电路,并进行参数计算。
2. 学生能够利用仿真软件对反激变换电源进行性能分析。
3. 学生能够通过实验验证反激变换电源的理论知识,并能解决实际问题。
情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,提高学生的学科热情。
2. 培养学生具备团队协作精神,增强实践操作能力和动手解决问题的能力。
3. 培养学生严谨的科学态度,关注环保和节能,了解反激变换电源在现代电子设备中的应用。
课程性质:本课程为电子技术学科的专业课程,结合理论知识和实践操作,培养学生的实际工程设计能力。
学生特点:学生已具备一定的电子技术基础知识,具有较强的学习能力和动手能力。
教学要求:结合课本内容,注重理论与实践相结合,强调学生自主学习和实践操作,提高学生的工程设计能力。
在教学过程中,分解课程目标为具体学习成果,以便于教学设计和评估。
二、教学内容本章节教学内容主要包括以下三个方面:1. 反激变换电源原理及电路分析- 反激变换器的工作原理- 反激变换器电路的组成及功能- 课本第3章第2节内容:反激变换器的基本电路分析2. 反激变换器参数计算与设计- 反激变换器关键参数的计算方法- 反激变换器磁性元件的设计方法- 课本第3章第3节内容:反激变换器的设计与优化3. 反激变换电源性能分析及实验- 反激变换器在不同负载下的性能分析- 反激变换电源的仿真与实验- 课本第3章第4节内容:反激变换器的性能测试与实验验证教学安排与进度:1. 第一周:反激变换电源原理及电路分析2. 第二周:反激变换器参数计算与设计3. 第三周:反激变换电源性能分析及实验教学内容注重科学性和系统性,结合课本内容,引导学生掌握反激变换电源的基本原理、设计与性能分析,培养学生在实际工程中的应用能力。
反激电源课程设计
反激电源课程设计一、课程目标知识目标:1. 让学生理解反激电源的基本原理,掌握其电路组成及各部分功能。
2. 学会分析反激电源的转换效率、输出电压纹波等性能指标。
3. 掌握反激电源设计中关键参数的计算方法。
技能目标:1. 培养学生运用所学知识设计简单反激电源的能力。
2. 提高学生动手搭建反激电源实验电路,进行性能测试的技能。
3. 培养学生通过查阅资料、开展小组讨论等方式解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,激发他们探索科学技术的热情。
2. 培养学生的团队协作精神,让他们学会在合作中共同解决问题。
3. 增强学生的环保意识,让他们认识到高效电源设计在节能减排中的重要性。
本课程针对高年级电子技术相关专业学生,结合学科特点,注重理论与实践相结合,旨在提高学生分析问题、解决问题的能力。
课程目标明确,可衡量,便于教学设计和评估。
通过本课程的学习,学生将能够掌握反激电源的相关知识,具备一定的电源设计能力,同时培养良好的团队协作和环保意识。
二、教学内容1. 反激电源基本原理:讲解反激变换器的工作原理,包括开关管、脉冲变压器、二极管和滤波电容等组成部分的功能。
教材章节:第三章“开关电源原理”第2节“反激变换器”2. 反激电源性能分析:介绍转换效率、输出电压纹波等性能指标的计算方法和影响因素。
教材章节:第四章“开关电源性能分析”第1节“反激电源性能分析”3. 反激电源设计方法:讲解关键参数的计算,包括开关频率、脉冲变压器匝比、输出滤波器参数等。
教材章节:第五章“开关电源设计”第2节“反激电源设计”4. 实验教学:指导学生搭建反激电源实验电路,进行性能测试,分析实验数据,优化设计方案。
教材章节:第六章“开关电源实验”第3节“反激电源实验”5. 电源设计案例分析:分析典型反激电源设计案例,让学生了解实际应用中的设计技巧和注意事项。
教材章节:第七章“电源设计案例”第2节“反激电源设计案例”教学内容按照科学性和系统性原则进行组织,教学大纲明确,确保学生能够循序渐进地掌握反激电源相关知识。
反激变换电源的课程设计
反激变换电源的课程设计一、课程目标知识目标:1. 学生能理解反激变换电源的基本原理,掌握其电路构成及工作流程。
2. 学生能掌握反激变换电源中主要元件的功能及影响,如变压器、开关管、二极管等。
3. 学生能了解反激变换电源在不同应用场景中的优缺点。
技能目标:1. 学生能够运用所学知识,设计并搭建简单的反激变换电源电路。
2. 学生能够通过实验,测试反激变换电源的性能参数,如电压、电流、效率等。
3. 学生能够分析反激变换电源在实际应用中可能出现的问题,并提出相应的解决方法。
情感态度价值观目标:1. 学生培养对电子技术课程的兴趣,增强对电源技术的认识和好奇心。
2. 学生在小组合作中,培养团队协作能力和沟通表达能力。
3. 学生通过学习反激变换电源,认识到电子技术在节能环保方面的重要性,提高社会责任感。
分析课程性质、学生特点和教学要求,本课程旨在让学生掌握反激变换电源的基本原理和实际应用,培养其动手操作和问题分析能力。
课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果,为后续教学设计和评估提供依据。
二、教学内容本章节教学内容依据课程目标,结合课本第四章“开关电源”相关内容,进行如下组织:1. 反激变换电源基本原理- 介绍反激变换器的工作原理及其与开关电源的关系。
- 分析反激变换器中变压器、开关管、二极管等关键元件的作用。
2. 反激变换电源电路设计- 详细讲解反激变换电源的电路构成及设计方法。
- 引导学生根据实际需求,选择合适的元件和参数。
3. 反激变换电源实验操作- 安排实验课,指导学生搭建反激变换电源电路。
- 教授学生测试反激变换电源性能参数的方法。
4. 反激变换电源应用与问题分析- 分析反激变换电源在实际应用场景中的优缺点。
- 探讨反激变换电源可能出现的故障及解决方法。
5. 教学进度安排- 原理讲解与电路设计:2课时- 实验操作与分析:2课时- 应用与问题分析:1课时教学内容按照以上安排,旨在保证科学性和系统性,使学生能够循序渐进地掌握反激变换电源相关知识。
单端反激式开关电源课程设计
单端反激式开关电源课程设计单端反激式开关电源设计1.引⾔开关电源具有⼯频变压器所不具备的优点,新型、⾼效、节能的开关电源代表着稳压电源的发展⽅向。
因为开关电源内部⼯作于⾼频率状态,本⾝的功耗很低,电源效率就可做得较⾼,⼀般均可做到80%,甚⾄接近90%。
这样⾼的效率不是普通⼯频变压器稳压电源所能⽐拟的。
开关电源常⽤的单端或双端输出脉宽调制(PWM),省去了笨重的⼯频变压器,可制成⼏⽡⾄⼏千⽡的电源。
传统的开关电源普遍采⽤电压型脉宽调制(PWM)技术,⽽近年电流型PWM技术得到了飞速发展。
相⽐电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能⼒和并联均流能⼒使控制电路变得简单可靠。
电流型PWM 集成控制器已经产品化,极⼤的推动了⼩功率开关电源的发展和应⽤。
电流型PWM控制⼩功率电源已经取代电压型PWM控制⼩功率电源。
Unitrode公司推出的UC3843系列控制芯⽚是电流型PWM控制器的典型代表。
本次设计将⽤UC3843制作⼀个⼩功率开关电源。
2.UC3843简介Unitrode公司的UC3843是⼀种⾼性能固定频率电流型控制器,包含误差放⼤器、PWM⽐较器器、PWM锁存器、振荡器、内部基准电源和⽋压锁定等单元,它具有功能全,⼯作频率⾼,引脚少外围元件简单等特点,它的电压调整率可达0.01%V,⾮常接近线性稳压电源的调整率。
⼯作频率可达500kHz,启动电流仅需1mA,所以它的启动电路⾮常简单。
其结构图和⼯作原理如下:1脚COMP是内部误差放⼤器的输出端,通常此脚与2脚之间接有反馈⽹络;2脚FEEDBACK是反馈电压输⼊端;3脚ISENSE 是电流传感端;4脚RT/CT是定时端;5脚GND是接地;6脚OUT是输出端;7脚Vcc是电源;8脚VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。
器件参数:UC3843的电压调整率可达0.01%,⼯作频率为500kHz,启动电流⼩于1mA,输⼊电压为10~30V,基准电压为4.9~5.1V。
反激开关电源课程设计
反激开关电源课程设计一、课程目标知识目标:1. 让学生理解反激开关电源的基本原理,掌握其电路组成和工作流程。
2. 让学生掌握反激开关电源的关键参数计算,包括变压器的匝比、功率、效率等。
3. 让学生了解反激开关电源的优缺点,以及其在实际应用中的注意事项。
技能目标:1. 培养学生运用所学知识进行反激开关电源电路设计的能力。
2. 培养学生运用相关软件(如PSPICE、MATLAB等)对反激开关电源进行仿真分析的能力。
3. 培养学生通过实验验证反激开关电源性能,并能对电路进行调试和优化。
情感态度价值观目标:1. 培养学生对电子技术学科的兴趣和热情,增强其学习动力。
2. 培养学生具备团队协作精神,能在小组讨论中发挥自己的优势,共同完成课程任务。
3. 培养学生严谨的科学态度和良好的工程素养,使其在设计和实践中注重细节,追求高质量。
课程性质:本课程为电子技术学科的专业课程,旨在让学生掌握反激开关电源的设计和应用。
学生特点:学生具备一定的电子技术基础知识,具有较强的学习能力和动手能力。
教学要求:结合课程性质和学生特点,本课程要求教师采用理论教学、案例分析、实验操作等多种教学方法,引导学生主动参与,提高其设计能力和实践能力。
通过分解课程目标为具体的学习成果,便于教学设计和评估。
二、教学内容1. 反激开关电源原理及电路组成- 介绍反激开关电源的工作原理- 分析反激开关电源的电路组成,包括开关元件、变压器、整流滤波等部分2. 反激开关电源关键参数计算- 讲解变压器匝比的计算方法- 介绍功率、效率等关键参数的计算公式3. 反激开关电源设计方法- 分析反激开关电源的设计步骤- 引导学生运用教材中提供的公式、图表等进行电路设计4. 反激开关电源的优缺点及注意事项- 讲解反激开关电源的优点、缺点- 强调在实际应用中需注意的问题,如电磁干扰、热管理等5. 反激开关电源仿真与实验- 介绍相关软件(如PSPICE、MATLAB等)的使用方法,进行仿真分析- 安排实验课程,让学生动手搭建反激开关电源电路,验证性能并进行调试优化6. 教学进度安排- 将教学内容分为8个学时,其中理论教学4学时,案例分析2学时,实验操作2学时- 教学内容与教材章节相对应,确保科学性和系统性教学内容根据课程目标制定,旨在使学生掌握反激开关电源的理论知识和实践技能。
反激变换电源课程设计报告
反激变换电源课程设计报告一、课程目标知识目标:1. 学生能理解反激变换器的工作原理,掌握其电路组成和关键参数的计算。
2. 学生能描述反激变换电源的开关过程,解释其能量转换机制。
3. 学生掌握反激变换器在不同负载条件下的效率分析和优化方法。
技能目标:1. 学生能够运用所学知识,设计简单的反激变换电源电路,并进行参数计算。
2. 学生能够运用仿真软件对反激变换电源进行模拟,观察和分析其工作状态。
3. 学生能够通过实验操作,搭建反激变换电源实验平台,并验证理论分析的正确性。
情感态度价值观目标:1. 学生通过本课程的学习,培养对电力电子技术领域的兴趣和探究精神。
2. 学生在学习过程中,养成合作、交流和分享的学习习惯,增强团队协作能力。
3. 学生能够认识到反激变换电源在现代电子设备中的重要性,提高社会责任感和环保意识。
课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式,使学生掌握反激变换电源的基本原理和应用。
学生特点:高二年级学生,已具备一定的电子技术基础,具有较强的学习能力和动手能力。
教学要求:注重理论与实践相结合,提高学生的实际操作能力,通过课程学习,使学生能够独立完成反激变换电源的设计与制作。
同时,注重培养学生的团队协作能力和创新思维。
二、教学内容1. 反激变换器基本原理:包括反激变换器的工作过程、能量转换方式及其在电力电子设备中的应用。
- 课本章节:第三章“开关电源”,第1节“反激变换器原理”。
2. 反激变换器电路组成与参数计算:分析反激变换器电路的各个组成部分,讲解关键参数的计算方法。
- 课本章节:第三章“开关电源”,第2节“反激变换器电路分析与设计”。
3. 反激变换器在不同负载下的效率分析:研究反激变换器在不同负载条件下的效率特性,探讨优化方法。
- 课本章节:第三章“开关电源”,第3节“反激变换器效率分析”。
4. 反激变换电源设计与仿真:介绍反激变换电源设计方法,运用仿真软件进行电路模拟,分析其性能。
单端反激式开关电源(毕业设计).
单端反激式开关电源(毕业设计).二、单端反激式开关电源的工作原理单端反激式开关电源的工作原理依靠开关管的开关动作来实现交流电到直流电的转换。
其基本原理如下:1、输入电压滤波单端反激式开关电源在工作之前,必须对输入电压进行滤波,以保证输入电压的平稳、稳定。
2、交流电输入输入电压通过电容滤波后,在交流电路中形成一定的电压波形,交流电通过变压器的原、次绕组的磁耦合作用,将输入电压变换成所需要的电压等级。
本设计选择220V交流电输入,变压器原、次绕组变比为1:26。
3、整流滤波变压器将220V交流电转换成24V直流电,然后通过扁平电容进行电压滤波,使直流电平滑化,得到更加稳定的直流电。
4、开关转换在直流电经过扁平电容滤波后,进入开关电路,在开关电路中,开关管CD4049B作为单向触发器,通过555定时器形成一定的工作周期,改变开关管的通断状态,使得直流电在开关管通断状态变化的控制下,进行输出电流的调整。
5、输出变压器通过输出变压器,将捕获后的直流电变压,以输出需要的电压级别。
三、单端反激式开关电源的电路设计本电路设计基于CD4049B和555定时器,整体电路如下所示。
(注:图中VCC为12V直流电源)1、输入电压滤波电路输入电压滤波电路通过电容电感联合滤波,能够有效抑制交流电中杂波的干扰,提高了直流电的稳定性和可靠性。
本设计采用C1、L1、C2的电容电感联合滤波电路。
2、交流电输入电路交流电输入电路采用变压器进行变压,将220V交流电输入变成24V交流电。
3、整流滤波电路整流滤波电路主要由二极管D1、扁平电容C3组成,二极管和扁平电容组合起来,实现对变压器的24V直流电进行滤波工作。
四、单端反激式开关电源的实验结果本设计所设计并实验验证的单端反激式开关电源,输出电压稳定在12V左右,基本符合设计要求,并成功实现正常工作。
实验中,对于开关管的选择,采用MOS管比较理想,名称为FDPF33N25B。
五、结论本文基于CD4049B和555定时器,设计了一种单端反激式开关电源方案,并在实验中验证了该设计方案的可行性,证明该方案具有开发简单、可靠的特点,可以用于一些小功率电子设备的电源供应。
反激式开关电源的设计
反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。
应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。
(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。
变压器的设计应根据输入电压、输出电压及负载电流等确定变比。
(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。
应根据设计要求选择合适的滤波器元件。
(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。
应选择满足设计要求的输出滤波器元件。
(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。
应根据具体设计需求选择合适的控制器和反馈电路。
(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。
(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。
3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。
(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。
(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。
(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。
(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。
总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。
合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。
多路输出单端反激式开关电源设计
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
反激式高频稳压开关电源的设计(课程设计)
目录摘要 (I)第一章开关电源概述 (1)1.1 开关电源的定义与分类 (1)1.2 开关电源的基本工作原理与应用 (1)1.2.1 开关电源的基本工作原理 (1)1.2.2 开关电源的应用 (2)第二章反激式稳压开关电源电路设计 (5)2.1引言 (5)2.2 系统设计框图 (6)2.3 稳压电源基本原理 (6)2.4 基本反激变换器工作原理 (7)2.5 反激变换器的吸收电路 (9)2.6 反激变换器的系统结构 (9)2.7开关电源控制电路的设计 (10)2.7.1 PWM 集成控制器的工作原理 (10)2.8 EMI滤波电路 (12)2.9 整流滤波电路 (13)第三章高频变压器设计 (14)3.1 相关量的计算公式 (14)3.2 实例计算 (16)3.3 变压器漏感产生和解决方法 (18)第四章主要器件介绍 (19)4.1 AT89S52简介 (19)4.2 ADC0809工作原理……………………………………………………………错误!未定义书签。
总结……………………………………………………………………错误!未定义书签。
参考文献………………………………………………………………………错误!未定义书签。
摘要开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。
为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。
单端反激式高频变压器是本文的中心内容,其核心参数设计许多,具体内容正文中有详细介绍。
其次是控制电路的设计,首先我们要对PWM集成控制器原理的有所了解,在此基础上保护两种控制模式分别是电压模式和电路模式。
开关电源的质量指标应该是以安全性、可靠性为第一原则,所以,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视。
开关电源课程设计:反激式开关电源变压器参数的计算
《开关电源设计》与《变压器工程与设计》课程期末考查报告报告名称:反激式开关电源变压器参数的计算学生姓名:学号:专业班级:指导教师:二0一七年十二月二十日反激式开关电源变压器参数的计算储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。
图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc 是储能滤波电容两端的电压波形,Uo 是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。
电容参数的计算方法完全相同。
反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。
从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8 -b))基本相同,只是极性正好相反。
因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波图1-26从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。
反激式开关电源课程设计
目录第一章课程设计的目的2第二章课程设计的要求2第三章主电路原理4第四章变压器的设计9第五章器件选型15第六章仿真及结果20总电路图28心得体会29参考文献30第一章、课程设计的目的通过开关电源技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
第二章、课程设计的要求1. 题目题目:反激型开关电源电路设计注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
主要技术数据1、交流输入电压AC95~270V;2、直流输出5V,1A;3、输出纹波电压≤0.2V;4、输入电压在95~270V之间变化时,输出电压误差≤0.03V;设计内容:开关电源主电路的设计和参数选择IGBT电流、电压额定的选择开关电源驱动电路的设计开关变压器设计画出完整的主电路原理图和控制电路原理图电路仿真分析和仿真结果2.在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。
3.在整个设计中要注意培养独立分析和独立解决问题的能力要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章课程设计的目的 2 第二章课程设计的要求 2 第三章主电路原理 4 第四章变压器的设计9 第五章器件选型15 第六章仿真及结果20 总电路图28 心得体会29 参考文献30第一章、课程设计的目的通过开关电源技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
第二章、课程设计的要求1. 题目题目:反激型开关电源电路设计注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
主要技术数据1、交流输入电压AC95~270V;2、直流输出5V,1A;3、输出纹波电压≤0.2V;4、输入电压在95~270V之间变化时,输出电压误差≤0.03V;设计内容:开关电源主电路的设计和参数选择IGBT电流、电压额定的选择开关电源驱动电路的设计开关变压器设计画出完整的主电路原理图和控制电路原理图电路仿真分析和仿真结果2.在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。
3.在整个设计中要注意培养独立分析和独立解决问题的能力要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。
4.课题设计的主要内容是主电路的确定,主电路的分析说明,主电路元器件、变压器的计算和选型,以及控制电路设计。
报告最后给出所设计的完整电路图,5.课程设计用纸和格式统一课程设计用纸在学校印刷厂统一购买和装订,封面为学校统一要求。
要求图表规范,文字通顺,逻辑性强。
设计报告不少于20页第三章主电路原理电源设计指标:输入电压:AC380 V;输入电压变动范围:304~456 V;输入频率:50kHz;输出电压:5 V 24V ;输出电流:1A 0.05A输出的纹波电压为≤0.2V输出电压在±20%的变化范围时,输出地电压误差为±0.3一反激型电路原理反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。
其电路原理图如图3.1:2i1i图3.1 反激型电路原理图工作过程:当S 导通时,电源电流流过变压器原边,1i 增加,其变化为11//s di dt U W =,而副边由于二极管VD 的作用,2i 为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流2i 在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//o di dt U W =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。
二 EMI 滤波电路开关电源以其效率高、体积小、输出稳定性好的优点 而迅速发展起来。
但是,由于开关电源工作过程中的高 频率、 di/ dt 和高 du/ dt 使得电磁干扰问题非常突出, 如何减小产品的 EMI ,成为大家关心的重要问题。
开关电源工作时,电磁干扰可分为两大类: 共模干 扰是载流体与大地之间的干扰,干扰大小和方向一致, 存在于电源任何一相对大地、或中线对大地间,主要是 由 du/ dt 产生的,di/ dt 也产生一定的共模干扰。
差模 干扰是载流体之间的干扰,干扰大小相等,方向相反, 其存在于电源相线与中线及相线与相线之间。
本设计用 到的电路如图3.2所示:图3.2 EMI 滤波电路三 整流滤波电路在整流滤波环节采取的是单相整流滤波电路,本电路常用于小功率的单相交流输入的场合。
目前大量普及的微机、电视机等家电产品中所采用的开关电源中,其整流电路就是如图3.3所示的单相不可控整流电路:图3.3 电容滤波的单相不可控整流电路由设计要求可知 AC 输入值是380V , 通过整流滤波537V 的直流电压。
Uo =式中U i —整流前输入电压 U i =380VUo —整流后输出电压380537.4V Uo ===由于滤波过程的其他原因取 U i =310V 二极管承受的压降为380537.4V =四 控制芯片本设计采用UC3842芯片控制开关器件的开通与关断。
UC3842是美国Unitrode公司生产的采用峰值电流模式控制的集成PWM 控制器,专门用于构成正激型和反激型等开关电源的控制电路。
UC3842 为双列 8 脚单端输出的它激式开关电源驱动集成电路,其内部电路包括振荡器、误差放大器、电流取样比较器、PWM锁存电路、5VC基准电源、欠压锁定电路、图腾柱输出电路、输出电路等,如图3.4所示:图3.4 UC3842的内部结构(1) 5 V 基准电源:内部电源,经衰减得到 2.5 V 作为误差比较器的比较基准。
该电源还可以提供外部 5V/50 mA。
(2) 振荡器:产生方波振荡。
T 接在④、REF⑧脚之间, R VCT 接④、GND⑤之间。
频率 f=1.8/(CTRT), 最大为 500 kHz。
(3) 误差放大器:由 VFB 端输入的反馈电压和 2.5 V 做比较,误差电压 COMP 用于调节脉冲宽度。
COMP 端引出接外部 RC 网络,以改变增益和频率特性。
(4) 输出电路:图腾柱输出结构,电路 1A,驱动 MOS 管及双极型晶体管。
(5) 电流取样比较器:③脚 ISENSE 用于检测开关管电流,可以用电阻或电流互感器采样, VISENSE>1 V 时,当关闭输出脉冲,使开关管关断。
这实际上是一个过流保护电路。
开通阈值 16 V,关闭阈值 10 V,(6) 欠压锁定电路 VVLO:具有滞回特性。
(7) PWM 锁存电路:保证每一个控制脉冲作用不超过一个脉冲周期,即所谓逐脉冲控制。
另外,VCC 与GND之间的稳压管用于保护,防止器件损坏。
(8) 图腾柱输出电路(Totem Pole):上晶体管导通下晶体管截止,输出高电平;下晶体管导通上晶体管截止,输出低电平;上下两晶体管均截止,则输出为高阻态。
五反馈电路电压反馈电路图3.5 电压反馈电路原理图电压反馈电路如图3.5所示。
输出电压通过集成稳压器TL431和光电耦合器反馈到UC3842的①脚,调节R1、R2的分压比可设定和调节输出电压,达到较高的稳压精度。
如果输出电压Uo升高,则集成稳压器TL431的阴极到阳极的电流增大,使光电耦合器输出的三极管电流增大,即UC3842①脚对地的分流变大,UC3842的输出脉宽相应变窄,输出电压U o减小。
同样, 如果输出电压U 减小,则可通过反馈调节使之升高。
第四章 变压器的设计一、已知参数设计变压器已知参数:输入电压Uin=537V两路输出电压和电流:U o1 =5V ,I o1=1A;U o2 =24V ,I o2 =50mA 反馈电压和电流U f =20V ,I f =50mA输出功率Po 51240.05200.057.2W =⨯+⨯+⨯= 效率η=0.9 开关频率fs=50kHz三、计算首先应根据以下公式计算变压器的电压比:max maxs i ToU U k U -=式中,max s U 是开关工作时允许承受的最高电压,该电压值应低于所选开关器件的耐压值并留有一定裕量,max i U 是输入直流电压最大值,T k 是变压器电压比。
由设计要求可知 AC 输入值是 380V ,通过整流滤波输出 537V 的直流电压。
由于有波动,输入的波动是±20%,所以()max 53710.2644V i U =⨯+=。
max s U 取2倍的max i U ,故max s U 取1288V 。
由于有两路输出和一路反馈,所以变压器变比如下:max max 111288644128.85s i T o U U k U --≤==max max 22128864426.824s i T o U U k U --≤==max max 33128864432.220s i T o U U k U --≤==式中:1o U —5V 的输出,2o U —24V 的输出,3o U —20V 的反馈1T k —原边与输出5V 的匝数比。
2T k —原边与输出24V 的匝数比。
3T k —原边与反馈20V 的匝数比。
当输出电流最大、输入直流电压为最小值时开关的占空比达到最大,假设这时反激型电路刚好处于电流连续工作模式,则根据下式可以计算出电路工作时的最大占空比max D 为max min 0.6T o T o i k U D k U U ===+取实际占空比为0.45D =,计算T k 的值,如下:110.4553778.510.610.4550.6iT o U D k D U ⎛⎫⎛⎫⎛⎫⎛⎫=⨯=⨯= ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭220.4553717.910.610.45240.6iT o U D k D U ⎛⎫⎛⎫⎛⎫⎛⎫=⨯=⨯= ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭330.4553721.310.610.45200.6iT o U D k D U ⎛⎫⎛⎫⎛⎫⎛⎫=⨯=⨯= ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭初级平均电流av I 可由假定效率η=0.9,所需输出总功率5240.05200.057.2W o P =⨯1+⨯+⨯=及最小总线电压min i U 算出。
min 7.20.016A 0.90.8o av i P I U ===η⨯⨯537⨯一次侧峰值电流max 220.0160.053A 0.6p av I I D =⨯=⨯= 计算一次侧电感值max max 130.6145.8mH 0.053i s p D U L f I ⨯644===50⨯10⨯ 可由e w A A 法求出所需铁芯:1.1441max 10p p e w c c L I A A A B k d ⎛⎫⨯⨯==⎪ ⎪⎝⎭式中A w —磁芯窗口面积,单位为cm 2e A —磁芯截面积单位为cm 2max B —磁芯工作磁感应强度,取max B =0.3Tc k — 窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4,此处取0.4。