2内切球外接球含习题
高中数学必修2专题 外接球与内切球
专题三:外接球与内切球
《普通高中数学课程标准》中对立体几何初步的学习提出了基本要求:“在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;……。
”由此可见,长方体模型是学习立体几何的基础,掌握长方体模型,对于我们理解立体几何的有关问题起着非常重要的作用。
有关外接球与内切球的立体几何问题是近年各省高考试题的难点之一,这与我们的空间想象能力以及化归能力有关,通过近年来部分高考与模考试题中外接球与内切球的问题谈几种解法。
一、直接法
1、求正方体的外接球的有关问题
2、求长方体的外接球的有关问题
二、构造法
1、构造正方体
2、构造长方体
三、球与棱柱的组合体问题
1、题型:求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。
2、解法:构造直三角形,巧解正棱柱与球的组合问题。
正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。
四、棱锥的内切、外接球问题
由于正四面体本身的对称性可知,二心合一是其性质之一,即内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为4/h ( h 为正四面体的高),且外接球的半径4/3h。
五、多个球与几何体相切问题
可以通过截面图来探讨点、线、面之间的联系。
【冲刺习题】。
空间几何外接球和内切球含详解
A.
B.
C.
D. ⺁
2.已知如图所示的三棱锥 D ABC 的四个顶点均在球 O 的球面上, ABC 和 DBC 所在平面相互垂直, AB 3 , AC 3 , BC CD BD 2 3 ,则球 O 的表面积为 ( )
A . 4
B .12
C .16
D . 36
3.三棱锥 P ABC 的底面是等腰三角形,C 120 ,侧面是等边三角形且与底面 ABC 垂直,AC 2 ,
ᒺ ,若三棱柱的所有顶点都在同一
考向三 棱锥的外接球
类型一:正棱锥型
【例 3-1】已知正四棱锥 P ABCD 的各顶点都在同一球面上,底面正方形的边长为 2 ,若该正四棱锥的
体积为 2,则此球的体积为 ( )
A. 124 3
B. 625 81
C. 500 81
D. 256 9
【套路总结】
【举一反三】
【举一反三】 1. 设直三棱柱 ABC-A1B1C1 的所有顶点都在一个球面上,且球的表面积是 40π,AB=AC=AA1,∠BAC=120°, 则此直三棱柱的高是________.
2.直三棱柱 홨 홨 中,已知 홨 홨, 홨 ᒺ ,홨 ᒺ ⺁, 球面上,则该球的表面积为__________.
B. 20
C. 12
D. 20 3
【套路总结】 侧棱垂直与底面---垂面型
【举一反三】 1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )
A. ⺁π
B. ᒺπ
C. π
D. ⺁π
2.已知三棱锥 S-ABC 中, SA 平面 ABC ,且 ACB 30 , AC 2AB 2 3.SA 1 .则该三棱锥
【举一反三】
立体几何中球的内切和外接问题完美版
性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题
(完整版)高考外接球内切球专题练习
高考外接球与内接球专题练习(1)正方体,长方体外接球1. 如图所示,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点的轨迹的面积为( )A. 4πB. 2πC. πD. 2π 2. 正方体的内切球与其外接球的体积之比为( ) A. 1:3 B. 1:3 C. 1:33 D. 1:93. 长方体ABCD ﹣A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=3,AA 1=1, 则该球的表面积为( )A. 4πB. 8πC. 16πD. 32π4. 底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为A. 323π B. 4π C. 2π D. 43π 5. 已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 _________ .6. 在三棱椎A ﹣BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的 面积分别为22,32,62,则该三棱椎外接球的表面积为( ) A. 2π B. 6π C. 46π D. 24π7. 设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC 、AD ⊥AC 、AB ⊥AD , 则S △ABC +S △ABD +S △ACD 的最大值为( )A. 4B. 8C. 12D. 168. 四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体的 外接球的表面积为( )A. 25πB. 45πC. 50πD. 100π9. 如图,在三棱锥S ﹣ABC 中,M 、N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若AB=22,则此正三棱锥外接球的体积是A. 12πB. 43πC. 433π D. 123π 10. 已知三棱锥P ABC -的顶点都在同一个球面上(球O ),且2,6PA PB PC ===, 当三棱锥P ABC -的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值为( )A. 316πB. 38πC. 116πD. 18π (2)直棱柱外接球11. 已知三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC , AA 1=12,则球O 的半径为A. 3172B. 210C. 132D. 310 12. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面 积为( )A. 2a πB. 273a πC. 2113a π D. 25a π 13. 直三棱柱ABC ﹣A 1B 1C 1的各顶点都在同一球面上,若AB=AC=AA 1=2,∠BAC=120°, 则此球的表面积等于_________ .14. 三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB=BC=1,则球O 的表面积为( )A. 32πB. 32π C. 3π D. 12π 15. 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 的体积等于 _________ .(3)正棱锥外接球16. 棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为___________17. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. 4327πB. 62π C. 68π D. 624π 18. 已知三棱锥P ABC -的所有顶点都在表面积为28916π的球面上,底面ABC 是边长为 3的等边三角形,则三棱锥P ABC -体积的最大值为__________19. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 为( )A. 814π B. 16π C. 9π D. 274π 20. 已知正三棱锥P ﹣ABC 的顶点均在球O 上,且P A=PB=PC=25,AB=BC=CA=23, 则球O 的表面积为( )A. 25πB. 1256πC. 52π D. 20π21. 在球O 的表面上有A 、B 、C 三个点,且3AOB BOC COA π∠=∠=∠=,△ABC 的外接圆半径为2,那么这个球的表面积为( ) A. 48π B. 36π C. 24π D. 12π 22. 半径为2的半球内有一内接正六棱锥P ﹣ABCDEF ,则此正六棱锥的侧面积是 ____.23. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A. 23πB. 3π C. 23π D. 223π 24. 正四棱锥P ﹣ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面 上,如果163P ABCD V -=,则求O 的表面积为( ) A. 4π B. 8π C. 12π D. 16π(4)棱锥外接球25. 已知A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB=6,213AC =, AD=8,则此球的体积是 _________ .26. 在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D , 则四面体ABCD 的外接球的体积为( )A. 12512πB. 1259πC. 1256πD. 1253π 27. 点A ,B ,C ,D 在同一个球的球面上,AB=BC=2,AC=22,若四面体ABCD 体积 的最大值为43,则该球的表面积为( ) A. 163π B. 8π C. 9π D. 12π 28. 四棱锥S ﹣ABCD 的底面ABCD 是正方形,侧面SAB 是以AB 为斜边的等腰直角三角 形,且侧面SAB ⊥底面ABCD ,若AB=23,则此四棱锥的外接球的表面积为( )A. 14πB. 18πC. 20πD. 24π29. 三棱锥S ﹣ABC 的四个顶点都在球面上,SA 是球的直径,AC ⊥AB ,BC=SB=SC=2, 则该球的表面积为( )A. 4πB. 6πC. 9πD. 12π30. 已知四棱锥V ﹣ABCD 的顶点都在同一球面上,底面ABCD 为矩形,AC∩BD=G ,VG ⊥平面ABCD ,AB=3,AD=3,VG=3,则该球的体积为( )A. 36πB. 9πC. 123πD. 43π(5)内接球31. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A. 1B. 2C. 3D. 432. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6,8AB BC ==,13AA =,则V 的最大值为A. 4πB. 92πC. 6πD. 323π 33. 已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A. 823π B. 833π C. 863π D. 1623π 34. 把一个皮球放入一个由8根长均为20的铁丝接成的四棱锥形骨架内,使皮球的表面 与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A. 103B. 10C. 102D. 3035. 棱长为23的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小 球,则这些球的最大半径为( )A. 2B. 22C. 24D. 2636. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A ﹣BEFD 与三棱锥A ﹣EFC的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定(6)球的截面问题37. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体 积为( )A. 6πB. 43πC. 46πD. 63π38. 已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A. 26B. 36C. 23D. 2239. 高为2的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半 径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. 102B. 232+C. 32D. 240. 已知三棱锥S ﹣ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A. πB. 2πC. 3πD. 4π41. 在半径为13的球面上有A ,B ,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 _________ ;(2)过A ,B 两点的大圆面与平面ABC 所成二面角为(锐角)的正切值为 ____.42. 设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到 该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.43. 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2, 则球面面积是( ) A. 169π B. 83π C. 4π D. 649π 44. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M . 若圆M 的面积为3π,则球O 的表面积等于 _________ .45. 三棱锥P ﹣ABC 的各顶点都在一半径为R 的球面上,球心O 在AB 上,且有P A=PB=PC , 底面△ABC 中∠ABC=60°,则球与三棱锥的体积之比是 _________ .46. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截 球O 所得截面的面积为π,则球O 的表面积为__________(7)旋转体的外接内切47. 半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面 积之差是 _________ .48. 将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度 是 _________ .1. D ;2. C ;3. B ;4. D ;5. 3; 6. B ; 7. B ; 8. C ; 9. B ;10. A ; 11. C ; 12. B ; 13. 20π; 14. C ; 15. 92π; 16. ;17. C ; 19. A ; 20. A ; 21. A ; 22. ; 23. A ; 24. D ; 25. 2563π; 26. C ; 27. C ; 28. D ; 29. B ; 30. D ; 31. B ; 32. B ; 33. A ; 34. B ; 35. C ; 36. C ; 37. B ; 38. A ; 39. A ; 40. D ;41. 12;3;42. A;43. D;44. 16π;45.3;46.92π47. 30π;48.(2R+;。
球的内切、外接问题
6a
内切球的半径为 12
新课导入
• 例2.已知△ABC为等边三角形,边长为a.⊙O为
△ABC的外接圆,求⊙O的半径.
解:设⊙O的半径为R,连结OA,OC,
过A做三角形的高AD,点O在AD上.
A
3 AD= a OA=OB=R
2
OD=AD-OA= 3 a-R
2
O
在RtODC中OB2 =OD2 +DC2
S1S2 S2 )
球(半径为r)
S=4 r2
V= 4 r3
3
课前检测
• 二、做得对 • 1.球的体积与其表面积的数值相等,则球的半
径等于( C)
• A. 1 B.2 C.3 D.4 • 2.火星的半径约是地球的一半,地球表面积是
火星表面积的_4__倍. • 3.若一个球的体积为4 3 ,则它的表面积为
3 32
3
PE= PA2 -AE2
O
PE= 2 3 3
OA=R OE=PE-OP= 2 3 -R
3
A
在RtOAE中OA2 =OE2 +AE2
E
D
F
B
即R2 =( 2 3 -R)2 + 2
3
3
R= 3 S=4 R2 =3
2
课堂小结
解决与球有关的内切与外接问题的
关键是:
1、将多面体分割成多个三棱锥 2、通过寻找恰当的过球心的截面,把立体问 题转化为平面问题,通过解三角形求出球的 半径R.
1_2_π___. • 4.已知球的半径为 10 cm,若它的一个截面圆
的面积是36π cm2,则球心与截面圆周圆心的距 离是__8_c_m__.
立体几何外接球及内切球问题
立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。
根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。
必修二球的内切和外接例题讲解
例1 甲球内切于正方体的各面,乙球内切于该正方体的各条棱,
丙球外接于该正方体,则三球表面面积之比为( )
A. 1:2:3 D
B. 1: 2: 3
C
C. 1:3 4:3 9
D. 1: 8: 27
A D1
A1
B
中截面
O
C1 设为1
球的外切正方体的棱长等于球直径。
B1
S甲 4 R12 =
D A
D1
C 球内切于正方体的棱
O1 D
R
6 a R 3
3a
3a
2
6
R 6 a 4
E
3 a
6
S表
3 2
a2
例 、正三棱锥的高为 1,底面边长为 2 6 内有一个球与四个面都相切,求棱锥的全
面积和球的表面积。
A
在 Rt △ AO1E 中
sin 3 cos 6
1
O •θ
3
3
tan 1 cos 2 sin
3
3 2
B
球的性质
性质1:用一个平面去截球,截面是圆面;用一个平面去 截球面, 截线是圆。
大圆--截面过球心,半径等于球半径;小圆--截面不过球心
A
例4已知过球面上三点A、B、C的截面到球心O的距离 等于球半径的一半,且AB=BC=CA=2cm,求球的体 积,表面积.
解:如图,设球O半径为R, 截面⊙O′的半径为r,
例2、正三棱锥的高为 1,底面边长为 。求棱锥
的全面积和它的内切球的表面积。
A 解法1 过侧棱AB与球心O作截面( 如图 ) : 在正三棱锥中,BE 是正△BCD的高,
1
O1 是正△BCD的中心,且AE 为斜高
球的内切、外接问题
P
球的表面积.
解1:作出截面图如图示. 由图可知,
3
AD
a,
2
2
3
AO AD
a.
3
3
a
6
2
2
∴PO PA AO
a.
3
6
∴OO PO PO
a R.
3
P
a
R
R
A
A
R O•
O•
•
O′
解得R
时,球内切于圆锥,如图所示,
O为球心,M为球O与母线PB的切点,E为底面圆心,
设球O的半径为R,底面圆E的半径为r,
因为圆锥侧面积为2π,
LOGO
(4)正棱锥、圆锥 ②外接球
例8 正四棱锥的五个顶点在同一个球面上,若该正
四棱锥的底面边长为4,侧棱长为2 6,求这个球
P
的表面积. 36π
PO′= 4,OO′=4-R,AO=R
2 6
AO2 = OO′ 2 + AO′ 2,
R=3
•
O′
R
R
A
O
O•
•
O′
O′
•
O
LOGO
(4)正棱锥、圆锥 ②外接球
正棱锥外接球半径求法——轴截面法
1.球心在棱锥的高所在的直线上
2.球心到底面外接圆圆心的距离d等于锥体的高h 减去球半径R的绝对值
d= |h -R |
P
3. R 2 r 2 (h R ) 2
4
9
O
1
, 解得r= 3
轴截面法
高考数学中的内切球和外接球问题(附习题)
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.43π.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.14π.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). CA. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有263,1,2936,384x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩.∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.9π.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积249S R ππ==.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.出现“墙角”结构利用补形知识,联系长方体。
空间几何体的外接球内切球问题
空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。
1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。
练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。
2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。
3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。
练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。
经典三类球:外接球、内切球、棱切球(解析版)
经典三类球:外接球、内切球、棱切球1【考点预测】考点一:正方体、长方体外接球1.正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2.长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3.补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体P -ABC 可以补形为正方体且正方体的棱长a =PA2,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1图2图3图4考点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,则正方体的棱长为22a ,显然正四面体和正方体有相同的外接球.正方体外接球半径为R =22a ⋅32=64a ,即正四面体外接球半径为R =64a .考点三:对棱相等的三棱锥外接球四面体ABCD 中,AB =CD =m ,AC =BD =n ,AD =BC =t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为a ,b ,c ,则b 2+c 2=m 2a 2+c 2=n 2a 2+b 2=t2,三式相加可得a 2+b 2+c 2=m 2+n 2+t 22,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则a 2+b 2+c 2=4R 2,所以R =m 2+n 2+t 28.直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1图2图3第一步:确定球心O 的位置,O 1是ΔABC 的外心,则OO 1⊥平面ABC ;第二步:算出小圆O 1的半径AO 1=r ,OO 1=12AA 1=12h (AA 1=h 也是圆柱的高);第三步:勾股定理:OA 2=O 1A 2+O 1O 2⇒R 2=h 22+r 2⇒R =r 2+h 2 2,解出R考点五:直棱锥外接球如图,PA ⊥平面ABC ,求外接球半径.解题步骤:第一步:将ΔABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:O 1为ΔABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r (三角形的外接圆直径算法:利用正弦定理,得a sin A=b sin B =c sin C =2r ),OO 1=12PA ;第三步:利用勾股定理求三棱锥的外接球半径:①(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;②R 2=r 2+OO 12⇔R =r 2+OO 12.考点六:正棱锥外接球正棱锥外接球半径:R=r2+h22h.垂面模型如图1所示为四面体P-ABC,已知平面PAB⊥平面ABC,其外接球问题的步骤如下:(1)找出△PAB和△ABC的外接圆圆心,分别记为O1和O2.(2)分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.(3)过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB.(4)在四棱锥A-DO1OO2中,AD垂直于平面DO1OO2,如图2所示,底面四边形DO1OO2的四个顶点共圆且OD为该圆的直径.图1图2考点八:锥体内切球方法:等体积法,即R=3V体积S表面积考点九:棱切球方法:找切点,找球心,构造直角三角形1【典型例题】1(2023春·天津宁河·高一校考期末)在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°,则该三棱锥外接球的表面积为()B.8πC.10πD.12πA.20π3【答案】B【解析】根据题意得出图形如右图:O为球心,N为底面△ABC截面圆的圆心,ON⊥面ABC,∵在三棱锥P-ABC中,AP=2,AB=3,PA⊥面ABC,且在△ABC中,C=60°=2r,解得r=1,∴根据正弦定理得出:3sin60°∵PA⊥面ABC,∴PA⎳ON,∵PA=2,AN=1,ON=d,∴OA=OP=R,∴根据等腰三角形得出:12+d2=(2-d)2+12,解得d=1,∴R=1+1=2∴三棱锥的外接球的表面积为4πR2=8π.故选:B.2(2023·辽宁沈阳·高一东北育才学校校考阶段练习)在正三棱锥S-ABC中,外接球的表面积为36π,M,N分别是SC,BC的中点,且MN⊥AM,则此三棱锥侧棱SA=()A.1B.2C.3D.23【答案】D【解析】取AC的中点E,连结BE、SE,∵三棱锥S-ABC正棱锥,∴SA=SC,BA=BC.又∵E为AC的中点,∴SE⊥AC且BE⊥AC∵SE、BE是平面SBE内的相交直线,∴AC⊥平面SBE,又SB在平面SBE内可得SB⊥AC又∵MN是△SBC的中位线,∴MN∥SB,可得MN⊥AC又∵MN ⊥AM ,又AM ,AC 是平面SAC 内的相交直线,∴MN ⊥平面SAC ,结合MN ∥SB ,可得SB ⊥平面SAC 又∵三棱锥S -ABC 是正三棱锥,∴∠ASB =∠BSC =∠ASC =90°,因此将此三棱锥补成正方体,则它们有相同的外接球,设球的半径为R ,可得4πR 2=36π,解得R =3,∴SA 2+SA 2+SA 2=2R =6,解之得SA =23故选:D3(2023春·河南南阳·高一校联考期末)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ∥平面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23则该刍甍的外接球的体积为()A.642π3B.3πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO2⊥平面ABCD,EF⎳AB⎳MN,点O是MN的中点,MN=AB=4,等腰△AED中,AD⊥EN,EN=AE2-AN2=22,同理FM=22,因此,等腰梯形EFMN的高OO2=EN2-MN-EF22=7,由几何体的结构特征知,刍甍的外接球球心O1在直线OO2上,连O1E,O1A,OA,正方形ABCD外接圆半径OA= 22,则有O1A2=OA2+OO21O1E2=O2E2+O2O21,而O1A=O1E,O2E=12EF=1,当点O1在线段O2O的延长线(含点O)时,视OO1为非负数,若点O1在线段O2O(不含点O)上,视OO1为负数,即有O2O1=O2O+OO1=7+OO1,即(22)2+OO21=1+(7+OO1)2,解得OO1=0,因此刍甍的外接球球心为O,半径为OA=22,所以刍甍的外接球的体积为4π3×223=642π3.故选:A.4(2023·高一课时练习)已知圆台的上下底面半径分别为1和2,侧面积为35π,则该圆台的外接球半径为()A.1055B.654C.1854D.1054【答案】B【解析】设圆台的高和母线分别为h,l,球心到圆台上底面的距离为x,根据圆台的侧面积公式可得π1+2l=35π⇒l=5,因此圆台的高h=l2-2-12=2,当球心在圆台内部时,则12+x2=22+h-x2,解得x=74,故此时外接球半径为1+x2=65 16=65 4,当球心在圆台外部时,则12+x2=22+x-h2,x>h,解得x=74不符合要求,舍去,故球半径为65 4故选:B5(2023·高一课时练习)已知圆锥的底面半径为2,高为42,则该圆锥的内切球表面积为()A.4πB.42πC.82πD.8π【答案】D【解析】如图,圆锥与内切球的轴截面图,点O为球心,内切球的半径为r,D,E为切点,设OD=OE=r,即BE=BD=2由条件可知,AB=422+22=6,△ADO中,AO2=AD2+DO2,即42-r2=6-22+r2,解得:r=2,所以圆锥内切球的表面积S=4πr2=8π.故选:D6(2023·高一课时练习)一个正四棱柱的每个顶点都在球O的球面上,且该四棱柱的底面面积为3,高为10,则球O的体积为()A.16πB.32π3C.10π D.28π3【答案】B【解析】设该正四棱柱的底面边长为a,高为h,则a2=3,h=10,解得a=3,所以该正四棱柱的体对角线为球O的直径,设球O的半径为R,所以,2R=a2+a2+h2=3+3+10=4,即R=2,所以,球O的体积为4π3×23=32π3.故选:B7(2023·高一课时练习)正八面体是每个面都是正三角形的八面体.如图所示,若此正八面体的棱长为2,则它的内切球的表面积为()A.423π B.8327π C.83π D.163π【答案】C【解析】以内切球的球心为顶点、正八面体的八个面为底面,可将正八面体分为8个全等的正三棱锥,设内切球的半径为r ,则8V 三棱锥=V 正八面体=2V 正四棱锥,且正四棱锥的高为图中CO ,易得CO =2,即:8×13×12×2×2×32 ⋅r =2×13×2×2 ×2解得:r =63,所以,内切球的表面积为8π3.故选:C .8(2023·高一课时练习)已知A ,B ,C 三点均在球O 的表面上,AB =BC =CA =2,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的为()A.球O 的外切正方体的棱长为6B.球O 的表面积为8πC.球O 的内接正方体的棱长为3D.球O 的半径为32【答案】A【解析】设球O 的半径为R ,△ABC 的外接圆半径为r ,则r =233,因为球心O 到平面ABC 的距离等于球O 半径的13,所以R 2-19R 2=43,得R 2=32,即R =62,故D 错误;球O 的外切正方体的棱长b 满足b =2R =6,故A 正确;所以球O 的表面积S =4πR 2=4π×32=6π,故B 错误;球O 的内接正方体的棱长a 满足3a =2R =6,即a =2,故C 错误.故选:A .9(2023·河南开封·开封高中校考模拟预测)已知某棱长为22的正四面体的各条棱都与同一球面相切,则该球与此正四面体的体积之比为()A.π2B.π3C.3π3D.2π2【答案】A【解析】如图,正方体ABCD -A 1B 1C 1D 1中,棱长为2,所以,四面体A 1BDC 1是棱长为22的正四面体,当正四面体的各条棱都与同一球面相切时,该球为正方体的内切球,半径为1,所以,该球的体积为4π3,因为正四面体的体积为8-4×13×12×2×2×2=8-163=83,所以,该球与此正四面体的体积之比为4π383=π2.故选:A10(2023·高一课时练习)正四面体ABCD 的棱长为a ,O 是棱AB 的中点,以O 为球心的球面与平面BCD 的交线和CD 相切,则球O 的体积是()A.16πa 3B.26πa 3 C.36πa 3 D.23πa 3【答案】D【解析】设点A 在平面BCD 内的射影为点E ,则E 为△BCD 的中心,取CD 的中点M ,连接BM ,则E ∈BM ,取线段BE 的中点F ,连接OF ,因为O 、F 分别为AB 、BE 的中点,则OF ⎳AE 且OF =12AE ,因为AE ⊥平面BCD ,则OF ⊥平面BCD ,因为BE ⊂平面BCD ,则AE ⊥BE ,正△BCD的外接圆半径为BE=a2sinπ3=33a,∴AE=AB2-BE2=63a,所以,OF=12AE=66a,易知球O被平面BCD所截的截面圆圆心为点F,且BF=EF=EM,故FM=BE=33a,因为△BCD为等边三角形,M为CD的中点,则BM⊥CD,因为以O为球心的球面与平面BCD的交线和CD相切,则切点为点M,则球O的半径为OM=OF2+FM2=22a,因此,球O的体积是V=43π×22a3=23πa3.故选:D.11(2023·高一课时练习)已知直三棱柱ABC-A1B1C1的底面为直角三角形,如图所示,∠BAC= 90°,AB=1,AC=2,AA1=3,则四面体A-A1BC的体积为,四棱锥A1-BCC1B1的外接球的表面积为.【答案】 1 14π【解析】由题意可得S△ABC=12×AB⋅AC=12×2×1=1,且h=AA1,则V A-A1BC=13S△ABC⋅h=13×1×3=1因为△ABC 外接圆的圆心即为BC 中点,设为O ,△A 1B 1C 1外接圆的圆心即为B 1C 1中点,设为O 1,则OO 1的中点到六个顶点的距离相等,则OO 1的中点M 为外接球的球心,即CM 为半径,OC =12BC =12AC 2+AB 2=52,OM =12AA 1 =32所以CM =OC 2+OM 2=54+94=142,即外接球的表面积为4πR 2=4π×144=14π故答案为:1,14π2【过关测试】一、单选题1(2023·高一课时练习)若正四面体的表面积为83,则其外接球的体积为()A.43πB.12πC.86πD.323π【答案】A【解析】设正四面体的棱长为a ,由题意可知:4×34a 2=83,解得:a =22,所以正四面体的棱长为22,将正四面体补成一个正方体,则正方体的棱长为2,正方体的体对角线长为23,因为正四面体的外接球的直径为正方体的体对角线长,所以外接球半径R =3,则外接球的体积为V =43πR 3=43π,故选:A .2(2023·陕西渭南·高一统考期末)在直三棱柱ABC -A 1B 1C 1中,AB =BC =2,AA 1=22,∠ABC =π2,则此三棱柱外接球的表面积为()A.4πB.8πC.16πD.24π【答案】C 【解析】因为AB=BC=2,∠ABC=π2,所以△ABC为等腰直角三角形,将直三棱柱ABC-A1B1C1补全为如图长方体ABCD-A1B1C1D1,则长方体的外接球即直三棱柱的外接球,因为AB=BC=2,AA1=22,所以外接球直径2R=AC1=22+22+222=4,所以外接球半径R=2,表面积S=4πR2=16π.故选:C.3(2023春·河北衡水·高一校考阶段练习)在正四棱锥P-ABCD中,AB=4,PA=26,则平面PAB截四棱锥P-ABCD外接球的截面面积是()A.65π5B.36π5C.12πD.36π【答案】B【解析】如图,作PO ⊥平面ABCD,垂足为O ,则O 是正方形ABCD外接圆的圆心,从而正四棱锥P-ABCD外接球的球心O在PO 上,取棱AB的中点E,连接O D,O E,OD,PE,作OH⊥PE,垂足为H.由题中数据可得O D=22,O E=2,PE=25,O P=4,设四棱锥P-ABCD外接球的半径为R,则R2=O D2+O O2=OP2=O P-O O2,即R2=8+O O2=4-O O2,解得R=3.由题意易证△OPH∽△EPO ,则PHO P=OPPE,故PH=65 5.故所求截面圆的面积是π⋅PH2=36π5.故选:B4(2023春·山西太原·高一校考阶段练习)在三棱锥P -ABC 中,PA =PB =PC =3,侧棱PA与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.πB.π3C.4πD.4π3【答案】D【解析】设点P 在平面ABC 内的射影点为E ,如下图所示:由线面角的定义可知,直线PA 与底面ABC 所成的角为∠PAE =60°,所以,PE =3sin60°=32,AE =3cos60°=32,因为PE ⊥平面ABC ,BE 、CE ⊂平面ABC ,∴PE ⊥BE ,PE ⊥CE ,∴BE =PB 2-PE 2=32=PC 2-PE 2=CE ,所以,△ABC 的外接圆圆心为点E ,且其外接圆半径为32,所以,三棱锥P -ABC 的外接球球心O 在直线PE 上,设球O 的半径为r ,由几何关系可得OE 2+AE 2=OA 2,即32-r 2+322=r 2,解得r =1,因此,三棱锥P -ABC 外接球的体积为V =43πr 3=43π.故选:D .5(2023春·河南鹤壁·高一河南省浚县第一中学校考阶段练习)已知三棱锥P -ABC 的四个顶点均在同一个球面上,底面ABC 满足BA =BC =6,∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为()A.323π B.32π C.16π D.823π【答案】A【解析】在△ABC中,BA=BC=6,∠ABC=π2,因此三棱锥P-ABC的外接球被平面ABC截得的截面小圆圆心是AC的中点O1,令三棱锥P-ABC的外接球球心为O,则OO1⊥平面ABC,而S△ABC=12AB⋅BC=3,O1A=3,因三棱锥P-ABC体积的最大值为3,则三棱锥P-ABC底面ABC上的高最大,设此最大高为h,由13×3h=3得h=3,要三棱锥P-ABC的体积最大,当且仅当球O上的点P到平面ABC的距离最大,则点P在线段O1O的延长线上,设球O半径为R,则有(h-R)2+O1A2=R2,即(3-R)2+(3)2=R2,解得R=2,所以三棱锥P-ABC的外接球体积为V=43πR3=323π.故选:A6(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【解析】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA2+AB2+AD22=32+42+522=522,则外接球的表面积为:S=4πR2=4π⋅504=50π.故选:B7(2023·吉林·高一吉林一中校考阶段练习)如图,在△ABC中,AB=25,BC=210,AC=213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π【答案】C【解析】由题意可知,PE =DF =10,PF =DE =13,PD =EF =5,即三棱锥P -DEF 的对棱相等,先将该三棱锥补充成长方体,如图所示:设FH =x ,HD =y ,HP =z ,则x 2+y 2=10,y 2+z 2=5,x 2+z 2=13,所以x 2+y 2+z 2=14,于是三棱锥P -DEF 的外接球直径为14,半径为142,所以该三棱锥外接球的表面积为:4π⋅142 2=14π.故选:C .8(2023·高一课时练习)如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 中点.将ΔADE 与ΔBEC 分别沿ED 、EC 折起,使A 、B 重合于点P ,则三棱锥P -DCE 的外接球的体积为()A.43π27B.6π2C.6π8D.6π24【答案】C【解析】易证所得三棱锥为正四面体,它的棱长为1,故其外接球与棱长为22的正方体的外接球一直,又正方体外接球半径为R=12+12+122=64故外接球的体积为43π633=68π故选C.9(2023·高一课时练习)边长为1的正四面体内切球的体积为()A.6π8B.212C.π6D.6π216【答案】D【解析】将棱长为1的正四面体ABCD补成正方体AECF-GBHD,则该正方体的棱长为22,V A-BCD=223-4V B-ACE=24-4×13×12×22 3=212,设正四面体ABCD的内切球半径为r,正四面体ABCD每个面的面积均为34×12=34,由等体积法可得V A-BCD=212=13r S△ABC+S△ACD+S△ABD+S△BCD=33r,解得r=612,因此,该正四面体的内切球的体积为V=43π×6123=6216π.故选:D.10(2023·高一课时练习)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SAC⊥平面SBC,SA=AC,SB=BC,球O的体积为36π,则三棱锥S-ABC的体积为()A.9B.18C.27D.36【答案】A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径O为SC中点,SA=AC,SB=BC∴AO⊥SC,BO⊥SC,∵平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,BO⊂平面SBC,∴BO⊥平面SCA,设BO=r,由球O的体积为36π,可得43πr3=36π,∴r=3,则V S-ABC=V B-SCA=13S△SCA⋅BO=13×12×2r×r×r=13r3=9,∴三棱锥S-ABC的体积为9,故选∶A.11(2023·高一课时练习)如下图是一个正八面体,其每一个面都是正三角形,六个顶点都在球O 的球面上,则球O与正八面体的体积之比是()A.πB.4π3C.3π2D.2π【答案】A【解析】由题意得正方形ABCD的中心O即为外接球球心,设AB=a,则R=OA=22a,球O的体积为V1=43π×22a3=2π3a3,而h=OE=22a,故正八面体的体积V2=2×13×a2×22a=23a3,得V1V2=π,故选:A12(2023·高一课时练习)已知三棱柱ABC-A1B1C1所有的顶点都在球O的球面上,球O的体积是500π3,∠ABC =60°,AC =43,则AA 1=()A.3B.6C.4D.8【答案】B【解析】设球O 的半径为R ,△ABC 外接圆的半径为r ,则43πR 3=500π3,解得R =5,因为∠ABC =60°,AC =43,由正弦定理得,△ABC 外接圆的半径r =432sin60°=4,则AA 1=2R 2-r 2=2×3=6.故选:B二、多选题13(2023春·湖北襄阳·高一襄阳四中校考阶段练习)如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,EF ⎳AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且AB =2,EF =AD =1,则下列说法正确的是()A.OF ⎳平面BCEB.BF ⊥平面ADFC.三棱锥C -BEF 外接球的体积为5πD.三棱锥C -BEF 外接球的表面积为5π【答案】ABD【解析】选项A :由EF ⎳AB ,AB =2,EF =1,可得EF // OB 则四边形OBEF 为平行四边形,则OF ⎳BE又OF ⊄平面BCE ,BE ⊂平面BCE ,则OF ⎳平面BCE .判断正确;选项B :连接BF ,线段AB 为圆O 的直径,则BF ⊥AF 由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB AD ⊂平面ABCD ,AD ⊥AB ,则AD ⊥平面ABEF则AD ⊥BF ,又AF ∩AD =A ,AF ⊂平面ADF ,AD ⊂平面ADF 则BF ⊥平面ADF .判断正确;选项C :取CD 中点H ,连接OH由平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =ABOH ⊥AB ,OH ⊂平面ABEF ,可得OH ⊥平面ABEF又点E ,F ,B 在圆O 上,则三棱锥C -BEF 外接球球心在直线OH 上,由OH ⎳BC ,OH ⊄平面BCE ,BC ⊂平面BCE可得OH ⎳平面BCE ,则三棱锥C -BEF 外接球球心到平面BCE 的距离为点O 到平面BCE 的距离由BC ⊥平面ABEF ,BC ⊂平面BCE ,可得平面BCE ⊥平面ABEF ,则点O 到平面BCE 的距离即点O 到直线BE 的距离,又点O 到直线BE 的距离为32,则三棱锥C -BEF 外接球球心到平面BCE 的距离为32在△BCE 中,BC ⊥BE ,BC =BE =1,则CE =2,则△BCE 外接圆半径为22则三棱锥C -BEF 外接球的半径R =22 2+32 2=52则三棱锥C -BEF 外接球的体积为43π⋅52 3=556π.判断错误;选项D :由三棱锥C -BEF 外接球的半径R =52则三棱锥C -BEF 外接球的表面积为4πR 2=4π⋅522=5π.判断正确.故选:ABD14(2023春·江苏无锡·高一江苏省江阴市第一中学校考阶段练习)我们把所有棱长都相等的正棱柱(锥)叫“等长正棱柱(锥)”,而与其所有棱都相切的称为棱切球,设下列“等长正棱柱(锥)”的棱长都为1,则下列说法中正确的有()A.正方体的棱切球的半径为2B.正四面体的棱切球的表面积为π2C.等长正六棱柱的棱切球的体积为4π3D.等长正四棱锥的棱切球被棱锥5个面(侧面和底面)截得的截面面积之和为7π12【答案】BCD 【解析】正方体的棱切球的直径为正方体的面对角线,正方体的棱切球的半径为面对角线的一半,即为22,选项A 错误;如图,四面体ABCD 为棱长为1的正四面体,把正四面体ABCD 放到正方体中,则正方体的棱长即为正四面体的棱切球的直径,所以正四面体的棱切球的半径为24,即正四面体的棱切球的表面积为π2,选项B 正确;如图,等长正六棱柱的棱切球的直径为AB ,即直径为2,半径为1,所以等长正六棱柱的棱切球的体积为4π3,选项C 正确;由棱切球的定义可知,棱切球被每一个面所截,截面为该面的内切圆,则等长正四棱锥的底面内切圆的面积为π×12 2=π4,每个侧面正三角形的内切圆的半径为正三角形高的13,即36,所以四个侧面正三角形的内切圆的面积为4×π×36 2=π3,所以等长正四棱锥的棱切球被棱锥5个面截得的截面面积之和为π4+π3=7π12,选项D 正确.故选:BCD .15(2023春·湖南邵阳·高一湖南省邵东市第三中学校考期中)已知正方体ABCD -A 1B 1C 1D 1的各棱长均为2,下列结论正确的是()A.该正方体外接球的直径为23B.该正方体内切球的表面积为4πC.若球O 与正方体的各棱相切,则该球的半径为2D.该正方体外接球的体积为43【答案】ABC【解析】若正方体的棱长为2,则:①若球为正方体的外接球,则外接球直径等于正方体体对角线,即2R =22+22+22=23,故A 正确,外接球体积为43πR 3=43π,故D 错误;②若球为正方体的内切球,则内切球半径为棱长的一半,故R =1,球的表面积为4πR 2=4π,故B 正确;③若球与正方体的各棱相切,则球的直径等于正方形对角线长,即R =22+22=22,球的半径为R =2,故C 正确.故本题选:ABC .三、填空题16(2023春·陕西汉中·高一校考期中)已知球O 是四棱锥P -ABCD 的外接球,四边形ABCD 是边长为1的正方形,点P 在球面上运动且PA =2,则当四棱锥P -ABCD 的体积最大时,球O 的表面积是.【答案】6π【解析】设PA 与平面ABCD 夹角为θ,则四棱锥P -ABCD 的体积为V =13S ABCD ⋅h =13×1×h =13×PA ×sin θ=23sin θ,当sin θ=1时,四棱锥P -ABCD 的体积最大,即θ=90°,此时PA ⊥平面ABCD ,将四棱锥P -ABCD 补成一个正四棱柱,如图所示,此时四棱锥P -ABCD 和该正四棱柱有相同的外接球O ,设球O 的半径为R ,则2R =PC =12+12+22=6,可得R =62,所以球O 的表面积为S =4πR 2=4π×622=6π.故答案为:6π17(2023·高一课时练习)、已知正方体外接球的体积是323π,那么正方体的棱长等于【答案】433【解析】设正方体的棱长为a ,则外接球的半径为3a 2,外接球的体积V =4π3R 3=4π3×3a 2 3=3πa 32=32π3,解得a =433,即正方体的棱长等于433.18(2023春·浙江宁波·高一余姚中学校考阶段练习)已知某圆锥的内切球的体积为32π3,则该圆锥的表面积的最小值为.【答案】32π【解析】设圆锥的内切球半径为r ,则43πr 3=32π3,解得r =2,设圆锥顶点为A ,底面圆周上一点为B ,底面圆心为C ,内切球球心为D ,内切球切母线AB 于E ,底面半径BC =R >2,∠BDC =θ,则tan θ=R 2,又∠ADE =π-2θ,由已知△BDE ,△BDC 为直角三角形,又DC =DE ,BD =BD ,所以△BDE ≅△BDC ,所以BE =BC =R ,∠BDE =∠BDC =θ,所以∠ADE =π-2θ,故AB=BE +AE =R +2tan π-2θ =R -2tan2θ,又tan2θ=2tan θ1-tan 2θ=R 1-R 24=4R 4-R 2,故AB =R -8R 4-R 2=R R 2+4 R 2-4,故该圆锥的表面积为S =πR 2R 2+4 R 2-4+πR 2=2πR 4R 2-4,令t =R 2-4>0,则S =2π(t +4)2t =2πt +16t +8 ≥2π2t ×16t +8 =32π,当且仅当t =16t,即t =4,R =22时取等号.故答案为:32π.19(2023·高一课时练习)如果圆柱、圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积的比是.【答案】3:2:1【解析】设球的半径为r ,则球的体积为V 球=43πr 3,圆柱的体积为V 圆柱=πr 2⋅2r =2πr 3,圆锥的体积为V 圆锥=13πr 2⋅2r =2πr 33,因此,V 圆柱:V 球:V 圆锥=2:43:23=3:2:1.故答案为:3:2:1.20(2023·高一课时练习)已知A 、B 、C 是球面上三点,且AB =AC =4,∠BAC =90°,若球心O 到平面ABC 的距离为22,则该球表面积为.【答案】64π【解析】因为AB =AC =4,∠BAC =90°,所以BC 为平面ABC 截球所得小圆的直径,如图,设小圆的半径为r ,得2r =AB 2+AC 2=42,解得r =22,又球心O 到平面ABC 的距离d =22,根据球的截面圆性质,得球的半径R =r 2+d 2=4,所以球的表面积为S =4πR 2=64π.故答案为:64π.21(2023春·河南商丘·高一商丘市第一高级中学校考期中)已知正三棱锥S -ABC ,SA =SB =SC =23,AB =3,球O 与三棱锥S -ABC 的所有棱相切,则球O 的表面积为.【答案】(19-83)π【解析】取等边△ABC 的中心E ,连接SE ,则SE ⊥平面ABC ,连接AE 并延长,交BC 于点D ,则D 为BC 中点,且AD ⊥BC ,在SE 上找到棱切球的球心O ,连接OD ,则OD 即为棱切球的半径,过点O 作OF ⊥SA 于点F ,则OF 也是棱切球的半径,设OD =OF =R ,因为SA =SB =SC =23,AB =3,所以求得AD =332,AE =3,DE =32,由勾股定理得:SE =12-3=3,且∠ASE =30°,设OE =h ,OD =OE 2+ED 2=h 2+34,SO =3-h ,OF =123-h ,由题意得:h 2+34=123-h ,解得:h =3-1或-1-3,当h=3-1时,R2=h2+34=194-23,此时球O的表面积为(19-83)π;当棱切球的半径最大时,切点为A,B,C,由于∠ASE=30°,SA=SB=SC=23,可求得最大半径R=23tan30°=2,而当h=-3-1时,R2=h2+34=194+23>4,显然不成立,故h=-3-1舍去,综上:球O的表面积为(19-83)π故答案为:(19-83)π22(2023春·山东德州·高一德州市第一中学校考阶段练习)边长为2的正四面体内有一个球,当球与正四面体的棱均相切时,球的体积为.【答案】2 3π【解析】结合正四面体的性质:球心在正四面体的体高上,且为外接球的球心,如下图:取球心O,若OD⊥PA,则OD即为球的半径,而O 为底面中心,∴PO ⊥面ABC,若E为BC中点,则AE=PE=3,∴PO =263,PO=62,AO=233,由Rt△PDO∼Rt△PO A,则POPA=ODAO,故OD=22,∴球的体积为43π⋅OD3=23π.故答案为:23π23(2023春·广东江门·高一江门市培英高级中学校考期中)已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是.【答案】8π【解析】过正方体的对角面作截面如图,故球的半径r=2,∴其表面积S=4π×(2)2=8π.故答案为:8π.24(2023春·江苏苏州·高一江苏省苏州实验中学校考阶段练习)一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R-h)h2,其中R为球的半径,h为球缺的高.若一球与一棱长为2的正方体的各棱均相切,则该球与正方体的公共部分的体积为.【答案】10-162 3π【解析】由题可得该球与正方体的公共部分球去掉6个球缺,则球的半径为R=22+222=2,球缺高h=2-1,则一个球缺的体积为π332-2-12-12=π342-5,则该球与正方体的公共部分的体积为4π3×23-6×π342-5=10-1623π.故答案为:10-162 3π.四、解答题25(2023·全国·高一专题练习)已知球与正四面体的六条棱都相切,求球与正四面体的体积之比.【解析】如图,设正四面体棱长为a,球半径为R,取AB的中点为E,CD中点F,连接AF,BF,EF,则AF=BF=32a,∴EF⊥AB,同理EF⊥CD,∴EF是AB,CD的公垂线,则EF的长是AB,CD的距离,EF=AF2-AE2=34a2-14a2=22a,又由球与正四面体的六棱都相切,得EF是该球的直径,即2R=22a,∴R3=232a3,V 球=43πR3=43π⋅232a3=224πa3,又V正四面体=13×S×h=13×12×a×a×sin60°×63a=212a3,故V球V正四面体=π226(2023·高一课时练习)有三个球,已知球O1内切于正方体,球O2与这个正方体各棱都相切,球O3过这个正方体的各个顶点,求球O1、球O2、球O3的表面积之比.【解析】设正方体的棱长为a.①球O1为正方体的内切球,球心O1是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,如图1所示,设球O1的半径为r1,表面积为S1,则2r1=a,r1=a2,所以S1=4πr21=πa2.②球O2与正方体各棱的切点为各棱的中点,过正方体的两个相对面的面对角线作截面,如图2所示,设球O2的半径为r2,表面积为S2,则2r2=2a,r2=22a,所以S2=4πr22=2πa2.③球O3过正方体的各个顶点,即正方体的各个顶点都在球面上,过正方体的体对角线作截面,如图3所示,设球O3的半径为r3,表面积为S3,则2r3=3a,r3=32a,所以S3=4πr23=3πa2.故这三个球的表面积之比S1:S2:S3=πa2:2πa2:3πa2=1:2:3.图1 图2 图3。
内切圆与外接球专题含答案
内切球与外接球专题(1)1.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=√2,求球O的表面积.2.已知四棱锥S−ABCD的底面是等腰梯形,AB//CD,AD=DC=BC=1,AB=SA=2且SA⊥平面ABCD,则四棱锥S−ABCD的外接球的体积为_________.3.正三棱锥的高为1,底面边长为2√6,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.4.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为√3,底面周长为3,求这个球的体积.5.如图,正四棱锥P−ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,如果V P−ABCD=16,则球O的表面积是______.36.将边长为2的正△ABC沿BC边上的高AD折成直二面角B—AD—C,则三棱锥B—ACD的外接球的表面积为________.7.四棱锥P−ABCD中,底面ABCD为正方形,PD⊥底面ABCD,AB=1,PD=√2,若点E为PB的中点,则四面体EPCD外接球的体积是_______.8.直三棱柱ABC−A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=60°,则此球的表面积等于________.9.三棱锥D−ABC内接于球O,DC⊥平面ABC,∠ACB=30°,AB=2,DC=4,则三棱锥D−ABC外接球的体积为________.10.直角△ABC的三个顶点都在球O的球面上,且AB=AC=2,若三棱锥O—ABC的体积为2,则该球的表面积为________.11.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),圆锥的高为2,底面半径为1,则球O的表面积为________.12.“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.答案和解析1.【答案】解:∵SA⊥平面ABC,AB⊥BC,∴四面体S−ABC的外接球半径等于以长宽高分别SA,AB,BC三边长的长方体的外接球的半径,∵SA=AB=1,BC=√2,∴2R=√SA2+AB2+BC2=2,∴球O的表面积S=4πR2=4π.2.【答案】【解析】【分析】本题考查了几何体的外接球、几何体外接球的体积计算.【解答】过点A,B,C,D作球O的截面如图1,设AB中点为O1,连接O1C,O1D,则CD=//O1A,所以四边形ADCO1平行四边形,所以O1C=1,同理O1D=1,所以O1A=O1B=O1C=O1D,所以O1是等腰梯形ABCD的外心,过S,A,B作球O的截面如图2,设BS的中点为O,连接O1O,OA,则O1O//SA,所以O1O⊥平面ABCD,所以OA=OB=OC=OD,又SA⊥AB,所以OA=OS,所以点O是四棱锥S−ABCD的外接球球心,OA为四棱锥S−ABCD外接球的半径,在中,AB=SA=2,∴OA=12BS=√2.3.【答案】解:(1)底面正三角形的中心到一边的距离为13×√32×2√6=√2,则正棱锥侧面的斜高为√12+(√2)2=√3,所以S侧=3×12×2√6×√3=9√2,所以S表=S侧+S底=9√2+12×√32×(2√6)2=9√2+6√3.(2)如图,设正三棱锥P−ABC的内切球球心为O,连结OP,OA,OB,OC,则O点到三棱锥的四个面的距离都为球的半径r,所以V P−ABC=V O−PAB+V O−PBC+V O−PAC+V O−ABC=13S侧·r+13S△ABC·r=13S表·r=(3√2+2√3)r.又V P−ABC=13×12×√32×(2√6)2×1=2√3,所以(3√2+2√3)r=2√3,即,所以,.4.【答案】解:∵正六边形的周长为3,得边长为12,故其主对角线为1,从而球的直径2R=√(√3)2+12=2,∴R=1,∴球的体积.5.【答案】16π【解析】解:如图,正四棱锥P−ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,∴PO⊥底面ABCD,PO=R,S ABCD=2R2,VP−ABCD=163,所以13⋅2R2⋅R =163,解得:R =2,球O 的表面积:S =4πR 2=16π,故答案为:16π6.【答案】5π解:根据题意可知三棱锥B −ACD 的三条侧棱BD ,DC ,DA 两两互相垂直, 所以它的外接球就是它扩展为长方体的外接球,因为长方体的对角线的长为√1+1+√32=√5,所以球的半径为√52,所以三棱锥B −ACD 的外接球的表面积为4π×(√52)2=5π.故答案为5π.7.【答案】4π3解在四棱锥EPCD 中外接球球心为O , ∵已知PC =√CD 2+PD 2=√2+12=√3, 设外接球半径为x 则O 到P 、E 距离相等 可得:(x −12)2+(√32)2=x 2解得:x =1∴四棱锥P −ABCD 外接球的体积是43πx 3=4π38.【答案】28π3解:直三棱ABC −A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =60°,如图,连接上下底面中心,O 为PQ 的中点,OP ⊥平面ABC ,则球的半径为OA ,由题意OP =1,AP =2√33,∴OA =√1+43=√73,所以球的表面积为:4πR 2=283π9.【答案】64√23π解:将三棱锥补全成三棱柱,则球心到底面的距离为DC2=2,又在△ABC 中,由正弦定理可知,2sin30°=2R =4,所以外接圆半径R =2, 所以由圆的截面性质可知,球的半径R′=√22+22=2√2,所以三棱锥S −ABC 外接球的体积,故答案为64√2π3. 10.【答案】44π解:设球心到平面ABC 的距离为d ,球的半径为r ,由题意得,V O−ABC =13×12×2×2×d =2,解得d =3,∵直角△ABC ,AB =AC =2,∴BC =2√2,∴r =√d 2+(BC2)2=√32+(√2)2=√11, ∴球的表面积为4πr 2=44π.故答案为44π.11.【答案】25π4解:设球的半径为R ,则OA =2−R ,则R 2=(2−R )2+1,解得R =54,则球O 的表面积为4πR 2=4π×(54)2=25π412.【答案】解:如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4−r)2+(√2)2=r 2,解得r =94, 则球O 的体积V 球=43πr 3=43π×(94)3=243π16.。
高考数学中的内切球和外接球问题---专题复习
高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。
多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。
解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。
多面体外接球半径的求法在解题中往往起到至关重要的作用。
一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。
解析:要求球的表面积,只需知道球的半径。
由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。
故表面积为27π。
例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。
由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。
2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为√14,故球的表面积为14π。
例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。
3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。
由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。
球
内切球外接球习题课1. (2011全国卷2)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.2.【2017年新课标II 第15题】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为3.【2017年天津卷第11题】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为4.【2017年新课标I 卷第16题】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.5.(2013课标全国Ⅱ,文15)已知正四棱锥O -ABCD 的体积为2,则以O 为球心,OA 为半径的球的表面积为__________..6.(2012全国卷2)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A)π6 (B)π34 (C)π64 (D)π367.(2015全国卷2)已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A. B. C. D.8.(2016全国卷2)平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABA 1B 1=n ,则m 、n 所成角的正弦值为( )A.B. C. D.9..(2016全国卷2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A.12πB.πC.8πD.4πB A ,O ︒=∠90AOBC ABC O -O π36π64π144π256。
立体几何内切球与外接球练习(含答案)-题型全面
几何体与球的切接1.已知侧棱与底面垂直的三棱柱ABC−A1B1C1满足AA1=2AB=2BC=4,∠ABC=90∘,则其外接球的表面积为______.2.正四棱锥P−ABCD的侧棱和底面边长都等于2√2,则它的外接球的表面积是()A. 16πB. 64πC. 16π3D. 64π33、在△ABC中,AB=8,BC=6,AC=10,P为△ABC外一点,满足PA=PB=PC= 5√5,则三棱锥P−ABC的外接球的半径为______.4、如图所示,在三棱锥P−ABC中,PA⊥底面ABC,AC=1,AB=3,BC=√7,PA=√63,则该三棱锥外接球的表面积为______.5.已知正四面体的棱长为4,则此四面体的外接球的表面积是( )A. 24πB. 18πC. 12πD.6π6、已知四棱锥的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,ΔPAD为正三角形,AB=2AD=4,则球O的表面积为( )A. 56π3B. 64π3C. 24πD. 80π37.三棱锥P−ABC的一条棱长为m,其余棱长均为2,当三棱锥P−ABC的体积最大时,它的外接球的表面积为()A. 21π4B. 20π3C. 5π4D. 5π38、已知三棱锥S−ABC的三条侧棱SA.SB.SC两两互相垂直,且AC=√13,此三棱锥的外接球的表面积为14π,设AB=m,BC=n,则m+n的最大值为()A. √30B. 4√2C. √35D. 3√59.在正三棱锥S−ABC中,M,N分别是SC,BC的中点,且MN⊥AM,若侧棱SA=2√2,则正三棱锥S−ABC外接球的体积是()A. 8√6πB. 12πC. 24πD. 4√6π10.已知三棱锥D−ABC的体积为2,△ABC是边长为2的等边三角形,且三棱锥D−ABC的外接球的球心O恰好是CD的中点,则球O的表面积为A. 52π3B. 40π3C. 25π3D. 24π11.在三棱锥A−SBC中,AB=√10,∠ASC=∠BSC=π4,AC=AS,BC=BS,若该三棱锥的体积为√153,则三棱锥S−ABC外接球的体积为A. πB. 4√3πC. √5πD. π312、如图,求一个棱长为√2的正四面体的体积,可以看成一个棱长为1的正方体截去四个角后得到,类比这种方法,一个三对棱长相等的四面体ABCD ,其三对棱长分别为AB =CD =√5,AD =BC =√13,AC =BD =√10,则此四面体的体积为_______13.三棱锥中成异面直线的一对棱称为相对的棱,已知三棱锥A −BCD 中三组相对的棱分别相等,AB =5,BC =√41,且所有顶点都在一个半径为5√22的球面上,则三棱锥A −BCD 的体积为________.14、已知如图所示的几何体是由一个半球与一个圆锥组合而成的,其中半球的大圆面与圆锥的底面重合,且圆锥的母线长与底面直径均为2,若在该几何体内部放入一球,则此球半径的最大值为( )A. 1B. √22C. √3+13D. √3+1215、已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为边长为2的等边三角形,内有一个体积为V 的球,则V 的最大值为( )A. 4 π 81B. C. D.1、【答案】24π解:由题意,直三棱柱ABC −A 1B 1C 1的底面ABC 为等腰直角三角形, 把直三棱柱ABC −A 1B 1C 1补成正四棱柱, 则正四棱柱的体对角线是其外接球的直径,所以外接球半径为R =√4+4+162=√6,表面积为S =4π⋅6=24π.故答案为24π. 2.【答案】A解:如图,设正四棱锥底面的中心为O 1,设外接球的球心为O , 则O 在正三棱锥的高PO 上. 在直角三角形ABC 中,AC =√2AB =√2×2√2=4,AO 1=2,则高PO 1=√AP 2−AO 12=√(2√2)2−22=√8−4=√4=2,则OO 1=PO 1−R =2−R ,OA =R ,在直角三角形AO 1O 中,R 2=(2−R)2+22,解得R =2,即O 与O 1重合, 即正四棱锥外接球的球心是它的底面的中心O 1,且球半径R =2, 球的表面积S =4πr 2=16π 3、【答案】52解:在△ABC 中,AB =8,BC =6,AC =10,所以AB 2+BC 2=AC 2, P 为△ABC 外一点,满足PA =PB =PC =5√5,则PD ⊥平面ABC , 球心O 为PD 上一点,如图所示:所以:PD =√(PA)2−(PD)2=10, 设球的半径为R ,所以R 2=52+(10−R)2, 解得:R =52.故答案为:52 4、【答案】10π解:在底面△ABC 中,AC =b =1,AB =c =3,BC =a =√7, 由余弦定理,可得;cosA =b 2+c 2−a 22bc =1+9−72×1×3=12,即A =60°,由正弦定理可得,2r =asinA =√7√32,∴r =√213.∵PA ⊥底面ABC ,∴球心与圆心的距离为12AP =√66,∵球心与圆心的接线垂直,构成直角三角形,∴R 2=r 2+(√66)2,∴R 2=156,该三棱锥外接球的表面积S =4πR 2=10π.故答案为10π.5.【答案】A 解:如图所示∵正四面体A −BCD ,棱长AD =4, ∴此三棱锥一定可以放在正方体中, 将正四面体补成一个正方体,则正方体的棱长为2√2,正方体的对角线长为2√6,∵正四面体的外接球的直径为正方体的对角线长,外接球的半径为:√6, ∴外接球的表面积的值为4π·(√6)2=24π. 6、【答案】B解:令△PAD 所在圆的圆心为O 1,则圆O 1的半径,因为平面PAD ⊥底面ABCD , 所以OO 1=12AB =2, 所以球O 的半径R =(2√33)=4√3,所以球O 的表面积=4πR 2=64π3.7、【答案】B解:由题意,三棱锥P −ABC 的一条棱长为m ,其余棱长均为2,可看成是菱形PABC , 即PA =PC =AB =AC =BC =2,PD =m .以AC 对折可得;当面ACP ⊥ABC 时,可得三棱锥P −ABC 的体积最大, 此时高为√3.底面为△ABC ,其外接圆半径r =√3,设外接球的半径为R ,球心与圆心的距离为x ,可得:(√3−x)2+(√33)2=R 2……①x 2+r 2=R 2……② 由①②解得:R 2=53 外接球的表面积S =4πR 2=20π3.8、【答案】A解:三棱锥S −ABC 的三条侧棱SA.SB.SC 两两互相垂直, 则此三棱锥的外接球为以SA ,SB ,SC 为棱的长方体的外接球,设SA =a ,SB =b ,SC =c ,外接球的半径为r ,则a 2+b 2+c 2=(2r )2=4r 2, 又因为外接球的表面积为,所以,解得r 2=72,所以a 2+b 2+c 2=4r 2=14,则{a 2+b 2=m 2b 2+c 2=n 2a 2+c 2=(√13)2,化简整理可得:a 2+b 2+c 2=12(m 2+n 2+13)=14, 则m 2+n 2=15,所以由基本不等式的性质:当m >0,n >0时,(m+n 2)2≤m 2+n 22=152,所以m +n ≤30,当且仅当m =n 时,取等号, 故选A . 9、【答案】A解:∵M ,N 分别是棱SC 、BC 的中点, ∴MN//SB ,MN ⊥AM ,可得SB ⊥AM , 由正三棱锥的性质可得SB ⊥AC , ∴SB ⊥平面SAC ⇒SB ⊥SA 且SB ⊥AC , ∵三棱锥S −ABC 是正三棱锥,∴SA 、SB 、SC 三条侧棱两两互相垂直.侧棱SA =2√2, ∴正三棱锥S −ABC 的外接球的直径为:2R =√(2√2)2+(2√2)2+(2√2)2=2√6,R =√6, 故正三棱锥S −ABC 外接球的体积是43πR 3=8√6π, 10、【答案】A解:设球O 的半径为R ,球心O 到平面ABC 的距离为d , 由三棱锥D −ABC 的外接球的球心O 恰好是CD 的中点, 得V D−ABC =2V O−ABC =23×12×22×√32d =2,解得d =√3,所以R 2=(√3)2+(2√33)2=133,所以球O 的表面积为4πR 2=52π3,11、【答案】B解:如图,设SC 的中点为O ,AB 的中点为D ,连接OA ,OB ,OD . 因为,AC =AS ,BC =BS ,所以∠SAC =SBC =90°,所以OA =OB =OC =OS =R . 又OD ⊥AB ,且AB =√10,所以AD =DB =√102,OD =√R 2−52,则S ▵OAB =12⋅AB ⋅OD =12√10R 2−25.SC ⊥OA,SC ⊥OB,OA ∩OB =O ,则SC ⊥平面OAB ,所以V A−SBC =13×12√10R 2−25×2R =√153,解得R =√3.所以外接球的体积V =4π3⋅(√3)3=4√3π.11、【答案】B解:如图,设SC 的中点为O ,AB 的中点为D ,连接OA ,OB ,OD .因为,AC =AS ,BC =BS ,所以∠SAC =SBC =90°, 所以OA =OB =OC =OS =R .又OD ⊥AB ,且AB =√10,所以AD =DB =√102,OD =√R 2−52,则S ▵OAB =12⋅AB ⋅OD =12√10R 2−25.SC ⊥OA,SC ⊥OB,OA ∩OB =O ,则SC ⊥平面OAB , 所以V A−SBC =13×12√10R 2−25×2R =√153,解得R =√3.所以外接球的体积V =4π3⋅(√3)3=4√3π.12.【答案】2解:设四面体ABCD 所在长方体的棱长分别为a ,b ,c , 则{a 2+b 2=5a 2+c 2=13b 2+c 2=10,解得{a 2=4b 2=1c 2=9, ∴四面体的体积V =abc −13×12abc ×4=13abc =13√a 2b 2c 2=213.【答案】20解:由题意, 构造长方体,其面上的对角线构成三棱锥A −BCD , 设长方体的长,宽,高分别为a ,b ,c ,则{2+b 2=25a 2+c 2=41a 2+b 2+c 2=50,解得a =4,b =3,c =5. 所以三棱锥A −BCD 的体积V =4×3×5−4×13×12×4×3×5=20. 14、【答案】C解:当球与圆锥母线相切,且与半球球面相切时,球的半径最大,其正投影如图,设放入球的半径为r ,则(√3+1)−r =2r , 解得r =√3+13,故选C .15、【答案】A 解:如图所示:设底面三角形ABC 的中心为G , 由△ABC 是边长为2的正三角形, 得AG =23√22−12=2√33,又PG =1,∴PA =(2√33)=√213,即三棱锥侧棱长为√213,∴斜面底边上的高为ℎ=2√33,则一个侧面三角形的面积为12×2×2√33=2√33,设三棱锥内切球的半径为r ,则13×12×2×√3×1=(13×12×2×√3+3×13×12×2×2√33)r ,解得r =13,∴V 的最大值为43π×(13)3=4π81.故选A .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内切球,外接球
球内接长方体的对角线是球的直径。
正四面体(棱长为a )的外接球半径R 与内切球半径r 之比为R :r =3:1。
外接球半径:a R 46=。
内切球半径:a r 126= 结论:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.
正四面体的外接球问题:已知正四面体A BCD -,H 为底面的中心,O 为外接球的球心,设棱长为a ,外接球半径为R ,内切球半径为r ,试求R. 方法一:易知R+r=AH=
63
a ,由等积法得:( 可求外接球半径和内切球半径)
A BCD O ABC O BCD O CDA O DA
B V V V V V -----=+++ 所以:
11433BCD BCD AH S r S ∆∆⋅=⋅⋅ 故14r AH =,34
R AH = 所以 64
R a =.
方法二:如图AHM BNM ∆≅∆所
HM ON AM OA =,即13r R =,又由6可得 64R a =
. 方法三: 如图设延长AH 交球面上一点K,则AK=2R,在直角三角形ABK 中由射
影定理得2
AB AH AK
=⋅即2
6
2 3
a a R
=⋅故得
6
4
R a =.
方法四:如图正四面体可补成一个边长为
2
2
a的正方体,显然正方体的外接球
即为正四面体的外接球,而
2
3()2
2
a R
=故可得
6
4
R a
=.
四面体的内切球问题:关键是抓住球心到四面体的每个面的距离等于球的半径来找等量关系.
【例6】求棱长为a的正四面体内切球的体积.
练习
1.(球内接正四面体问题)(2003年江苏卷第12题)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()
ππππ6)33)4)3)D C B A
方法一:将这个正四面体放入一个正方体中,再将这个正方体放入球中与球相外接。
因为正方体的对角线就是球的直径,而正四面体的棱就是正方体的侧面对角线。
所以,设正方体的棱长为a ,则有
2a =2,a =1,.3,2
3,332π==∴==∴球S R a R 故选A 。
此题是典型的考查转化、化归思想。
方法二:画图
3.(球内接正四面体问题) 如果三棱锥的每条侧棱长和底面边长都是a ,那么这个三棱锥的外接球的体积是( A )
(A )
386a π (B )32762a π (C )3968a π (D )36
6a π
4.(球内接正方体问题)(06年福建卷)已知正方体的八个顶点都在球面上,且球的体积为
323π,则正方体的棱长为334。
5.(球内接棱柱问题) 若一个底面边长为2的正六棱柱的所有顶点都在一个平面上,则此球的体积为π2
9.
6. (球内接长方体问题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为14π。
7. (正三棱柱内切球、外接球问题)一个正三棱柱恰好有一个内切球(球与三棱柱的两个底面和三个侧面都相切)和一个外接球(球经过三棱柱的6个顶点),则此内切球与外接球表面积之比为 1∶5 。
8.(球内接正三棱锥问题)在正三棱锥S —ABC 中,侧棱SC 上侧面SAB ,侧棱SC=2 ,
9.(球内接正四棱锥问题)半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.33
2R V =
10.(正三棱锥球内切问题) 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.26-=R
说明:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.。