高中数学 立体几何 4.高考数学中的内切球和外接球问题
如何求解立体几何形的内切球和外接球
如何求解立体几何形的内切球和外接球立体几何形的内切球和外接球是数学和几何学中常见的概念。
内切球是指一个球体正好与该立体几何形相切于内部的球,而外接球则是指一个球体正好与该几何形相切于外部的球。
解决这个问题需要一些几何知识和计算技巧。
一、立方体首先,让我们以立方体为例,来讨论如何求解其内切球和外接球。
立方体是一个六个面都是正方形的立体,所有的边长相等。
立方体的内切球和外接球的半径可以通过简单的计算得到。
1. 内切球内切球的半径等于立方体的半边长。
设立方体的边长为a,则内切球的半径r等于a/2。
这是因为内切球的半径与立方体的棱长之比为1:2。
2. 外接球外接球是一个球体,它与立方体的八个顶点相切。
设立方体的边长为a,则外接球的半径R等于立方体对角线的一半。
根据勾股定理,立方体的对角线的长度d等于a√3。
因此,外接球的半径R等于d/2,即R等于a√3/2。
二、圆柱体对于圆柱体来说,内切球和外接球的求解稍微复杂一些。
1. 内切球内切球的半径等于圆柱体的半径。
设圆柱的半径为r,高度为h,则内切球的半径r'等于r。
2. 外接球外接球是一个球体,它与圆柱体的底面相切。
设圆柱的半径为r,高度为h,则外接球的半径R等于圆柱体的斜高。
根据勾股定理,圆柱体的斜高等于√(h^2 + r^2)。
因此,外接球的半径R等于√(h^2 + r^2)。
三、球体球体的内切球和外接球的求解相对简单。
1. 内切球球体的内切球的半径等于球体的半径。
设球体的半径为R,内切球的半径r等于R。
2. 外接球外接球是一个球体,它与球体的表面相切。
设球体的半径为R,则外接球的半径R'等于2R。
结论:通过以上讨论,我们可以得出以下结论:1. 对于立方体来说,内切球的半径等于边长的一半,外接球的半径等于对角线长的一半。
2. 对于圆柱体来说,内切球的半径等于半径,外接球的半径等于斜高。
3. 对于球体来说,内切球的半径等于半径,外接球的半径等于半径的两倍。
高考数学专题—立体几何(外接球问题)
高考数学专题—立体几何(外接球与内切球)基础知识点:(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.(5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高.球的问题常见方法:(1)确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径. (2)球与几种特殊几何体的关系:①长方体内接于球,则球的直径是长方体的体对角线长; ②正四面体的外接球与内切球的球心重合,且半径之比为3∶1;③直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;④球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径; ⑤球与圆台的底面和侧面均相切,则球的直径等于圆台的高.(3)与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.(4)有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离d 与球的半径R 及截面圆的半径r 之间满足关系式:d =.常见题型:1、与长方体与正方体有关的外接球类型——寻找球心为关键例1、如图所示,在长方体中,14cm,2cm,3cm,AB AD AA ===则在长方体表面上连接1A C 、两点的所有曲线长度的最小值为__________.【解析】将长方体的面分别展开平铺,当四边形11AA D D 和四边形11DD C C 在同一平面内时,最小距离为四边形11AAC C =;当四边形11AA B B 和四边形11BB C C 在同一平面内时,最小距离为四边形11AAC C 的对角线,长=;四边形ABCD 和四边形11CDD C 在同一平面内时,最小距离为四边形11ABC D=. 例2、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________. 【答案】92π【解析】设正方体的边长为a ,则2618a a =⇒=其外接球直径为23R ==,故这个球的体积34π3V R ==4279ππ382⨯=. 【名师点睛】求多面体的外接球的表面积或体积的问题常用的方法有:①三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;②直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;③如果多面体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点即球心. 例3、已知各顶点都在同一球面上的正四棱柱的高为,体积为,则这个球的表面积是( ) A . B . C . D .【答案】C【解析】,,,故选C .例4、如图,长方体1111ABCD A B C D -的三个面的对角线1AD ,1A B ,AC 的长分别是3,2,3,则该长方体的外接球的表面积为__________.【答案】11π41616π20π24π32π162==h a V 2=a 24164442222=++=++=h a a R 24πS =2.补形法(补成长方体或正方体—棱锥处理方法)例5、若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 . 【答案】【解析】,.例6、已知正四棱锥(底面四边形是正方形,顶点P 在底面的射影是底面的中心),则此球的体积为( ) A . B. C . D .【答案】C【解析】如图,设正方形的中点为,正四棱锥的外接球心为,图2图339π933342=++=R 24π9πS R ==P ABCD -ABCD 50318π36πABCD E P ABCD -O EA ∴=正四棱锥的体积为,, 则,,在中由勾股定理可得:,解得,,故选C .例7、在三棱锥中,,,,,则三棱锥外接球的体积的最小值为_____.【答案】【解析】如图所示,三棱锥的外接圆即为长方体的外接圆,外接圆的直径为长方体的体对角线,设,那么,,所以.由题意,体积的最小值即为最小,时,的最小值为,所以半径为,故体积的最小值为。
立体几何外接球和内切球十大题型
立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。
1. 求立方体的外接球和内切球的半径。
外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。
2. 求正方体的外接球和内切球的半径。
外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。
3. 求圆柱体的外接球和内切球的半径。
外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。
4. 求圆锥的外接球和内切球的半径。
外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。
5. 求球的外接球和内切球的半径。
外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。
6. 求棱锥的外接球和内切球的半径。
外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。
7. 求棱柱的外接球和内切球的半径。
外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。
8. 求四面体的外接球和内切球的半径。
外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。
9. 求正六面体的外接球和内切球的半径。
外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。
10. 求正八面体的外接球和内切球的半径。
外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。
以上是关于立体几何中外接球和内切球的十个常见题型及其解答。
希望能对你有所帮助。
高考数学 核心考点 外接球与内切球的计算
A微专题 与球相关的外接与内切问题知识梳理1、若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球,计算外接球的两大方法:构造法、球心定位法。
2、若一个多面体的各面都与内部的一个球相切,那么这个球叫做这个多面体的内切球。
3、球的性质:球心到截面的距离d 与球的半径R 及截面圆的半径r 的关系:222dr R +=题型归纳方法一 构造法(补形法)处理外接球问题事实:正方体或长方体的外接球的球心是其体对角线的中点. 类型一:三棱相互垂直型【例1】如图所示,设A ,B ,C ,D 为球O 上四点,AB ,AC ,AD 两两垂直,且AB =AC =3, 若AD =R(R 为球O 的半径),则球O 的表面积为( )A .πB .2πC .4πD .8π【解析】因为AB ,AC ,AD 两两垂直,所以以AB ,AC ,AD 为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB =AC =3,所以AE =6,AD =R ,DE =2R ,则有R 2+6=(2R)2,解得R =2,所以球的表面积S =4πR 2=8π.故选D 。
【点评】当一三棱锥的三侧棱a 、b 、c 两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解,长方体的外接球即为该三棱锥的外接球,满足2222)2(c b a R ++=关系式。
变式1:如图所示,已知三棱锥A-BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD , BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π【解析】由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A-BCD 可以补成以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R)2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π.故选A 。
几何体的外接球与内切球的有关问题
几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心球的定义:在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论. 结论1:正方体或长方体的外接球的球心其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得. (以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜3R a=222a b c R ++=BC边的一半就是其外接球的半径.(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1.可构造正方体的类型:①正四面体:棱长对应正方体的面对角线.① ② ③②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长. ③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线. 2.可构造长方体和正方体的类型①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;③有三个面是直角三角形的三棱锥;①与②与③ ④④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2.所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’A BC DA BCPABCP的距离为d,则有R2=r2+d 2.(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(h r R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合. 结论4:基本方法:构造三角形利用相似比和勾股定理. 结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. (二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31所以ABCP ABCP S V r --=3内切球一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SV r 3=. (三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r ,内切球的半径R ,则R =r . (2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记圆锥的底面圆的半径r ,内切球的半径R ,由于在△ABC 中,所以CS R 2=.备注:1.三角形内切圆的半径S S S S AO BAO C BO C ABC ∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===. ①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.4. 正四面体的内切球与外接球的半径之比正四面体的内切球与外接球的两个球心“二心合一”. 设正四面体A-BCD 的棱长为a ,内切球半径为r ,外接球 半径为R ,则OA=OB=R ,OE=r.∵底面△BCD 为正三角形,∴BE=a 33 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46= ∴1:3:=r R ,即球心O 为正四面体高h 的四等分点. 5.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322==. 在O D A Rt 11∆中,得22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=,a R 1251=∴因此1:5:21=R R .。
高考数学立体几何体的外接球与内切球常见题型
高考数学立体几何体的外接球与内切球常见题型介绍在高考数学中,立体几何是一个重要的考点。
其中,经常涉及到求解立体几何体的外接球和内切球的问题。
本文将介绍几种常见的题型以及解题方法,帮助考生更好地理解和应对这类题目。
以下是具体内容。
外接球的题型题型1:求立体几何体的外接球的半径或直径这类题型要求求解一个给定立体几何体的外接球的半径或直径。
解题的关键是找到立体几何体的特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 根据立体几何体的几何关系,得出外接球与立体几何体的关系。
3. 利用几何关系,建立方程。
4. 求解方程,得到外接球的半径或直径。
题型2:求多个立体几何体的共同外接球的半径或直径这类题型要求求解多个给定立体几何体的共同外接球的半径或直径。
解题的关键是找到多个立体几何体之间的共同特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 找到多个立体几何体之间的共同特性和几何关系。
3. 根据几何关系,建立方程。
4. 求解方程,得到共同外接球的半径或直径。
内切球的题型题型1:求立体几何体的内切球的半径或直径这类题型要求求解一个给定立体几何体的内切球的半径或直径。
解题的关键是找到立体几何体的特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 根据立体几何体的几何关系,得出内切球与立体几何体的关系。
3. 利用几何关系,建立方程。
4. 求解方程,得到内切球的半径或直径。
题型2:求多个立体几何体的共同内切球的半径或直径这类题型要求求解多个给定立体几何体的共同内切球的半径或直径。
解题的关键是找到多个立体几何体之间的共同特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 找到多个立体几何体之间的共同特性和几何关系。
3. 根据几何关系,建立方程。
4. 求解方程,得到共同内切球的半径或直径。
总结本文介绍了高考数学立体几何体的外接球和内切球常见题型,并给出了解题的步骤和方法。
高中数学中的内切球和外接球问题
高中数学中立体几何的内切球和外接球问题一、 有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936 ⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.练习:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。
立体几何中的“内切”与“外接”问题的探究(完美版)
立体几何中的“内切”与“外接”问题的探究(完美版)探究立体几何中“内切”与“外接”问题在立体几何中,我们经常遇到“内切”和“外接”的问题。
在研究这些问题之前,我们需要先明确球心的定义。
如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球球心。
根据上述性质,我们可以得出以下多面体外接球的结论:1.正方体或长方体的外接球的球心是其体对角线的中点。
2.正棱柱的外接球的球心是上下底面中心的连线的中点。
3.直三棱柱的外接球的球心是上下底面三角形外心的连线的中点。
4.正棱锥的外接球的球心在其高上,具体位置可通过计算得到。
5.若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
接下来我们来探究一下正方体和长方体的外接球的问题。
根据结论1,正方体或长方体的外接球的球心是其体对角线的中点。
我们可以利用构造法(补形法)来解决这类问题。
例如,对于一个长方体,如果从一个顶点出发的三条棱长分别为a、b、c,则体对角线长为√(a^2+b^2+c^2),几何体的外接球直径2R为体对角线长l,因此R=√(a^2+b^2+c^2)/2.举个例子,如果一个三棱锥的三个侧面两两垂直,且侧棱长均为3,则可以将这个三棱锥补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球。
设其外接球的半径为R,则有(2R)^2=3^2+3^2+3^2=27.因此,其外接球的表面积为S=4πR^2=36π。
另外,对于一个矩形ABCD,如果AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为(125π)/(1296)。
最后,如果出现正四面体外接球的问题,我们可以利用构造法(补形法),联系正方体。
一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为多少?解析:由于所有棱长都相等,所以可以构造一个正方体,再寻找棱长相等的四面体。
如图2所示,四面体ABDE满足条件,即AB=AD=AE=BD=DE=BE=2.由此可求得正方体的棱长为1,对角线为$\sqrt{3}$,从而外接球的直径也为$\sqrt{3}$,所以此球的表面积为$4\pi$,故选B。
立体几何外接球及内切球问题
立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。
根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。
高考数学:几何体中的外接球与内切球解题捷径
高考数学:几何体中的外接球与内切球解题捷径
解惑
同学们在研究空间几何体的外接球与内切球时,常常因缺乏空间想象能力而感到束手无策.事实上,有时无需画出球体,只需找出球心和半径即可,或者画出球的大圆转化为平面几何问题.本文举几个简单的例子,希望给同学们一些帮助。
一、外接球
在考查几何体的外接球时,常常以正方体、长方体、三棱锥为基本模型。
二、内切球
空间几何体的内切球问题,常常转化为球心到平面的距离为球的半径解答。
立体几何中内切球和外接球问题
立体几何中内切球和外接球问题题目:探索立体几何中的内切球和外接球问题在立体几何中,内切球和外接球问题是一个引人深思的话题。
通过对这个主题的深入探讨,我们可以更好地理解立体几何的原理和性质。
本文将围绕内切球和外接球问题展开讨论,从基本概念到数学推导,深入剖析这一有趣而重要的话题。
1. 内切球和外接球的定义在立体几何中,内切球和外接球分别是指一个球体在一个立体图形内部与其接触,以及一个球体在一个立体图形外部与其接触。
这两个概念可以应用在各种几何图形中,如圆柱体、圆锥体甚至更为复杂的多面体。
内切球和外接球不仅在几何形状中具有重要意义,还在工程学、艺术设计等领域有着广泛的应用价值。
2. 内切球和外接球的性质内切球和外接球在几何中具有许多有趣的性质。
内切球和外接球的半径之比有一定的规律,可以通过数学推导得出。
内切球和外接球的位置关系也有一定的特点,可以通过几何推理进行证明。
这些性质的深入理解有助于我们更好地应用立体几何知识解决实际问题。
3. 内切球和外接球的数学推导从数学角度来看,内切球和外接球问题涉及到许多重要的数学定理和方法。
通过数学推导,我们可以得到内切球和外接球的半径之比、位置关系等具体数学表达式。
这些推导过程需要运用到圆、球体的性质,以及立体几何的相关知识,是一个不可或缺的数学推理过程。
4. 个人观点和理解在我看来,内切球和外接球问题是立体几何中的一个精彩而复杂的主题。
通过对这个问题的探讨,我深刻地感受到数学的美妙和奥妙。
数学不仅是一门实用的科学,更是一个充满乐趣和挑战的学科。
通过不断地学习和探索,我们可以更好地理解立体几何的原理和应用,为我们的工程、设计和科学研究提供有力的支持。
内切球和外接球问题是立体几何中的一个重要而有趣的话题。
通过深入探讨这个主题,我们可以更好地理解立体几何的原理和应用,为我们的学习和工作带来更多的乐趣和启发。
希望本文的内容能够对您有所帮助,也希望您能够对立体几何有着更深入的理解和探索。
高中数学立体几何中的外接球与内切球问题
高中数学立体几何中的外接球与内切球问题
在高中数学的立体几何中,外接球与内切球问题是一个重要的探讨点。
这个问
题涉及到如何在一个给定的立体图形中,找到一个外切于该图形的球和一个内切于该图形的球。
首先,让我们来看外接球问题。
在立体几何中,给定一个多面体,如正方体或
正四面体,我们想找到一个球,使得该球恰好外接于该多面体的每一个面上。
所谓外接,即球与每一个面都有且只有一个公共点,这个点是每个面的外接圆心。
以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的外
接圆心恰好位于该正方形的中心点。
因此,我们可以得出结论:正方体的外接球的圆心与该正方体的每个面的外接圆心重合。
接下来,让我们来看内切球问题。
在立体几何中,给定一个多面体,如正方体
或正四面体,我们想找到一个球,使得该球恰好内切于该多面体的每一个面上。
所谓内切,即球与每一个面都有且只有一个公共点,这个点是每个面的内切圆心。
以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的内
切圆心恰好位于该正方形的中心点。
因此,我们可以得出结论:正方体的内切球的圆心与该正方体的每个面的内切圆心重合。
总结起来,对于任何一个给定的多面体,我们可以找到一个外接球和一个内切球。
外接球的圆心与每个面的外接圆心重合,而内切球的圆心与每个面的内切圆心重合。
这个问题在高中数学的立体几何中十分重要,理解了外接球和内切球的性质,可以帮助我们更好地理解和解决相关的几何问题。
立体几何中的外接球内切球棱切球问题
立体几何中的外接球内切球棱切球问题1. 概述在立体几何中,外接球、内切球和棱切球是常见的几何问题。
它们在工程、建筑、数学等领域都有重要的应用。
本文将围绕外接球、内切球和棱切球展开讨论,探究它们的性质和相关问题。
2. 外接球的定义和性质外接球是指一个球与一个或多个其他物体外接,外接球的半径等于所外接物体相应部分的长度,在立体几何中有着重要的应用。
外接球的性质1)外接球的圆心在被外接物体向外伸出的法线上。
2)外接球的半径等于被外接物体的相应部分的长度。
3)对于凸体而言,外接球存在且唯一。
3. 内切球的定义和性质内切球是指一个球恰好与另一个物体相切,内切球在立体几何中也有着重要的应用。
内切球的性质1)内切球的圆心在被内切物体向内伸出的法线上。
2)对于凸体而言,内切球存在且唯一。
3)内切球在不同物体中的位置可能不同,但其存在性是唯一的。
4. 棱切球的定义和性质棱切球是指一个球与多个物体之间棱切的情况,在立体几何中也有着重要的应用。
棱切球的性质1)棱切球的圆心在被棱切物体所在的平面上。
2)对于凸体而言,棱切球存在且唯一。
3)棱切球在不同物体中的位置可能不同,但其存在性是唯一的。
5. 实际应用举例外接、内切和棱切球在实际应用中有着广泛的应用。
比如在建筑工程中,常常需要计算建筑物的外接球、内切球和棱切球,以确定其结构和稳定性。
在数学建模中,外接、内切和棱切球也常常出现,用于解决各种数学问题。
6. 结论外接球、内切球和棱切球是立体几何中重要的概念,它们的性质和应用涉及到广泛的领域。
对这些几何问题的深入研究和应用可以帮助我们更好地理解立体几何的性质,并且为实际问题的解决提供理论支持。
希望本文能够帮助读者更好地理解外接球、内切球和棱切球的相关问题,并且激发更多人对立体几何的兴趣和研究。
外接球、内切球和棱切球作为立体几何中的重要概念,其性质和应用不仅仅局限于几何学。
它们的相关问题还涉及到数学建模、工程设计、建筑结构等领域,对于实际问题的解决提供了理论支持和指导。
高考数学中的内切球和外接球问题---专题复习
高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。
多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。
解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。
多面体外接球半径的求法在解题中往往起到至关重要的作用。
一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。
解析:要求球的表面积,只需知道球的半径。
由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。
故表面积为27π。
例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。
由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。
2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为√14,故球的表面积为14π。
例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。
3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。
由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。
高考数学中的内切球和外接球问题
高考数学中的切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考察的一个热点. 考察学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1假设棱长为3的正方体的顶点都在同一球面上,那么该球的外表积为______________ .例2一个正方体的各顶点均在同一球的球面上,假设该正方体的外表积为24,那么该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,那么此球的外表积为.例4各顶点都在一个球面上的正四棱柱高为4,体积为16,那么这个球的外表积为〔〕.A.16πB.20πC.24πD.32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,那么这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,那么有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 此题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 假设三棱锥的三条侧棱两两垂直,且侧棱长均为3,那么其外接球的外表积是_______________.例3 假设三棱锥的三个侧面两两垂直,且侧棱长均为3,那么其外接球的外表积是 .故其外接球的外表积ππ942==r S .小结:一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,那么就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,那么有2222c b a R ++=. 出现“墙角〞构造利用补形知识,联系长方体。
高中数学立体几何之外接球与内切球问题常见模型归纳(完整版)
外接球问题江西省永丰中学陈保进若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
若一个定点到一个多面体的所有顶点的距离都相等,则这个定点就是该多面体外接球的球心。
以下为常见模型。
1、长方体模型结论:长方体的外接球的球心为其体对角线的中点,直径为体对角线。
公式:2222c b a R ++=(a ,b ,c 为长宽高)补充:以下情况可转化成长方体模型。
①若三棱锥的三条棱PA ,PB ,PC 两两互相垂直(墙角模型),则可在长方体中构造。
2222PC PB P A R ++=②正四面体P -ABC 可在正方体中构造,正方体棱长2=PA a ③若三棱锥的三组对棱两两相等,则可在长方体中构造。
设AC =BP =m ,AP =BC =n ,AB=PC =t ,则⎪⎩⎪⎨⎧=+=+=+222222222t c b n c a m b a ,三式相加,222222)(2t n m c b a ++=++2)2(2222222t n m c b a R ++=++=abc2、直三棱柱模型结论:直三棱柱外接球的球心是上、下底面外心连线的中点,222()2hR r =+r 为底面三角形外接圆的半径,可用正弦定理求,h 为直三棱柱的高。
补充:有一条侧棱垂直底面的三棱锥可补成直三棱柱,如图P -ABC 中,PA ⊥平面ABC ,则可补成直三棱柱PB 1C 1-ABC ,外接球半径公式同上。
提醒:底面具有外接圆的直棱柱才有外接球,比如正棱柱,且球心在上、下底面外心连线的中点,底面无外接圆的直棱柱,以及所有斜棱柱均无外接球。
3、共斜边模型四面体D-ABC 中,DC AD ⊥,BC AB ⊥,AC 为公共的斜边,O 为AC 的中点,则O 为四面体D-ABC 外接球的球心。
4、正棱锥模型外接球的球心在正棱锥的高所在直线上,如图正三棱锥A-BCD 中,作AO 1⊥平面BCD ,则易得BO 1=CO 1=DO 1,所以O 1为△BCD 的外心,设O 为其外接球球心,半径为R ,则BO =AO =R ,设AO 1=h ,BO 1=r ,则由BO 2=BO 12+OO 12,得R 2=r 2+(h-R )2。
立体几何中的外接球与内切球问题
立体几何中的外接球与内切球问题在我们的数学学习中,立体几何是非常重要的一部分。
在立体几何学习中,我们不仅需要掌握各种图形的形状和性质,也需要深入了解这些图形中的各种关系。
其中外接球和内切球是两个非常重要的概念,在立体几何中被广泛使用。
一、外接球外接球是指和一个多面体的所有顶点都相切的球。
在三维空间中,一个正四面体的外接球,就是四面体的四个顶点构成的球。
同理,其他多面体都有一组外接球。
外接球的性质可以帮助我们计算多面体的各种数据。
对于正四面体而言,我们可以得知,外接球的半径和棱长之间的关系为:外接球的半径等于正四面体棱长的一半。
这个特点可以应用于其他多面体中,为我们计算多面体提供更多帮助。
二、内切球内切球是指可以被一个多面体的所有面都切到的球。
在三维空间中,一个正四面体的内切球,就是以正四面体的每个面为切面所构成的球。
同理,其他多面体都有一组内切球。
内切球的性质可以帮助我们更好地了解多面体的各种性质。
对于正四面体而言,我们可以得知,内切球的半径和棱长之间的关系为:内切球的半径等于正四面体棱长的三分之一。
通过内切球的特点,我们可以更好地了解多面体的横截面形状,深入了解多面体的性质。
三、外接球与内切球的应用外接球和内切球在数学学科中非常重要。
在生活中,我们可以看到不少与这两个概念有关的例子。
例如,在搭建玩具拼图时,我们可以注意到玩具拼图中各个构件的外接球和内切球的关系。
同样的,建筑设计和工程规划中也常常涉及到多面体的外接球和内切球问题。
此外,街头艺术品和雕塑等艺术作品中也常常出现多面体和其相应的外接球或内切球。
总之,立体几何中的外接球和内切球是我们不能忽视的重要概念。
它们不仅仅是数学学科中的知识点,也与我们日常生活中的许多方面有着密不可分的关系。
因此,我们应该更加深入了解这两个概念,并将其应用在我们的学习和生活中,从而更好地了解和利用立体几何的基础知识。
专题讲解 立体几何中的外接球与内切球问题(学生版)
专题讲解立体几何中的外接球与内切球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点。
考查学生的空间想象能力以及化归能力。
研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作。
当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径。
球与多面体的关系是高考考查的重点,但同学们又因为缺乏较强的空间想象能力,较难找到解题的切入点和突破口。
解决这类题目是要认真分析图形,明确切点和接点的位置及球心的位置是关键。
常见题型有求对应外接球或内切球半径、表面积、体积或球内接几何体最值等问题。
本章节将对常见的关于内切球和外接球的模型作一总结,并附有针对性训练题,供教师和学生参考使用。
一.常见模型归纳1. 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决。
外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a 2+b2+c2。
),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例1】已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,P A=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体P ACD的四个顶点都在同一球面上,则该球的体积为________.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型【例2】已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A .68πB .64πC .62πD .6π【变式练习1】在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π【变式练习2】在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点, 若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.2. 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决。
最新高考数学中的内切球和外接球问题
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h ∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学中的内切球和外接球问题一、 有关外接球的问题 一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2222c b a R ++=练习:在四面体ABCD中,共顶点的三条棱两两垂直,其长度分别为3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。
球的表面积为ππ1642==RS例6一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A. π3B. π4C. π33 D. π6例7 已知球O的面上四点A、B、C、D,ABCDA平面⊥,BCAB⊥,3===BCABDA,则球O的体积等于.解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于ABCDA平面⊥,BCAB⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为3===BCABDA,则此长方体为正方体,所以CD长即为外接球的直径,利用直角三角形解出3=CD.故球O的体积等于π29.(如图4)AO 图4C BO图52、例8已知点A、B、C、D在同一个球面上,BCDAB平面⊥,BCDC⊥,若8,132,6===ADACAB,则球的体积是解析:首先可联想到例7,构造下面的长方体,于是AD为球的直径,O为球心,4==OCOB为半径,要求B、C两点间的球面距离,只要求出BOC∠即可,在ABCRt∆中,求出4=BC,所以 60=∠BOC,故B、C两点间的球面距离是π34.(如图5)本文章在给出图形的情况下解决球心位置、半径大小的问题。
三.多面体几何性质法例.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.π16 B.π20 C.π24 D.π32.小结:本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.四.寻求轴截面圆半径法例正四棱锥ABCDS-的底面边长和各侧棱长都为2,点DCBAS,,,,都在同一球面上,则此球的体积为解:设正四棱锥的底面中心为1O,外接球的球心为O,如图1所示.∴由球的截面的性质,可得ABCDOO平面⊥1.又ABCD SO平面⊥1,∴球心O必在1SO所在的直线上.∴ASC∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC∆中,由222,2,2ACSCSAACSCSA=+===得,C DA BSO1图3∴为斜边的直角三角形是以AC ASC ∆. ∴12=AC 是外接圆的半径,也是外接球的半径.故π34=球V . 五 .确定球心位置法例5 在矩形ABCD 中,3,4==BC AB ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A.π12125 B.π9125 C.π6125 D.π3125 解:设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OD OC OB OA ===.∴点O 到四面体的四个顶点D C B A ,,,的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径25==OA R .故ππ6125343==R V 球. 出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且10,51,5,7====AC PC PB PA 求球O 的体积。
解:BC AB ⊥且10,51,5,7====AC PC PB PA 因为 22210)51(7=+ 所以知:222PC PA AC =+ 所以 PC AP ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在APC Rt ∆中斜边为AC 取斜边的中点,C AO DB图4在ABC Rt ∆中OC OB OA == 在APC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即为该四面体的外接球的球心52==AC R 所以该外接球的体积为ππ3500343==R V 球 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
解:在ABC ∆中2AB AC ==,120BAC ∠=︒,可得BC =,由正弦定理,可得ABC ∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径R =2420R ππ=. 3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 . 答案 84.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A.3B.13πC.23πD答案 A【解析】此正八面体是每个面的边长均为a的正三角形,所以由284⨯=知,1a=,故选A。
5.已知正方体外接球的体积是π332,那么正方体的棱长等于()A.22B.332 C.324 D.334答案 D6.(山东卷)正方体的内切球与其外接球的体积之比为( )A. 1∶3B. 1∶3C. 1∶33D. 1∶9答案 C7.(海南、宁夏理科)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.答案34π8. (天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.答案14π9.(全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm的球面上。
如果正四棱柱的底面边长为1 cm,那么该棱柱的表面积为cm2.答案242+10.(辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF-,则此正六棱锥的侧面积是________.答案6711.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.答案212.(枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对答案C13.设正方体的棱长为233,则它的外接球的表面积为()ABCPDEFA .π38B .2πC .4πD .π34 答案C。